mirror of
https://github.com/rust-lang/rust.git
synced 2025-06-19 02:57:33 +00:00

According to documentation, the listed errnos should only occur if the `copy_file_range` call cannot be made at all, so the assert be correct. However, since in practice file system drivers (incl. FUSE etc.) can return any errno they want, we should not panic here. Fixes #91152
682 lines
25 KiB
Rust
682 lines
25 KiB
Rust
//! This module contains specializations that can offload `io::copy()` operations on file descriptor
|
|
//! containing types (`File`, `TcpStream`, etc.) to more efficient syscalls than `read(2)` and `write(2)`.
|
|
//!
|
|
//! Specialization is only applied to wholly std-owned types so that user code can't observe
|
|
//! that the `Read` and `Write` traits are not used.
|
|
//!
|
|
//! Since a copy operation involves a reader and writer side where each can consist of different types
|
|
//! and also involve generic wrappers (e.g. `Take`, `BufReader`) it is not practical to specialize
|
|
//! a single method on all possible combinations.
|
|
//!
|
|
//! Instead readers and writers are handled separately by the `CopyRead` and `CopyWrite` specialization
|
|
//! traits and then specialized on by the `Copier::copy` method.
|
|
//!
|
|
//! `Copier` uses the specialization traits to unpack the underlying file descriptors and
|
|
//! additional prerequisites and constraints imposed by the wrapper types.
|
|
//!
|
|
//! Once it has obtained all necessary pieces and brought any wrapper types into a state where they
|
|
//! can be safely bypassed it will attempt to use the `copy_file_range(2)`,
|
|
//! `sendfile(2)` or `splice(2)` syscalls to move data directly between file descriptors.
|
|
//! Since those syscalls have requirements that cannot be fully checked in advance and
|
|
//! gathering additional information about file descriptors would require additional syscalls
|
|
//! anyway it simply attempts to use them one after another (guided by inaccurate hints) to
|
|
//! figure out which one works and and falls back to the generic read-write copy loop if none of them
|
|
//! does.
|
|
//! Once a working syscall is found for a pair of file descriptors it will be called in a loop
|
|
//! until the copy operation is completed.
|
|
//!
|
|
//! Advantages of using these syscalls:
|
|
//!
|
|
//! * fewer context switches since reads and writes are coalesced into a single syscall
|
|
//! and more bytes are transferred per syscall. This translates to higher throughput
|
|
//! and fewer CPU cycles, at least for sufficiently large transfers to amortize the initial probing.
|
|
//! * `copy_file_range` creates reflink copies on CoW filesystems, thus moving less data and
|
|
//! consuming less disk space
|
|
//! * `sendfile` and `splice` can perform zero-copy IO under some circumstances while
|
|
//! a naive copy loop would move every byte through the CPU.
|
|
//!
|
|
//! Drawbacks:
|
|
//!
|
|
//! * copy operations smaller than the default buffer size can under some circumstances, especially
|
|
//! on older kernels, incur more syscalls than the naive approach would. As mentioned above
|
|
//! the syscall selection is guided by hints to minimize this possibility but they are not perfect.
|
|
//! * optimizations only apply to std types. If a user adds a custom wrapper type, e.g. to report
|
|
//! progress, they can hit a performance cliff.
