mirror of
https://github.com/rust-lang/rust.git
synced 2025-04-28 11:07:42 +00:00

Previously EOVERFLOW handling was only applied for io::copy specialization but not for fs::copy sharing the same code. Additionally we lower the chunk size to 1GB since we have a user report that older kernels may return EINVAL when passing 0x8000_0000 but smaller values succeed.
604 lines
22 KiB
Rust
604 lines
22 KiB
Rust
//! This module contains specializations that can offload `io::copy()` operations on file descriptor
|
|
//! containing types (`File`, `TcpStream`, etc.) to more efficient syscalls than `read(2)` and `write(2)`.
|
|
//!
|
|
//! Specialization is only applied to wholly std-owned types so that user code can't observe
|
|
//! that the `Read` and `Write` traits are not used.
|
|
//!
|
|
//! Since a copy operation involves a reader and writer side where each can consist of different types
|
|
//! and also involve generic wrappers (e.g. `Take`, `BufReader`) it is not practical to specialize
|
|
//! a single method on all possible combinations.
|
|
//!
|
|
//! Instead readers and writers are handled separately by the `CopyRead` and `CopyWrite` specialization
|
|
//! traits and then specialized on by the `Copier::copy` method.
|
|
//!
|
|
//! `Copier` uses the specialization traits to unpack the underlying file descriptors and
|
|
//! additional prerequisites and constraints imposed by the wrapper types.
|
|
//!
|
|
//! Once it has obtained all necessary pieces and brought any wrapper types into a state where they
|
|
//! can be safely bypassed it will attempt to use the `copy_file_range(2)`,
|
|
//! `sendfile(2)` or `splice(2)` syscalls to move data directly between file descriptors.
|
|
//! Since those syscalls have requirements that cannot be fully checked in advance and
|
|
//! gathering additional information about file descriptors would require additional syscalls
|
|
//! anyway it simply attempts to use them one after another (guided by inaccurate hints) to
|
|
//! figure out which one works and and falls back to the generic read-write copy loop if none of them
|
|
//! does.
|
|
//! Once a working syscall is found for a pair of file descriptors it will be called in a loop
|
|
//! until the copy operation is completed.
|
|
//!
|
|
//! Advantages of using these syscalls:
|
|
//!
|
|
//! * fewer context switches since reads and writes are coalesced into a single syscall
|
|
//! and more bytes are transferred per syscall. This translates to higher throughput
|
|
//! and fewer CPU cycles, at least for sufficiently large transfers to amortize the initial probing.
|
|
//! * `copy_file_range` creates reflink copies on CoW filesystems, thus moving less data and
|
|
//! consuming less disk space
|
|
//! * `sendfile` and `splice` can perform zero-copy IO under some circumstances while
|
|
//! a naive copy loop would move every byte through the CPU.
|
|
//!
|
|
//! Drawbacks:
|
|
//!
|
|
//! * copy operations smaller than the default buffer size can under some circumstances, especially
|
|
//! on older kernels, incur more syscalls than the naive approach would. As mentioned above
|
|
//! the syscall selection is guided by hints to minimize this possibility but they are not perfect.
|
|
//! * optimizations only apply to std types. If a user adds a custom wrapper type, e.g. to report
|
|
//! progress, they can hit a performance cliff.
