rust/compiler/rustc_mir_transform/src/coverage/counters.rs
Zalathar ba08056d47 coverage: Remove the expression simplifier from CoverageCounters
These simplifications are now handled by the transcribe step.
2024-12-04 17:55:57 +11:00

600 lines
24 KiB
Rust

use std::cmp::Ordering;
use std::fmt::{self, Debug};
use rustc_data_structures::captures::Captures;
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::graph::DirectedGraph;
use rustc_index::IndexVec;
use rustc_index::bit_set::BitSet;
use rustc_middle::mir::coverage::{CounterId, CovTerm, Expression, ExpressionId, Op};
use tracing::{debug, debug_span, instrument};
use crate::coverage::graph::{BasicCoverageBlock, CoverageGraph, TraverseCoverageGraphWithLoops};
#[cfg(test)]
mod tests;
/// The coverage counter or counter expression associated with a particular
/// BCB node or BCB edge.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
enum BcbCounter {
Counter { id: CounterId },
Expression { id: ExpressionId },
}
impl BcbCounter {
fn as_term(&self) -> CovTerm {
match *self {
BcbCounter::Counter { id, .. } => CovTerm::Counter(id),
BcbCounter::Expression { id, .. } => CovTerm::Expression(id),
}
}
}
impl Debug for BcbCounter {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::Counter { id, .. } => write!(fmt, "Counter({:?})", id.index()),
Self::Expression { id } => write!(fmt, "Expression({:?})", id.index()),
}
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
struct BcbExpression {
lhs: BcbCounter,
op: Op,
rhs: BcbCounter,
}
/// Enum representing either a node or an edge in the coverage graph.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub(super) enum Site {
Node { bcb: BasicCoverageBlock },
Edge { from_bcb: BasicCoverageBlock, to_bcb: BasicCoverageBlock },
}
/// Generates and stores coverage counter and coverage expression information
/// associated with nodes/edges in the BCB graph.
pub(super) struct CoverageCounters {
/// List of places where a counter-increment statement should be injected
/// into MIR, each with its corresponding counter ID.
counter_increment_sites: IndexVec<CounterId, Site>,
/// Coverage counters/expressions that are associated with individual BCBs.
node_counters: IndexVec<BasicCoverageBlock, Option<BcbCounter>>,
/// Table of expression data, associating each expression ID with its
/// corresponding operator (+ or -) and its LHS/RHS operands.
expressions: IndexVec<ExpressionId, BcbExpression>,
/// Remember expressions that have already been created (or simplified),
/// so that we don't create unnecessary duplicates.
expressions_memo: FxHashMap<BcbExpression, BcbCounter>,
}
impl CoverageCounters {
/// Ensures that each BCB node needing a counter has one, by creating physical
/// counters or counter expressions for nodes and edges as required.
pub(super) fn make_bcb_counters(
graph: &CoverageGraph,
bcb_needs_counter: &BitSet<BasicCoverageBlock>,
) -> Self {
let mut builder = CountersBuilder::new(graph, bcb_needs_counter);
builder.make_bcb_counters();
builder.into_coverage_counters()
}
fn with_num_bcbs(num_bcbs: usize) -> Self {
Self {
counter_increment_sites: IndexVec::new(),
node_counters: IndexVec::from_elem_n(None, num_bcbs),
expressions: IndexVec::new(),
expressions_memo: FxHashMap::default(),
}
}
/// Creates a new physical counter for a BCB node or edge.
fn make_phys_counter(&mut self, site: Site) -> BcbCounter {
let id = self.counter_increment_sites.push(site);
BcbCounter::Counter { id }
}
fn make_expression(&mut self, lhs: BcbCounter, op: Op, rhs: BcbCounter) -> BcbCounter {
let new_expr = BcbExpression { lhs, op, rhs };
*self.expressions_memo.entry(new_expr).or_insert_with(|| {
let id = self.expressions.push(new_expr);
BcbCounter::Expression { id }
})
}
/// Creates a counter that is the sum of the given counters.