|
|
//! * complexity
|
|
|
|
use crate::cmp::min;
|
|
use crate::convert::TryInto;
|
|
use crate::fs::{File, Metadata};
|
|
use crate::io::copy::generic_copy;
|
|
use crate::io::{
|
|
BufRead, BufReader, BufWriter, Error, Read, Result, StderrLock, StdinLock, StdoutLock, Take,
|
|
Write,
|
|
};
|
|
use crate::mem::ManuallyDrop;
|
|
use crate::net::TcpStream;
|
|
use crate::os::unix::fs::FileTypeExt;
|
|
use crate::os::unix::io::{AsRawFd, FromRawFd, RawFd};
|
|
use crate::os::unix::net::UnixStream;
|
|
use crate::process::{ChildStderr, ChildStdin, ChildStdout};
|
|
use crate::ptr;
|
|
use crate::sync::atomic::{AtomicBool, AtomicU8, Ordering};
|
|
use crate::sys::cvt;
|
|
use crate::sys::weak::syscall;
|
|
use libc::{EBADF, EINVAL, ENOSYS, EOPNOTSUPP, EOVERFLOW, EPERM, EXDEV};
|
|
|
|
#[cfg(test)]
|
|
mod tests;
|
|
|
|
pub(crate) fn copy_spec<R: Read + ?Sized, W: Write + ?Sized>(
|
|
read: &mut R,
|
|
write: &mut W,
|
|
) -> Result<u64> {
|
|
let copier = Copier { read, write };
|
|
SpecCopy::copy(copier)
|
|
}
|
|
|
|
/// This type represents either the inferred `FileType` of a `RawFd` based on the source
|
|
/// type from which it was extracted or the actual metadata
|
|
///
|
|
/// The methods on this type only provide hints, due to `AsRawFd` and `FromRawFd` the inferred
|
|
/// type may be wrong.
|
|
enum FdMeta {
|
|
/// We obtained the FD from a type that can contain any type of `FileType` and queried the metadata
|
|
/// because it is cheaper than probing all possible syscalls (reader side)
|
|
Metadata(Metadata),
|
|
Socket,
|
|
Pipe,
|
|
/// We don't have any metadata, e.g. because the original type was `File` which can represent
|
|
/// any `FileType` and we did not query the metadata either since it did not seem beneficial
|
|
/// (writer side)
|
|
NoneObtained,
|
|
}
|
|
|
|
impl FdMeta {
|
|
fn maybe_fifo(&self) -> bool {
|
|
match self {
|
|
FdMeta::Metadata(meta) => meta.file_type().is_fifo(),
|
|
FdMeta::Socket => false,
|
|
FdMeta::Pipe => true,
|
|
FdMeta::NoneObtained => true,
|
|
}
|
|
}
|
|
|
|
fn potential_sendfile_source(&self) -> bool {
|
|
match self {
|
|
// procfs erronously shows 0 length on non-empty readable files.
|
|
// and if a file is truly empty then a `read` syscall will determine that and skip the write syscall
|
|
// thus there would be benefit from attempting sendfile
|
|
FdMeta::Metadata(meta)
|
|
if meta.file_type().is_file() && meta.len() > 0
|
|
|| meta.file_type().is_block_device() =>
|
|
{
|
|
true
|
|
}
|
|
_ => false,
|
|
}
|
|
}
|
|
|
|
fn copy_file_range_candidate(&self) -> bool {
|
|
match self {
|
|
// copy_file_range will fail on empty procfs files. `read` can determine whether EOF has been reached
|
|
// without extra cost and skip the write, thus there is no benefit in attempting copy_file_range
|
|
FdMeta::Metadata(meta) if meta.is_file() && meta.len() > 0 => true,
|
|
FdMeta::NoneObtained => true,
|
|
_ => false,
|
|
}
|
|
}
|
|
}
|
|
|
|
struct CopyParams(FdMeta, Option<RawFd>);
|
|
|
|
struct Copier<'a, 'b, R: Read + ?Sized, W: Write + ?Sized> {
|
|
read: &'a mut R,
|
|
write: &'b mut W,
|
|
}
|
|
|
|
trait SpecCopy {
|
|
fn copy(self) -> Result<u64>;
|
|
}
|
|
|
|
impl<R: Read + ?Sized, W: Write + ?Sized> SpecCopy for Copier<'_, '_, R, W> {
|
|
default fn copy(self) -> Result<u64> {
|
|
generic_copy(self.read, self.write)
|
|
}
|
|
}
|
|
|
|
impl<R: CopyRead, W: CopyWrite> SpecCopy for Copier<'_, '_, R, W> {
|
|
fn copy(self) -> Result<u64> {
|
|