|
|
//! * complexity
|
|
|
|
use crate::cmp::min;
|
|
use crate::convert::TryInto;
|
|
use crate::fs::{File, Metadata};
|
|
use crate::io::copy::generic_copy;
|
|
use crate::io::{
|
|
BufRead, BufReader, BufWriter, Error, Read, Result, StderrLock, StdinLock, StdoutLock, Take,
|
|
Write,
|
|
};
|
|
use crate::mem::ManuallyDrop;
|
|
use crate::net::TcpStream;
|
|
use crate::os::unix::fs::FileTypeExt;
|
|
use crate::os::unix::io::{AsRawFd, FromRawFd, RawFd};
|
|
use crate::process::{ChildStderr, ChildStdin, ChildStdout};
|
|
use crate::ptr;
|
|
use crate::sync::atomic::{AtomicBool, Ordering};
|
|
use crate::sys::cvt;
|
|
|
|
#[cfg(test)]
|
|
mod tests;
|
|
|
|
pub(crate) fn copy_spec<R: Read + ?Sized, W: Write + ?Sized>(
|
|
read: &mut R,
|
|
write: &mut W,
|
|
) -> Result<u64> {
|
|
let copier = Copier { read, write };
|
|
SpecCopy::copy(copier)
|
|
}
|
|
|
|
/// This type represents either the inferred `FileType` of a `RawFd` based on the source
|
|
/// type from which it was extracted or the actual metadata
|
|
///
|
|
/// The methods on this type only provide hints, due to `AsRawFd` and `FromRawFd` the inferred
|
|
/// type may be wrong.
|
|
enum FdMeta {
|
|
/// We obtained the FD from a type that can contain any type of `FileType` and queried the metadata
|
|
/// because it is cheaper than probing all possible syscalls (reader side)
|
|
Metadata(Metadata),
|
|
Socket,
|
|
Pipe,
|
|
/// We don't have any metadata, e.g. because the original type was `File` which can represent
|
|
/// any `FileType` and we did not query the metadata either since it did not seem beneficial
|
|
/// (writer side)
|
|
NoneObtained,
|
|
}
|
|
|
|
impl FdMeta {
|
|
fn maybe_fifo(&self) -> bool {
|
|
match self {
|
|
FdMeta::Metadata(meta) => meta.file_type().is_fifo(),
|
|
FdMeta::Socket => false,
|
|
FdMeta::Pipe => true,
|
|
FdMeta::NoneObtained => true,
|
|
}
|
|
}
|
|
|
|
fn potential_sendfile_source(&self) -> bool {
|
|
match self {
|
|
// procfs erronously shows 0 length on non-empty readable files.
|
|
// and if a file is truly empty then a `read` syscall will determine that and skip the write syscall
|
|
// thus there would be benefit from attempting sendfile
|
|
FdMeta::Metadata(meta)
|
|
if meta.file_type().is_file() && meta.len() > 0
|
|
|| meta.file_type().is_block_device() =>
|
|
{
|
|
true
|
|
}
|
|
_ => false,
|
|
}
|
|
}
|
|
|
|
fn copy_file_range_candidate(&self) -> bool {
|
|
match self {
|
|
// copy_file_range will fail on empty procfs files. `read` can determine whether EOF has been reached
|
|
// without extra cost and skip the write, thus there is no benefit in attempting copy_file_range
|
|
FdMeta::Metadata(meta) if meta.is_file() && meta.len() > 0 => true,
|
|
FdMeta::NoneObtained => true,
|
|
_ => false,
|
|
}
|
|
}
|
|
}
|
|
|
|
struct CopyParams(FdMeta, Option<RawFd>);
|
|
|
|
struct Copier<'a, 'b, R: Read + ?Sized, W: Write + ?Sized> {
|
|
read: &'a mut R,
|
|
write: &'b mut W,
|
|
}
|
|
|
|
trait SpecCopy {
|
|
fn copy(self) -> Result<u64>;
|
|
}
|
|
|
|
impl<R: Read + ?Sized, W: Write + ?Sized> SpecCopy for Copier<'_, '_, R, W> {
|
|
default fn copy(self) -> Result<u64> {
|
|
generic_copy(self.read, self.write)
|
|
}
|
|
}
|
|
|
|
impl<R: CopyRead, W: CopyWrite> SpecCopy for Copier<'_, '_, R, W> {
|
|
fn copy(self) -> Result<u64> {
|
|
let (reader, writer) = (self.read, self.write);
|
|
let r_cfg = reader.properties();
|
|
let w_cfg = writer.properties();
|
|
|
|
// before direct operations on file descriptors ensure that all source and sink buffers are empty