///
/// Returns `None` if the given list of counters was empty.
fn make_sum(&mut self, counters: &[BcbCounter]) -> Option<BcbCounter> {
counters
.iter()
.copied()
.reduce(|accum, counter| self.make_expression(accum, Op::Add, counter))
}
/// Creates a counter whose value is `lhs - SUM(rhs)`.
fn make_subtracted_sum(&mut self, lhs: BcbCounter, rhs: &[BcbCounter]) -> BcbCounter {
let Some(rhs_sum) = self.make_sum(rhs) else { return lhs };
self.make_expression(lhs, Op::Subtract, rhs_sum)
}
pub(super) fn num_counters(&self) -> usize {
self.counter_increment_sites.len()
}
fn set_node_counter(&mut self, bcb: BasicCoverageBlock, counter: BcbCounter) -> BcbCounter {
let existing = self.node_counters[bcb].replace(counter);
assert!(
existing.is_none(),
"node {bcb:?} already has a counter: {existing:?} => {counter:?}"
);
counter
}
pub(super) fn term_for_bcb(&self, bcb: BasicCoverageBlock) -> Option<CovTerm> {
self.node_counters[bcb].map(|counter| counter.as_term())
}
/// Returns an iterator over all the nodes/edges in the coverage graph that
/// should have a counter-increment statement injected into MIR, along with
/// each site's corresponding counter ID.
pub(super) fn counter_increment_sites(
&self,
) -> impl Iterator<Item = (CounterId, Site)> + Captures<'_> {
self.counter_increment_sites.iter_enumerated().map(|(id, &site)| (id, site))
}
/// Returns an iterator over the subset of BCB nodes that have been associated
/// with a counter *expression*, along with the ID of that expression.
pub(super) fn bcb_nodes_with_coverage_expressions(
&self,
) -> impl Iterator<Item = (BasicCoverageBlock, ExpressionId)> + Captures<'_> {
self.node_counters.iter_enumerated().filter_map(|(bcb, &counter)| match counter {
// Yield the BCB along with its associated expression ID.
Some(BcbCounter::Expression { id }) => Some((bcb, id)),
// This BCB is associated with a counter or nothing, so skip it.
Some(BcbCounter::Counter { .. }) | None => None,
})
}
pub(super) fn into_expressions(self) -> IndexVec<ExpressionId, Expression> {
let old_len = self.expressions.len();
let expressions = self
.expressions
.into_iter()
.map(|BcbExpression { lhs, op, rhs }| Expression {
lhs: lhs.as_term(),
op,
rhs: rhs.as_term(),
})
.collect::<IndexVec<ExpressionId, _>>();
// Expression IDs are indexes into this vector, so make sure we didn't
// accidentally invalidate them by changing its length.
assert_eq!(old_len, expressions.len());
expressions
}
}
/// Symbolic representation of the coverage counter to be used for a particular
/// node or edge in the coverage graph. The same site counter can be used for
/// multiple sites, if they have been determined to have the same count.
#[derive(Clone, Copy, Debug)]
enum SiteCounter {
/// A physical counter at some node/edge.
Phys { site: Site },
/// A counter expression for a node that takes the sum of all its in-edge
/// counters.
NodeSumExpr { bcb: BasicCoverageBlock },
/// A counter expression for an edge that takes the counter of its source
/// node, and subtracts the counters of all its sibling out-edges.
EdgeDiffExpr { from_bcb: BasicCoverageBlock, to_bcb: BasicCoverageBlock },
}
/// Yields the graph successors of `from_bcb` that aren't `to_bcb`. This is
/// used when creating a counter expression for [`SiteCounter::EdgeDiffExpr`].
///
/// For example, in this diagram the sibling out-edge targets of edge `AC` are
/// the nodes `B` and `D`.
///
/// ```text
/// A
/// / | \
/// B C D
/// ```
fn sibling_out_edge_targets(
graph: &CoverageGraph,
from_bcb: BasicCoverageBlock,
to_bcb: BasicCoverageBlock,
) -> impl Iterator<Item = BasicCoverageBlock> + Captures<'_> {
graph.successors[from_bcb].iter().copied().filter(move |&t| t != to_bcb)
}
/// Helper struct that allows counter creation to inspect the BCB graph, and
/// the set of nodes that need counters.
struct CountersBuilder<'a> {
graph: &'a CoverageGraph,
bcb_needs_counter: &'a BitSet<BasicCoverageBlock>,
site_counters: FxHashMap<Site, SiteCounter>,
}
impl<'a> CountersBuilder<'a> {
fn new(graph: &'a CoverageGraph, bcb_needs_counter: &'a BitSet<BasicCoverageBlock>) -> Self {
assert_eq!(graph.num_nodes(), bcb_needs_counter.domain_size());
Self { graph, bcb_needs_counter, site_counters: FxHashMap::default() }
}
fn make_bcb_counters(&mut self) {
debug!("make_bcb_counters(): adding a counter or expression to each BasicCoverageBlock");
// Traverse the coverage graph, ensuring that every node that needs a
// coverage counter has one.