let (reader, writer) = (self.read, self.write);
|
|
let r_cfg = reader.properties();
|
|
let w_cfg = writer.properties();
|
|
|
|
// before direct operations on file descriptors ensure that all source and sink buffers are empty
|
|
let mut flush = || -> crate::io::Result<u64> {
|
|
let bytes = reader.drain_to(writer, u64::MAX)?;
|
|
// BufWriter buffered bytes have already been accounted for in earlier write() calls
|
|
writer.flush()?;
|
|
Ok(bytes)
|
|
};
|
|
|
|
let mut written = 0u64;
|
|
|
|
if let (CopyParams(input_meta, Some(readfd)), CopyParams(output_meta, Some(writefd))) =
|
|
(r_cfg, w_cfg)
|
|
{
|
|
written += flush()?;
|
|
let max_write = reader.min_limit();
|
|
|
|
if input_meta.copy_file_range_candidate() && output_meta.copy_file_range_candidate() {
|
|
let result = copy_regular_files(readfd, writefd, max_write);
|
|
result.update_take(reader);
|
|
|
|
match result {
|
|
CopyResult::Ended(bytes_copied) => return Ok(bytes_copied + written),
|
|
CopyResult::Error(e, _) => return Err(e),
|
|
CopyResult::Fallback(bytes) => written += bytes,
|
|
}
|
|
}
|
|
|
|
// on modern kernels sendfile can copy from any mmapable type (some but not all regular files and block devices)
|
|
// to any writable file descriptor. On older kernels the writer side can only be a socket.
|
|
// So we just try and fallback if needed.
|
|
// If current file offsets + write sizes overflow it may also fail, we do not try to fix that and instead
|
|
// fall back to the generic copy loop.
|
|
if input_meta.potential_sendfile_source() {
|
|
let result = sendfile_splice(SpliceMode::Sendfile, readfd, writefd, max_write);
|
|
result.update_take(reader);
|
|
|
|
match result {
|
|
CopyResult::Ended(bytes_copied) => return Ok(bytes_copied + written),
|
|
CopyResult::Error(e, _) => return Err(e),
|
|
CopyResult::Fallback(bytes) => written += bytes,
|
|
}
|
|
}
|
|
|
|
if input_meta.maybe_fifo() || output_meta.maybe_fifo() {
|
|
let result = sendfile_splice(SpliceMode::Splice, readfd, writefd, max_write);
|
|
result.update_take(reader);
|
|
|
|
match result {
|
|
CopyResult::Ended(bytes_copied) => return Ok(bytes_copied + written),
|
|
CopyResult::Error(e, _) => return Err(e),
|
|
CopyResult::Fallback(0) => { /* use the fallback below */ }
|
|
CopyResult::Fallback(_) => {
|
|
unreachable!("splice should not return > 0 bytes on the fallback path")
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// fallback if none of the more specialized syscalls wants to work with these file descriptors
|
|
match generic_copy(reader, writer) {
|
|
Ok(bytes) => Ok(bytes + written),
|
|
err => err,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[rustc_specialization_trait]
|
|
trait CopyRead: Read {
|
|
/// Implementations that contain buffers (i.e. `BufReader`) must transfer data from their internal
|
|
/// buffers into `writer` until either the buffers are emptied or `limit` bytes have been
|
|
/// transferred, whichever occurs sooner.
|
|
/// If nested buffers are present the outer buffers must be drained first.
|
|
///
|
|
/// This is necessary to directly bypass the wrapper types while preserving the data order
|
|
/// when operating directly on the underlying file descriptors.
|
|
fn drain_to<W: Write>(&mut self, _writer: &mut W, _limit: u64) -> Result<u64> {
|
|
Ok(0)
|
|
}
|
|
|
|
/// Updates `Take` wrappers to remove the number of bytes copied.
|
|
fn taken(&mut self, _bytes: u64) {}
|
|
|
|
/// The minimum of the limit of all `Take<_>` wrappers, `u64::MAX` otherwise.