|
|
let mut flush = || -> crate::io::Result<u64> {
|
|
let bytes = reader.drain_to(writer, u64::MAX)?;
|
|
// BufWriter buffered bytes have already been accounted for in earlier write() calls
|
|
writer.flush()?;
|
|
Ok(bytes)
|
|
};
|
|
|
|
let mut written = 0u64;
|
|
|
|
if let (CopyParams(input_meta, Some(readfd)), CopyParams(output_meta, Some(writefd))) =
|
|
(r_cfg, w_cfg)
|
|
{
|
|
written += flush()?;
|
|
let max_write = reader.min_limit();
|
|
|
|
if input_meta.copy_file_range_candidate() && output_meta.copy_file_range_candidate() {
|
|
let result = copy_regular_files(readfd, writefd, max_write);
|
|
|
|
match result {
|
|
CopyResult::Ended(Ok(bytes_copied)) => return Ok(bytes_copied + written),
|
|
CopyResult::Ended(err) => return err,
|
|
CopyResult::Fallback(bytes) => written += bytes,
|
|
}
|
|
}
|
|
|
|
// on modern kernels sendfile can copy from any mmapable type (some but not all regular files and block devices)
|
|
// to any writable file descriptor. On older kernels the writer side can only be a socket.
|
|
// So we just try and fallback if needed.
|
|
// If current file offsets + write sizes overflow it may also fail, we do not try to fix that and instead
|
|
// fall back to the generic copy loop.
|
|
if input_meta.potential_sendfile_source() {
|
|
let result = sendfile_splice(SpliceMode::Sendfile, readfd, writefd, max_write);
|
|
|
|
match result {
|
|
CopyResult::Ended(Ok(bytes_copied)) => return Ok(bytes_copied + written),
|
|
CopyResult::Ended(err) => return err,
|
|
CopyResult::Fallback(bytes) => written += bytes,
|
|
}
|
|
}
|
|
|
|
if input_meta.maybe_fifo() || output_meta.maybe_fifo() {
|
|
let result = sendfile_splice(SpliceMode::Splice, readfd, writefd, max_write);
|
|
|
|
match result {
|
|
CopyResult::Ended(Ok(bytes_copied)) => return Ok(bytes_copied + written),
|
|
CopyResult::Ended(err) => return err,
|
|
CopyResult::Fallback(0) => { /* use the fallback below */ }
|
|
CopyResult::Fallback(_) => {
|
|
unreachable!("splice should not return > 0 bytes on the fallback path")
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// fallback if none of the more specialized syscalls wants to work with these file descriptors
|
|
match generic_copy(reader, writer) {
|
|
Ok(bytes) => Ok(bytes + written),
|
|
err => err,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[rustc_specialization_trait]
|
|
trait CopyRead: Read {
|
|
/// Implementations that contain buffers (i.e. `BufReader`) must transfer data from their internal
|
|
/// buffers into `writer` until either the buffers are emptied or `limit` bytes have been
|
|
/// transferred, whichever occurs sooner.
|
|
/// If nested buffers are present the outer buffers must be drained first.
|
|
///
|
|
/// This is necessary to directly bypass the wrapper types while preserving the data order
|
|
/// when operating directly on the underlying file descriptors.
|
|
fn drain_to<W: Write>(&mut self, _writer: &mut W, _limit: u64) -> Result<u64> {
|
|
Ok(0)
|
|
}
|
|
|
|
/// The minimum of the limit of all `Take<_>` wrappers, `u64::MAX` otherwise.
|
|
/// This method does not account for data `BufReader` buffers and would underreport
|
|
/// the limit of a `Take<BufReader<Take<_>>>` type. Thus its result is only valid
|
|
/// after draining the buffers via `drain_to`.
|
|
fn min_limit(&self) -> u64 {
|
|
u64::MAX
|
|
}
|
|
|
|
/// Extracts the file descriptor and hints/metadata, delegating through wrappers if necessary.