//
// The traversal tries to ensure that, when a loop is encountered, all
// nodes within the loop are visited before visiting any nodes outside
// the loop.
let mut traversal = TraverseCoverageGraphWithLoops::new(self.graph);
while let Some(bcb) = traversal.next() {
let _span = debug_span!("traversal", ?bcb).entered();
if self.bcb_needs_counter.contains(bcb) {
self.make_node_counter_and_out_edge_counters(bcb);
}
}
assert!(
traversal.is_complete(),
"`TraverseCoverageGraphWithLoops` missed some `BasicCoverageBlock`s: {:?}",
traversal.unvisited(),
);
}
/// Make sure the given node has a node counter, and then make sure each of
/// its out-edges has an edge counter (if appropriate).
#[instrument(level = "debug", skip(self))]
fn make_node_counter_and_out_edge_counters(&mut self, from_bcb: BasicCoverageBlock) {
// First, ensure that this node has a counter of some kind.
// We might also use that counter to compute one of the out-edge counters.
self.get_or_make_node_counter(from_bcb);
// If this node's out-edges won't sum to the node's counter,
// then there's no reason to create edge counters here.
if !self.graph[from_bcb].is_out_summable {
return;
}
// When choosing which out-edge should be given a counter expression, ignore edges that
// already have counters, or could use the existing counter of their target node.
let out_edge_has_counter = |to_bcb| {
if self.site_counters.contains_key(&Site::Edge { from_bcb, to_bcb }) {
return true;
}
self.graph.sole_predecessor(to_bcb) == Some(from_bcb)
&& self.site_counters.contains_key(&Site::Node { bcb: to_bcb })
};
// Determine the set of out-edges that could benefit from being given an expression.
let candidate_successors = self.graph.successors[from_bcb]
.iter()
.copied()
.filter(|&to_bcb| !out_edge_has_counter(to_bcb))
.collect::<Vec<_>>();
debug!(?candidate_successors);
// If there are out-edges without counters, choose one to be given an expression
// (computed from this node and the other out-edges) instead of a physical counter.
let Some(to_bcb) = self.choose_out_edge_for_expression(from_bcb, &candidate_successors)
else {
return;
};
// For each out-edge other than the one that was chosen to get an expression,
// ensure that it has a counter (existing counter/expression or a new counter).
for target in sibling_out_edge_targets(self.graph, from_bcb, to_bcb) {
self.get_or_make_edge_counter(from_bcb, target);
}
// Now create an expression for the chosen edge, by taking the counter
// for its source node and subtracting the sum of its sibling out-edges.
let counter = SiteCounter::EdgeDiffExpr { from_bcb, to_bcb };
self.site_counters.insert(Site::Edge { from_bcb, to_bcb }, counter);
}
#[instrument(level = "debug", skip(self))]
fn get_or_make_node_counter(&mut self, bcb: BasicCoverageBlock) -> SiteCounter {
// If the BCB already has a counter, return it.
if let Some(&counter) = self.site_counters.get(&Site::Node { bcb }) {
debug!("{bcb:?} already has a counter: {counter:?}");
return counter;
}
let counter = self.make_node_counter_inner(bcb);
self.site_counters.insert(Site::Node { bcb }, counter);
counter
}
fn make_node_counter_inner(&mut self, bcb: BasicCoverageBlock) -> SiteCounter {
// If the node's sole in-edge already has a counter, use that.
if let Some(sole_pred) = self.graph.sole_predecessor(bcb)
&& let Some(&edge_counter) =
self.site_counters.get(&Site::Edge { from_bcb: sole_pred, to_bcb: bcb })
{
return edge_counter;
}
let predecessors = self.graph.predecessors[bcb].as_slice();
// Handle cases where we can't compute a node's count from its in-edges:
// - START_BCB has no in-edges, so taking the sum would panic (or be wrong).
// - For nodes with one in-edge, or that directly loop to themselves,
// trying to get the in-edge counts would require this node's counter,
// leading to infinite recursion.
if predecessors.len() <= 1 || predecessors.contains(&bcb) {
debug!(?bcb, ?predecessors, "node has <=1 predecessors or is its own predecessor");
let counter = SiteCounter::Phys { site: Site::Node { bcb } };
debug!(?bcb, ?counter, "node gets a physical counter");
return counter;
}
// A BCB with multiple incoming edges can compute its count by ensuring that counters
// exist for each of those edges, and then adding them up to get a total count.
for &from_bcb in predecessors {
self.get_or_make_edge_counter(from_bcb, bcb);
}
let sum_of_in_edges = SiteCounter::NodeSumExpr { bcb };
debug!("{bcb:?} gets a new counter (sum of predecessor counters): {sum_of_in_edges:?}");
sum_of_in_edges
}
#[instrument(level = "debug", skip(self))]
fn get_or_make_edge_counter(
&mut self,
from_bcb: BasicCoverageBlock,
to_bcb: BasicCoverageBlock,
) -> SiteCounter {
// If the edge already has a counter, return it.