|
|
/// This method does not account for data `BufReader` buffers and would underreport
|
|
/// the limit of a `Take<BufReader<Take<_>>>` type. Thus its result is only valid
|
|
/// after draining the buffers via `drain_to`.
|
|
fn min_limit(&self) -> u64 {
|
|
u64::MAX
|
|
}
|
|
|
|
/// Extracts the file descriptor and hints/metadata, delegating through wrappers if necessary.
|
|
fn properties(&self) -> CopyParams;
|
|
}
|
|
|
|
#[rustc_specialization_trait]
|
|
trait CopyWrite: Write {
|
|
/// Extracts the file descriptor and hints/metadata, delegating through wrappers if necessary.
|
|
fn properties(&self) -> CopyParams;
|
|
}
|
|
|
|
impl<T> CopyRead for &mut T
|
|
where
|
|
T: CopyRead,
|
|
{
|
|
fn drain_to<W: Write>(&mut self, writer: &mut W, limit: u64) -> Result<u64> {
|
|
(**self).drain_to(writer, limit)
|
|
}
|
|
|
|
fn taken(&mut self, bytes: u64) {
|
|
(**self).taken(bytes);
|
|
}
|
|
|
|
fn min_limit(&self) -> u64 {
|
|
(**self).min_limit()
|
|
}
|
|
|
|
fn properties(&self) -> CopyParams {
|
|
(**self).properties()
|
|
}
|
|
}
|
|
|
|
impl<T> CopyWrite for &mut T
|
|
where
|
|
T: CopyWrite,
|
|
{
|
|
fn properties(&self) -> CopyParams {
|
|
(**self).properties()
|
|
}
|
|
}
|
|
|
|
impl CopyRead for File {
|
|
fn properties(&self) -> CopyParams {
|
|
CopyParams(fd_to_meta(self), Some(self.as_raw_fd()))
|
|
}
|
|
}
|
|
|
|
impl CopyRead for &File {
|
|
fn properties(&self) -> CopyParams {
|
|
CopyParams(fd_to_meta(*self), Some(self.as_raw_fd()))
|
|
}
|
|
}
|
|
|
|
impl CopyWrite for File {
|
|
fn properties(&self) -> CopyParams {
|
|
CopyParams(FdMeta::NoneObtained, Some(self.as_raw_fd()))
|
|
}
|
|
}
|
|
|
|
impl CopyWrite for &File {
|
|
fn properties(&self) -> CopyParams {
|
|
CopyParams(FdMeta::NoneObtained, Some(self.as_raw_fd()))
|
|
}
|
|
}
|
|
|
|
impl CopyRead for TcpStream {
|
|
fn properties(&self) -> CopyParams {
|
|
// avoid the stat syscall since we can be fairly sure it's a socket
|
|
CopyParams(FdMeta::Socket, Some(self.as_raw_fd()))
|
|
}
|
|
}
|
|
|
|
impl CopyRead for &TcpStream {
|
|
fn properties(&self) -> CopyParams {
|
|
// avoid the stat syscall since we can be fairly sure it's a socket
|
|
CopyParams(FdMeta::Socket, Some(self.as_raw_fd()))
|
|
}
|
|
}
|
|
|
|
impl CopyWrite for TcpStream {
|
|
fn properties(&self) -> CopyParams {
|
|
// avoid the stat syscall since we can be fairly sure it's a socket
|
|
CopyParams(FdMeta::Socket, Some(self.as_raw_fd()))
|
|
}
|
|
}
|
|
|
|
impl CopyWrite for &TcpStream {
|
|
fn properties(&self) -> CopyParams {
|
|
// avoid the stat syscall since we can be fairly sure it's a socket
|
|
CopyParams(FdMeta::Socket, Some(self.as_raw_fd()))
|
|
}
|
|
}
|
|
|
|
impl CopyRead for UnixStream {
|
|
fn properties(&self) -> CopyParams {
|
|
// avoid the stat syscall since we can be fairly sure it's a socket
|
|
CopyParams(FdMeta::Socket, Some(self.as_raw_fd()))
|
|
}
|
|
}
|
|
|