|
|
fn properties(&self) -> CopyParams;
|
|
}
|
|
|
|
#[rustc_specialization_trait]
|
|
trait CopyWrite: Write {
|
|
/// Extracts the file descriptor and hints/metadata, delegating through wrappers if necessary.
|
|
fn properties(&self) -> CopyParams;
|
|
}
|
|
|
|
impl<T> CopyRead for &mut T
|
|
where
|
|
T: CopyRead,
|
|
{
|
|
fn drain_to<W: Write>(&mut self, writer: &mut W, limit: u64) -> Result<u64> {
|
|
(**self).drain_to(writer, limit)
|
|
}
|
|
|
|
fn min_limit(&self) -> u64 {
|
|
(**self).min_limit()
|
|
}
|
|
|
|
fn properties(&self) -> CopyParams {
|
|
(**self).properties()
|
|
}
|
|
}
|
|
|
|
impl<T> CopyWrite for &mut T
|
|
where
|
|
T: CopyWrite,
|
|
{
|
|
fn properties(&self) -> CopyParams {
|
|
(**self).properties()
|
|
}
|
|
}
|
|
|
|
impl CopyRead for File {
|
|
fn properties(&self) -> CopyParams {
|
|
CopyParams(fd_to_meta(self), Some(self.as_raw_fd()))
|
|
}
|
|
}
|
|
|
|
impl CopyRead for &File {
|
|
fn properties(&self) -> CopyParams {
|
|
CopyParams(fd_to_meta(*self), Some(self.as_raw_fd()))
|
|
}
|
|
}
|
|
|
|
impl CopyWrite for File {
|
|
fn properties(&self) -> CopyParams {
|
|
CopyParams(FdMeta::NoneObtained, Some(self.as_raw_fd()))
|
|
}
|
|
}
|
|
|
|
impl CopyWrite for &File {
|
|
fn properties(&self) -> CopyParams {
|
|
CopyParams(FdMeta::NoneObtained, Some(self.as_raw_fd()))
|
|
}
|
|
}
|
|
|
|
impl CopyRead for TcpStream {
|
|
fn properties(&self) -> CopyParams {
|
|
// avoid the stat syscall since we can be fairly sure it's a socket
|
|
CopyParams(FdMeta::Socket, Some(self.as_raw_fd()))
|
|
}
|
|
}
|
|
|
|
impl CopyRead for &TcpStream {
|
|
fn properties(&self) -> CopyParams {
|
|
// avoid the stat syscall since we can be fairly sure it's a socket
|
|
CopyParams(FdMeta::Socket, Some(self.as_raw_fd()))
|
|
}
|
|
}
|
|
|
|
impl CopyWrite for TcpStream {
|
|
fn properties(&self) -> CopyParams {
|
|
// avoid the stat syscall since we can be fairly sure it's a socket
|
|
CopyParams(FdMeta::Socket, Some(self.as_raw_fd()))
|
|
}
|
|
}
|
|
|
|
impl CopyWrite for &TcpStream {
|
|
fn properties(&self) -> CopyParams {
|
|
// avoid the stat syscall since we can be fairly sure it's a socket
|
|
CopyParams(FdMeta::Socket, Some(self.as_raw_fd()))
|
|
}
|
|
}
|
|
|
|
impl CopyWrite for ChildStdin {
|
|
fn properties(&self) -> CopyParams {
|
|
CopyParams(FdMeta::Pipe, Some(self.as_raw_fd()))
|
|
}
|
|
}
|
|
|
|
impl CopyRead for ChildStdout {
|
|
fn properties(&self) -> CopyParams {
|
|
CopyParams(FdMeta::Pipe, Some(self.as_raw_fd()))
|
|
}
|
|
}
|
|
|
|
impl CopyRead for ChildStderr {
|
|
fn properties(&self) -> CopyParams {
|
|
CopyParams(FdMeta::Pipe, Some(self.as_raw_fd()))
|
|
}
|
|
}
|
|
|
|
impl CopyRead for StdinLock<'_> {
|
|
fn drain_to<W: Write>(&mut self, writer: &mut W, outer_limit: u64) -> Result<u64> {
|
|
let buf_reader = self.as_mut_buf();