if let Some(&counter) = self.site_counters.get(&Site::Edge { from_bcb, to_bcb }) {
debug!("Edge {from_bcb:?}->{to_bcb:?} already has a counter: {counter:?}");
return counter;
}
let counter = self.make_edge_counter_inner(from_bcb, to_bcb);
self.site_counters.insert(Site::Edge { from_bcb, to_bcb }, counter);
counter
}
fn make_edge_counter_inner(
&mut self,
from_bcb: BasicCoverageBlock,
to_bcb: BasicCoverageBlock,
) -> SiteCounter {
// If the target node has exactly one in-edge (i.e. this one), then just
// use the node's counter, since it will have the same value.
if let Some(sole_pred) = self.graph.sole_predecessor(to_bcb) {
assert_eq!(sole_pred, from_bcb);
// This call must take care not to invoke `get_or_make_edge` for
// this edge, since that would result in infinite recursion!
return self.get_or_make_node_counter(to_bcb);
}
// If the source node has exactly one out-edge (i.e. this one) and would have
// the same execution count as that edge, then just use the node's counter.
if let Some(simple_succ) = self.graph.simple_successor(from_bcb) {
assert_eq!(simple_succ, to_bcb);
return self.get_or_make_node_counter(from_bcb);
}
// Make a new counter to count this edge.
let counter = SiteCounter::Phys { site: Site::Edge { from_bcb, to_bcb } };
debug!(?from_bcb, ?to_bcb, ?counter, "edge gets a physical counter");
counter
}
/// Given a set of candidate out-edges (represented by their successor node),
/// choose one to be given a counter expression instead of a physical counter.
fn choose_out_edge_for_expression(
&self,
from_bcb: BasicCoverageBlock,
candidate_successors: &[BasicCoverageBlock],
) -> Option<BasicCoverageBlock> {
// Try to find a candidate that leads back to the top of a loop,
// because reloop edges tend to be executed more times than loop-exit edges.
if let Some(reloop_target) = self.find_good_reloop_edge(from_bcb, &candidate_successors) {
debug!("Selecting reloop target {reloop_target:?} to get an expression");
return Some(reloop_target);
}
// We couldn't identify a "good" edge, so just choose an arbitrary one.
let arbitrary_target = candidate_successors.first().copied()?;
debug!(?arbitrary_target, "selecting arbitrary out-edge to get an expression");
Some(arbitrary_target)
}
/// Given a set of candidate out-edges (represented by their successor node),
/// tries to find one that leads back to the top of a loop.
///
/// Reloop edges are good candidates for counter expressions, because they
/// will tend to be executed more times than a loop-exit edge, so it's nice
/// for them to be able to avoid a physical counter increment.
fn find_good_reloop_edge(
&self,
from_bcb: BasicCoverageBlock,
candidate_successors: &[BasicCoverageBlock],
) -> Option<BasicCoverageBlock> {
// If there are no candidates, avoid iterating over the loop stack.
if candidate_successors.is_empty() {
return None;
}
// Consider each loop on the current traversal context stack, top-down.
for loop_header_node in self.graph.loop_headers_containing(from_bcb) {
// Try to find a candidate edge that doesn't exit this loop.
for &target_bcb in candidate_successors {
// An edge is a reloop edge if its target dominates any BCB that has
// an edge back to the loop header. (Otherwise it's an exit edge.)
let is_reloop_edge = self
.graph
.reloop_predecessors(loop_header_node)
.any(|reloop_bcb| self.graph.dominates(target_bcb, reloop_bcb));
if is_reloop_edge {
// We found a good out-edge to be given an expression.
return Some(target_bcb);
}
}
// All of the candidate edges exit this loop, so keep looking
// for a good reloop edge for one of the outer loops.
}
None
}
fn into_coverage_counters(self) -> CoverageCounters {
Transcriber::new(&self).transcribe_counters()
}
}
/// Helper struct for converting `CountersBuilder` into a final `CoverageCounters`.
struct Transcriber<'a> {
old: &'a CountersBuilder<'a>,
new: CoverageCounters,
phys_counter_for_site: FxHashMap<Site, BcbCounter>,
}
impl<'a> Transcriber<'a> {
fn new(old: &'a CountersBuilder<'a>) -> Self {
Self {
old,
new: CoverageCounters::with_num_bcbs(old.graph.num_nodes()),
phys_counter_for_site: FxHashMap::default(),
}
}
fn transcribe_counters(mut self) -> CoverageCounters {
for bcb in self.old.bcb_needs_counter.iter() {
let site = Site::Node { bcb };
let site_counter = self.site_counter(site);
// Resolve the site counter into flat lists of nodes/edges whose
// physical counts contribute to the counter for this node.