|
impl CopyRead for &UnixStream {
|
|
fn properties(&self) -> CopyParams {
|
|
// avoid the stat syscall since we can be fairly sure it's a socket
|
|
CopyParams(FdMeta::Socket, Some(self.as_raw_fd()))
|
|
}
|
|
}
|
|
|
|
impl CopyWrite for UnixStream {
|
|
fn properties(&self) -> CopyParams {
|
|
// avoid the stat syscall since we can be fairly sure it's a socket
|
|
CopyParams(FdMeta::Socket, Some(self.as_raw_fd()))
|
|
}
|
|
}
|
|
|
|
impl CopyWrite for &UnixStream {
|
|
fn properties(&self) -> CopyParams {
|
|
// avoid the stat syscall since we can be fairly sure it's a socket
|
|
CopyParams(FdMeta::Socket, Some(self.as_raw_fd()))
|
|
}
|
|
}
|
|
|
|
impl CopyWrite for ChildStdin {
|
|
fn properties(&self) -> CopyParams {
|
|
CopyParams(FdMeta::Pipe, Some(self.as_raw_fd()))
|
|
}
|
|
}
|
|
|
|
impl CopyRead for ChildStdout {
|
|
fn properties(&self) -> CopyParams {
|
|
CopyParams(FdMeta::Pipe, Some(self.as_raw_fd()))
|
|
}
|
|
}
|
|
|
|
impl CopyRead for ChildStderr {
|
|
fn properties(&self) -> CopyParams {
|
|
CopyParams(FdMeta::Pipe, Some(self.as_raw_fd()))
|
|
}
|
|
}
|
|
|
|
impl CopyRead for StdinLock<'_> {
|
|
fn drain_to<W: Write>(&mut self, writer: &mut W, outer_limit: u64) -> Result<u64> {
|
|
let buf_reader = self.as_mut_buf();
|
|
let buf = buf_reader.buffer();
|
|
let buf = &buf[0..min(buf.len(), outer_limit.try_into().unwrap_or(usize::MAX))];
|
|
let bytes_drained = buf.len();
|
|
writer.write_all(buf)?;
|
|
buf_reader.consume(bytes_drained);
|
|
|
|
Ok(bytes_drained as u64)
|
|
}
|
|
|
|
fn properties(&self) -> CopyParams {
|
|
CopyParams(fd_to_meta(self), Some(self.as_raw_fd()))
|
|
}
|
|
}
|
|
|
|
impl CopyWrite for StdoutLock<'_> {
|
|
fn properties(&self) -> CopyParams {
|
|
CopyParams(FdMeta::NoneObtained, Some(self.as_raw_fd()))
|
|
}
|
|
}
|
|
|
|
impl CopyWrite for StderrLock<'_> {
|
|
fn properties(&self) -> CopyParams {
|
|
CopyParams(FdMeta::NoneObtained, Some(self.as_raw_fd()))
|
|
}
|
|
}
|
|
|
|
impl<T: CopyRead> CopyRead for Take<T> {
|
|
fn drain_to<W: Write>(&mut self, writer: &mut W, outer_limit: u64) -> Result<u64> {
|
|
let local_limit = self.limit();
|
|
let combined_limit = min(outer_limit, local_limit);
|
|
let bytes_drained = self.get_mut().drain_to(writer, combined_limit)?;
|
|
// update limit since read() was bypassed
|
|
self.set_limit(local_limit - bytes_drained);
|
|
|
|
Ok(bytes_drained)
|
|
}
|
|
|
|
fn taken(&mut self, bytes: u64) {
|
|
self.set_limit(self.limit() - bytes);
|
|
self.get_mut().taken(bytes);
|
|
}
|
|
|
|
fn min_limit(&self) -> u64 {
|
|
min(Take::limit(self), self.get_ref().min_limit())
|
|
}
|
|
|
|
fn properties(&self) -> CopyParams {
|
|
self.get_ref().properties()
|
|
}
|
|
}
|
|
|
|
impl<T: CopyRead> CopyRead for BufReader<T> {
|
|
fn drain_to<W: Write>(&mut self, writer: &mut W, outer_limit: u64) -> Result<u64> {
|
|
let buf = self.buffer();
|
|