|
|
let buf = buf_reader.buffer();
|
|
let buf = &buf[0..min(buf.len(), outer_limit.try_into().unwrap_or(usize::MAX))];
|
|
let bytes_drained = buf.len();
|
|
writer.write_all(buf)?;
|
|
buf_reader.consume(bytes_drained);
|
|
|
|
Ok(bytes_drained as u64)
|
|
}
|
|
|
|
fn properties(&self) -> CopyParams {
|
|
CopyParams(fd_to_meta(self), Some(self.as_raw_fd()))
|
|
}
|
|
}
|
|
|
|
impl CopyWrite for StdoutLock<'_> {
|
|
fn properties(&self) -> CopyParams {
|
|
CopyParams(FdMeta::NoneObtained, Some(self.as_raw_fd()))
|
|
}
|
|
}
|
|
|
|
impl CopyWrite for StderrLock<'_> {
|
|
fn properties(&self) -> CopyParams {
|
|
CopyParams(FdMeta::NoneObtained, Some(self.as_raw_fd()))
|
|
}
|
|
}
|
|
|
|
impl<T: CopyRead> CopyRead for Take<T> {
|
|
fn drain_to<W: Write>(&mut self, writer: &mut W, outer_limit: u64) -> Result<u64> {
|
|
let local_limit = self.limit();
|
|
let combined_limit = min(outer_limit, local_limit);
|
|
let bytes_drained = self.get_mut().drain_to(writer, combined_limit)?;
|
|
// update limit since read() was bypassed
|
|
self.set_limit(local_limit - bytes_drained);
|
|
|
|
Ok(bytes_drained)
|
|
}
|
|
|
|
fn min_limit(&self) -> u64 {
|
|
min(Take::limit(self), self.get_ref().min_limit())
|
|
}
|
|
|
|
fn properties(&self) -> CopyParams {
|
|
self.get_ref().properties()
|
|
}
|
|
}
|
|
|
|
impl<T: CopyRead> CopyRead for BufReader<T> {
|
|
fn drain_to<W: Write>(&mut self, writer: &mut W, outer_limit: u64) -> Result<u64> {
|
|
let buf = self.buffer();
|
|
let buf = &buf[0..min(buf.len(), outer_limit.try_into().unwrap_or(usize::MAX))];
|
|
let bytes = buf.len();
|
|
writer.write_all(buf)?;
|
|
self.consume(bytes);
|
|
|
|
let remaining = outer_limit - bytes as u64;
|
|
|
|
// in case of nested bufreaders we also need to drain the ones closer to the source
|
|
let inner_bytes = self.get_mut().drain_to(writer, remaining)?;
|
|
|
|
Ok(bytes as u64 + inner_bytes)
|
|
}
|
|
|
|
fn min_limit(&self) -> u64 {
|
|
self.get_ref().min_limit()
|
|
}
|
|
|
|
fn properties(&self) -> CopyParams {
|
|
self.get_ref().properties()
|
|
}
|
|
}
|
|
|
|
impl<T: CopyWrite> CopyWrite for BufWriter<T> {
|
|
fn properties(&self) -> CopyParams {
|
|
self.get_ref().properties()
|
|
}
|
|
}
|
|
|
|
fn fd_to_meta<T: AsRawFd>(fd: &T) -> FdMeta {
|
|
let fd = fd.as_raw_fd();
|
|
let file: ManuallyDrop<File> = ManuallyDrop::new(unsafe { File::from_raw_fd(fd) });
|
|
match file.metadata() {
|
|
Ok(meta) => FdMeta::Metadata(meta),
|
|
Err(_) => FdMeta::NoneObtained,
|
|
}
|
|
}
|
|
|
|
pub(super) enum CopyResult {
|
|
Ended(Result<u64>),
|
|
Fallback(u64),
|
|
}
|
|
|
|
/// linux-specific implementation that will attempt to use copy_file_range for copy offloading
|
|
/// as the name says, it only works on regular files
|
|
///
|
|
/// Callers must handle fallback to a generic copy loop.