// Distinguish between counts that will be added vs subtracted.
let mut pos = vec![];
let mut neg = vec![];
self.push_resolved_sites(site_counter, &mut pos, &mut neg);
// Simplify by cancelling out sites that appear on both sides.
let (mut pos, mut neg) = sort_and_cancel(pos, neg);
if pos.is_empty() {
// If we somehow end up with no positive terms after cancellation,
// fall back to creating a physical counter. There's no known way
// for this to happen, but it's hard to confidently rule it out.
debug_assert!(false, "{site:?} has no positive counter terms");
pos = vec![Some(site)];
neg = vec![];
}
let mut new_counters_for_sites = |sites: Vec<Option<Site>>| {
sites
.into_iter()
.filter_map(|id| try { self.ensure_phys_counter(id?) })
.collect::<Vec<_>>()
};
let mut pos = new_counters_for_sites(pos);
let mut neg = new_counters_for_sites(neg);
pos.sort();
neg.sort();
let pos_counter = self.new.make_sum(&pos).expect("`pos` should not be empty");
let new_counter = self.new.make_subtracted_sum(pos_counter, &neg);
self.new.set_node_counter(bcb, new_counter);
}
self.new
}
fn site_counter(&self, site: Site) -> SiteCounter {
self.old.site_counters.get(&site).copied().unwrap_or_else(|| {
// We should have already created all necessary site counters.
// But if we somehow didn't, avoid crashing in release builds,
// and just use an extra physical counter instead.
debug_assert!(false, "{site:?} should have a counter");
SiteCounter::Phys { site }
})
}
fn ensure_phys_counter(&mut self, site: Site) -> BcbCounter {
*self.phys_counter_for_site.entry(site).or_insert_with(|| self.new.make_phys_counter(site))
}
/// Resolves the given counter into flat lists of nodes/edges, whose counters
/// will then be added and subtracted to form a counter expression.
fn push_resolved_sites(&self, counter: SiteCounter, pos: &mut Vec<Site>, neg: &mut Vec<Site>) {
match counter {
SiteCounter::Phys { site } => pos.push(site),
SiteCounter::NodeSumExpr { bcb } => {
for &from_bcb in &self.old.graph.predecessors[bcb] {
let edge_counter = self.site_counter(Site::Edge { from_bcb, to_bcb: bcb });
self.push_resolved_sites(edge_counter, pos, neg);
}
}
SiteCounter::EdgeDiffExpr { from_bcb, to_bcb } => {
// First, add the count for `from_bcb`.
let node_counter = self.site_counter(Site::Node { bcb: from_bcb });
self.push_resolved_sites(node_counter, pos, neg);
// Then subtract the counts for the other out-edges.
for target in sibling_out_edge_targets(self.old.graph, from_bcb, to_bcb) {
let edge_counter = self.site_counter(Site::Edge { from_bcb, to_bcb: target });
// Swap `neg` and `pos` so that the counter is subtracted.
self.push_resolved_sites(edge_counter, neg, pos);
}
}
}
}
}
/// Given two lists:
/// - Sorts each list.
/// - Converts each list to `Vec<Option<T>>`.
/// - Scans for values that appear in both lists, and cancels them out by
/// replacing matching pairs of values with `None`.
fn sort_and_cancel<T: Ord>(mut pos: Vec<T>, mut neg: Vec<T>) -> (Vec<Option<T>>, Vec<Option<T>>) {
pos.sort();
neg.sort();
// Convert to `Vec<Option<T>>`. If `T` has a niche, this should be zero-cost.
let mut pos = pos.into_iter().map(Some).collect::<Vec<_>>();
let mut neg = neg.into_iter().map(Some).collect::<Vec<_>>();
// Scan through the lists using two cursors. When either cursor reaches the
// end of its list, there can be no more equal pairs, so stop.
let mut p = 0;
let mut n = 0;
while p < pos.len() && n < neg.len() {
// If the values are equal, remove them and advance both cursors.
// Otherwise, advance whichever cursor points to the lesser value.
// (Choosing which cursor to advance relies on both lists being sorted.)
match pos[p].cmp(&neg[n]) {
Ordering::Less => p += 1,
Ordering::Equal => {
pos[p] = None;
neg[n] = None;
p += 1;
n += 1;
}
Ordering::Greater => n += 1,
}
}
(pos, neg)
}