let buf = &buf[0..min(buf.len(), outer_limit.try_into().unwrap_or(usize::MAX))];
|
|
let bytes = buf.len();
|
|
writer.write_all(buf)?;
|
|
self.consume(bytes);
|
|
|
|
let remaining = outer_limit - bytes as u64;
|
|
|
|
// in case of nested bufreaders we also need to drain the ones closer to the source
|
|
let inner_bytes = self.get_mut().drain_to(writer, remaining)?;
|
|
|
|
Ok(bytes as u64 + inner_bytes)
|
|
}
|
|
|
|
fn taken(&mut self, bytes: u64) {
|
|
self.get_mut().taken(bytes);
|
|
}
|
|
|
|
fn min_limit(&self) -> u64 {
|
|
self.get_ref().min_limit()
|
|
}
|
|
|
|
fn properties(&self) -> CopyParams {
|
|
self.get_ref().properties()
|
|
}
|
|
}
|
|
|
|
impl<T: CopyWrite> CopyWrite for BufWriter<T> {
|
|
fn properties(&self) -> CopyParams {
|
|
self.get_ref().properties()
|
|
}
|
|
}
|
|
|
|
fn fd_to_meta<T: AsRawFd>(fd: &T) -> FdMeta {
|
|
let fd = fd.as_raw_fd();
|
|
let file: ManuallyDrop<File> = ManuallyDrop::new(unsafe { File::from_raw_fd(fd) });
|
|
match file.metadata() {
|
|
Ok(meta) => FdMeta::Metadata(meta),
|
|
Err(_) => FdMeta::NoneObtained,
|
|
}
|
|
}
|
|
|
|
pub(super) enum CopyResult {
|
|
Ended(u64),
|
|
Error(Error, u64),
|
|
Fallback(u64),
|
|
}
|
|
|
|
impl CopyResult {
|
|
fn update_take(&self, reader: &mut impl CopyRead) {
|
|
match *self {
|
|
CopyResult::Fallback(bytes)
|
|
| CopyResult::Ended(bytes)
|
|
| CopyResult::Error(_, bytes) => reader.taken(bytes),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Invalid file descriptor.
|
|
///
|
|
/// Valid file descriptors are guaranteed to be positive numbers (see `open()` manpage)
|
|
/// while negative values are used to indicate errors.
|
|
/// Thus -1 will never be overlap with a valid open file.
|
|
const INVALID_FD: RawFd = -1;
|
|
|
|
/// Linux-specific implementation that will attempt to use copy_file_range for copy offloading.
|
|
/// As the name says, it only works on regular files.
|
|
///
|
|
/// Callers must handle fallback to a generic copy loop.
|
|
/// `Fallback` may indicate non-zero number of bytes already written
|
|
/// if one of the files' cursor +`max_len` would exceed u64::MAX (`EOVERFLOW`).
|
|
pub(super) fn copy_regular_files(reader: RawFd, writer: RawFd, max_len: u64) -> CopyResult {
|
|
use crate::cmp;
|
|
|
|
const NOT_PROBED: u8 = 0;
|
|
const UNAVAILABLE: u8 = 1;
|
|
const AVAILABLE: u8 = 2;
|
|
|
|
// Kernel prior to 4.5 don't have copy_file_range
|
|
// We store the availability in a global to avoid unnecessary syscalls
|
|
static HAS_COPY_FILE_RANGE: AtomicU8 = AtomicU8::new(NOT_PROBED);
|
|
|
|
syscall! {
|
|
fn copy_file_range(
|
|
fd_in: libc::c_int,
|
|
off_in: *mut libc::loff_t,
|
|
fd_out: libc::c_int,
|
|
off_out: *mut libc::loff_t,
|
|
len: libc::size_t,
|
|
flags: libc::c_uint
|
|
) -> libc::ssize_t
|
|
}
|
|
|
|
match HAS_COPY_FILE_RANGE.load(Ordering::Relaxed) {
|
|
NOT_PROBED => {
|
|
// EPERM can indicate seccomp filters or an immutable file.