|
|
/// `Fallback` may indicate non-zero number of bytes already written
|
|
/// if one of the files' cursor +`max_len` would exceed u64::MAX (`EOVERFLOW`).
|
|
pub(super) fn copy_regular_files(reader: RawFd, writer: RawFd, max_len: u64) -> CopyResult {
|
|
use crate::cmp;
|
|
|
|
// Kernel prior to 4.5 don't have copy_file_range
|
|
// We store the availability in a global to avoid unnecessary syscalls
|
|
static HAS_COPY_FILE_RANGE: AtomicBool = AtomicBool::new(true);
|
|
|
|
unsafe fn copy_file_range(
|
|
fd_in: libc::c_int,
|
|
off_in: *mut libc::loff_t,
|
|
fd_out: libc::c_int,
|
|
off_out: *mut libc::loff_t,
|
|
len: libc::size_t,
|
|
flags: libc::c_uint,
|
|
) -> libc::c_long {
|
|
libc::syscall(libc::SYS_copy_file_range, fd_in, off_in, fd_out, off_out, len, flags)
|
|
}
|
|
|
|
let has_copy_file_range = HAS_COPY_FILE_RANGE.load(Ordering::Relaxed);
|
|
let mut written = 0u64;
|
|
while written < max_len {
|
|
let copy_result = if has_copy_file_range {
|
|
let bytes_to_copy = cmp::min(max_len - written, usize::MAX as u64);
|
|
// cap to 1GB chunks in case u64::MAX is passed as max_len and the file has a non-zero seek position
|
|
// this allows us to copy large chunks without hitting EOVERFLOW,
|
|
// unless someone sets a file offset close to u64::MAX - 1GB, in which case a fallback would be required
|
|
let bytes_to_copy = cmp::min(bytes_to_copy as usize, 0x4000_0000usize);
|
|
let copy_result = unsafe {
|
|
// We actually don't have to adjust the offsets,
|
|
// because copy_file_range adjusts the file offset automatically
|
|
cvt(copy_file_range(
|
|
reader,
|
|
ptr::null_mut(),
|
|
writer,
|
|
ptr::null_mut(),
|
|
bytes_to_copy,
|
|
0,
|
|
))
|
|
};
|
|
if let Err(ref copy_err) = copy_result {
|
|
match copy_err.raw_os_error() {
|
|
Some(libc::ENOSYS | libc::EPERM | libc::EOPNOTSUPP) => {
|
|
HAS_COPY_FILE_RANGE.store(false, Ordering::Relaxed);
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
copy_result
|
|
} else {
|
|
Err(Error::from_raw_os_error(libc::ENOSYS))
|
|
};
|
|
match copy_result {
|
|
Ok(0) if written == 0 => {
|
|
// fallback to work around several kernel bugs where copy_file_range will fail to
|
|
// copy any bytes and return 0 instead of an error if
|
|
// - reading virtual files from the proc filesystem which appear to have 0 size
|
|
// but are not empty. noted in coreutils to affect kernels at least up to 5.6.19.
|
|
// - copying from an overlay filesystem in docker. reported to occur on fedora 32.