|
|
// To distinguish these cases we probe with invalid file descriptors which should result in EBADF if the syscall is supported
|
|
// and some other error (ENOSYS or EPERM) if it's not available
|
|
let result = unsafe {
|
|
cvt(copy_file_range(INVALID_FD, ptr::null_mut(), INVALID_FD, ptr::null_mut(), 1, 0))
|
|
};
|
|
|
|
if matches!(result.map_err(|e| e.raw_os_error()), Err(Some(EBADF))) {
|
|
HAS_COPY_FILE_RANGE.store(AVAILABLE, Ordering::Relaxed);
|
|
} else {
|
|
HAS_COPY_FILE_RANGE.store(UNAVAILABLE, Ordering::Relaxed);
|
|
return CopyResult::Fallback(0);
|
|
}
|
|
}
|
|
UNAVAILABLE => return CopyResult::Fallback(0),
|
|
_ => {}
|
|
};
|
|
|
|
let mut written = 0u64;
|
|
while written < max_len {
|
|
let bytes_to_copy = cmp::min(max_len - written, usize::MAX as u64);
|
|
// cap to 1GB chunks in case u64::MAX is passed as max_len and the file has a non-zero seek position
|
|
// this allows us to copy large chunks without hitting EOVERFLOW,
|
|
// unless someone sets a file offset close to u64::MAX - 1GB, in which case a fallback would be required
|
|
let bytes_to_copy = cmp::min(bytes_to_copy as usize, 0x4000_0000usize);
|
|
let copy_result = unsafe {
|
|
// We actually don't have to adjust the offsets,
|
|
// because copy_file_range adjusts the file offset automatically
|
|
cvt(copy_file_range(reader, ptr::null_mut(), writer, ptr::null_mut(), bytes_to_copy, 0))
|
|
};
|
|
|
|
match copy_result {
|
|
Ok(0) if written == 0 => {
|
|
// fallback to work around several kernel bugs where copy_file_range will fail to
|
|
// copy any bytes and return 0 instead of an error if
|
|
// - reading virtual files from the proc filesystem which appear to have 0 size
|
|
// but are not empty. noted in coreutils to affect kernels at least up to 5.6.19.
|
|
// - copying from an overlay filesystem in docker. reported to occur on fedora 32.
|
|
return CopyResult::Fallback(0);
|
|
}
|
|
Ok(0) => return CopyResult::Ended(written), // reached EOF
|
|
Ok(ret) => written += ret as u64,
|
|
Err(err) => {
|
|
return match err.raw_os_error() {
|
|
// when file offset + max_length > u64::MAX
|
|
Some(EOVERFLOW) => CopyResult::Fallback(written),
|
|
Some(ENOSYS | EXDEV | EINVAL | EPERM | EOPNOTSUPP | EBADF) if written == 0 => {
|
|
// Try fallback io::copy if either:
|
|
// - Kernel version is < 4.5 (ENOSYS¹)
|
|
// - Files are mounted on different fs (EXDEV)
|
|
// - copy_file_range is broken in various ways on RHEL/CentOS 7 (EOPNOTSUPP)
|
|
// - copy_file_range file is immutable or syscall is blocked by seccomp¹ (EPERM)
|
|
// - copy_file_range cannot be used with pipes or device nodes (EINVAL)
|
|
// - the writer fd was opened with O_APPEND (EBADF²)
|
|
// and no bytes were written successfully yet. (All these errnos should
|
|
// not be returned if something was already written, but they happen in
|
|
// the wild, see #91152.)
|
|
//
|
|
// ¹ these cases should be detected by the initial probe but we handle them here
|
|
// anyway in case syscall interception changes during runtime
|
|
// ² actually invalid file descriptors would cause this too, but in that case
|
|
// the fallback code path is expected to encounter the same error again
|
|
CopyResult::Fallback(0)
|
|
}
|
|
_ => CopyResult::Error(err, written),
|
|
};
|
|
}
|
|
}
|
|
}
|
|
CopyResult::Ended(written)
|
|
}
|
|
|
|
#[derive(PartialEq)]
|
|
enum SpliceMode {
|
|
Sendfile,
|
|
Splice,
|
|
}
|
|
|
|
/// performs splice or sendfile between file descriptors
|
|
/// Does _not_ fall back to a generic copy loop.
|
|
fn sendfile_splice(mode: SpliceMode, reader: RawFd, writer: RawFd, len: u64) -> CopyResult {
|
|
static HAS_SENDFILE: AtomicBool = AtomicBool::new(true);
|
|
static HAS_SPLICE: AtomicBool = AtomicBool::new(true);
|
|
|
|
syscall! {
|
|
fn splice(
|
|
srcfd: libc::c_int,
|
|
src_offset: *const i64,
|
|
dstfd: libc::c_int,
|
|
dst_offset: *const i64,
|
|
len: libc::size_t,
|
|
flags: libc::c_int
|
|
) -> libc::ssize_t
|
|
}
|
|
|
|
match mode {
|
|
SpliceMode::Sendfile if !HAS_SENDFILE.load(Ordering::Relaxed) => {
|
|
return CopyResult::Fallback(0);
|
|
}
|
|
SpliceMode::Splice if !HAS_SPLICE.load(Ordering::Relaxed) => {
|
|
return CopyResult::Fallback(0);
|
|
}
|
|
_ => (),
|
|
}
|
|
|
|
let mut written = 0u64;
|
|
while written < len {
|
|
// according to its manpage that's the maximum size sendfile() will copy per invocation
|
|
let chunk_size = crate::cmp::min(len - written, 0x7ffff000_u64) as usize;
|
|
|
|
let result = match mode {
|
|
SpliceMode::Sendfile => {
|
|
cvt(unsafe { libc::sendfile(writer, reader, ptr::null_mut(), chunk_size) })
|
|
}
|
|
SpliceMode::Splice => cvt(unsafe {
|
|
splice(reader, ptr::null_mut(), writer, ptr::null_mut(), chunk_size, 0)
|
|
}),
|
|
};
|
|
|
|
match result {
|
|
Ok(0) => break, // EOF
|
|
Ok(ret) => written += ret as u64,
|
|
Err(err) => {
|
|
return match err.raw_os_error() {
|
|
Some(ENOSYS | EPERM) => {
|
|
// syscall not supported (ENOSYS)
|
|
// syscall is disallowed, e.g. by seccomp (EPERM)
|
|
match mode {
|
|
SpliceMode::Sendfile => HAS_SENDFILE.store(false, Ordering::Relaxed),
|
|
SpliceMode::Splice => HAS_SPLICE.store(false, Ordering::Relaxed),
|
|
}
|
|
assert_eq!(written, 0);
|
|
CopyResult::Fallback(0)
|
|
}
|
|
Some(EINVAL) => {
|
|
// splice/sendfile do not support this particular file descriptor (EINVAL)
|
|
assert_eq!(written, 0);
|
|
CopyResult::Fallback(0)
|
|
}
|
|
Some(os_err) if mode == SpliceMode::Sendfile && os_err == EOVERFLOW => {
|
|
CopyResult::Fallback(written)
|
|
}
|
|
_ => CopyResult::Error(err, written),
|
|
};
|
|
}
|
|
}
|
|
}
|
|
CopyResult::Ended(written)
|
|
}
|