|
|
return CopyResult::Fallback(0);
|
|
}
|
|
Ok(0) => return CopyResult::Ended(Ok(written)), // reached EOF
|
|
Ok(ret) => written += ret as u64,
|
|
Err(err) => {
|
|
return match err.raw_os_error() {
|
|
// when file offset + max_length > u64::MAX
|
|
Some(libc::EOVERFLOW) => CopyResult::Fallback(written),
|
|
Some(
|
|
libc::ENOSYS | libc::EXDEV | libc::EINVAL | libc::EPERM | libc::EOPNOTSUPP,
|
|
) => {
|
|
// Try fallback io::copy if either:
|
|
// - Kernel version is < 4.5 (ENOSYS)
|
|
// - Files are mounted on different fs (EXDEV)
|
|
// - copy_file_range is broken in various ways on RHEL/CentOS 7 (EOPNOTSUPP)
|
|
// - copy_file_range is disallowed, for example by seccomp (EPERM)
|
|
// - copy_file_range cannot be used with pipes or device nodes (EINVAL)
|
|
assert_eq!(written, 0);
|
|
CopyResult::Fallback(0)
|
|
}
|
|
_ => CopyResult::Ended(Err(err)),
|
|
};
|
|
}
|
|
}
|
|
}
|
|
CopyResult::Ended(Ok(written))
|
|
}
|
|
|
|
#[derive(PartialEq)]
|
|
enum SpliceMode {
|
|
Sendfile,
|
|
Splice,
|
|
}
|
|
|
|
/// performs splice or sendfile between file descriptors
|
|
/// Does _not_ fall back to a generic copy loop.
|
|
fn sendfile_splice(mode: SpliceMode, reader: RawFd, writer: RawFd, len: u64) -> CopyResult {
|
|
static HAS_SENDFILE: AtomicBool = AtomicBool::new(true);
|
|
static HAS_SPLICE: AtomicBool = AtomicBool::new(true);
|
|
|
|
syscall! {
|
|
fn splice(
|
|
srcfd: libc::c_int,
|
|
src_offset: *const i64,
|
|
dstfd: libc::c_int,
|
|
dst_offset: *const i64,
|
|
len: libc::size_t,
|
|
flags: libc::c_int
|
|
) -> libc::ssize_t
|
|
}
|
|
|
|
match mode {
|
|
SpliceMode::Sendfile if !HAS_SENDFILE.load(Ordering::Relaxed) => {
|
|
return CopyResult::Fallback(0);
|
|
}
|
|
SpliceMode::Splice if !HAS_SPLICE.load(Ordering::Relaxed) => {
|
|
return CopyResult::Fallback(0);
|
|
}
|
|
_ => (),
|
|
}
|
|
|
|
let mut written = 0u64;
|
|
while written < len {
|
|
// according to its manpage that's the maximum size sendfile() will copy per invocation
|
|
let chunk_size = crate::cmp::min(len - written, 0x7ffff000_u64) as usize;
|
|
|
|
let result = match mode {
|
|
SpliceMode::Sendfile => {
|
|
cvt(unsafe { libc::sendfile(writer, reader, ptr::null_mut(), chunk_size) })
|
|
}
|
|
SpliceMode::Splice => cvt(unsafe {
|
|
splice(reader, ptr::null_mut(), writer, ptr::null_mut(), chunk_size, 0)
|
|
}),
|
|
};
|
|
|
|
match result {
|
|
Ok(0) => break, // EOF
|
|
Ok(ret) => written += ret as u64,
|
|
Err(err) => {
|
|
return match err.raw_os_error() {
|
|
Some(libc::ENOSYS | libc::EPERM) => {
|
|
// syscall not supported (ENOSYS)
|
|
// syscall is disallowed, e.g. by seccomp (EPERM)
|
|
match mode {
|
|
SpliceMode::Sendfile => HAS_SENDFILE.store(false, Ordering::Relaxed),
|
|
SpliceMode::Splice => HAS_SPLICE.store(false, Ordering::Relaxed),
|
|
}
|
|
assert_eq!(written, 0);
|
|
CopyResult::Fallback(0)
|
|
}
|
|
Some(libc::EINVAL) => {
|
|
// splice/sendfile do not support this particular file descriptor (EINVAL)
|
|
assert_eq!(written, 0);
|
|
CopyResult::Fallback(0)
|
|
}
|
|
Some(os_err) if mode == SpliceMode::Sendfile && os_err == libc::EOVERFLOW => {
|
|
CopyResult::Fallback(written)
|
|
}
|
|
_ => CopyResult::Ended(Err(err)),
|
|
};
|
|
}
|
|
}
|
|
}
|
|
CopyResult::Ended(Ok(written))
|
|
}
|