rust/library/alloctests/tests/rc.rs

925 lines
22 KiB
Rust

use std::any::Any;
use std::cell::{Cell, RefCell};
use std::iter::TrustedLen;
use std::mem;
use std::rc::{Rc, UniqueRc, Weak};
#[test]
fn uninhabited() {
enum Void {}
let mut a = Weak::<Void>::new();
a = a.clone();
assert!(a.upgrade().is_none());
let mut a: Weak<dyn Any> = a; // Unsizing
a = a.clone();
assert!(a.upgrade().is_none());
}
#[test]
fn slice() {
let a: Rc<[u32; 3]> = Rc::new([3, 2, 1]);
let a: Rc<[u32]> = a; // Unsizing
let b: Rc<[u32]> = Rc::from(&[3, 2, 1][..]); // Conversion
assert_eq!(a, b);
// Exercise is_dangling() with a DST
let mut a = Rc::downgrade(&a);
a = a.clone();
assert!(a.upgrade().is_some());
}
#[test]
fn trait_object() {
let a: Rc<u32> = Rc::new(4);
let a: Rc<dyn Any> = a; // Unsizing
// Exercise is_dangling() with a DST
let mut a = Rc::downgrade(&a);
a = a.clone();
assert!(a.upgrade().is_some());
let mut b = Weak::<u32>::new();
b = b.clone();
assert!(b.upgrade().is_none());
let mut b: Weak<dyn Any> = b; // Unsizing
b = b.clone();
assert!(b.upgrade().is_none());
}
#[test]
fn float_nan_ne() {
let x = Rc::new(f32::NAN);
assert!(x != x);
assert!(!(x == x));
}
#[test]
fn partial_eq() {
struct TestPEq(RefCell<usize>);
impl PartialEq for TestPEq {
fn eq(&self, other: &TestPEq) -> bool {
*self.0.borrow_mut() += 1;
*other.0.borrow_mut() += 1;
true
}
}
let x = Rc::new(TestPEq(RefCell::new(0)));
assert!(x == x);
assert!(!(x != x));
assert_eq!(*x.0.borrow(), 4);
}
#[test]
fn eq() {
#[derive(Eq)]
struct TestEq(RefCell<usize>);
impl PartialEq for TestEq {
fn eq(&self, other: &TestEq) -> bool {
*self.0.borrow_mut() += 1;
*other.0.borrow_mut() += 1;
true
}
}
let x = Rc::new(TestEq(RefCell::new(0)));
assert!(x == x);
assert!(!(x != x));
assert_eq!(*x.0.borrow(), 0);
}
const SHARED_ITER_MAX: u16 = 100;
fn assert_trusted_len<I: TrustedLen>(_: &I) {}
#[test]
fn shared_from_iter_normal() {
// Exercise the base implementation for non-`TrustedLen` iterators.
{
// `Filter` is never `TrustedLen` since we don't
// know statically how many elements will be kept:
let iter = (0..SHARED_ITER_MAX).filter(|x| x % 2 == 0).map(Box::new);
// Collecting into a `Vec<T>` or `Rc<[T]>` should make no difference:
let vec = iter.clone().collect::<Vec<_>>();
let rc = iter.collect::<Rc<[_]>>();
assert_eq!(&*vec, &*rc);
// Clone a bit and let these get dropped.
{
let _rc_2 = rc.clone();
let _rc_3 = rc.clone();
let _rc_4 = Rc::downgrade(&_rc_3);
}
} // Drop what hasn't been here.
}
#[test]
fn shared_from_iter_trustedlen_normal() {
// Exercise the `TrustedLen` implementation under normal circumstances
// where `size_hint()` matches `(_, Some(exact_len))`.
{
let iter = (0..SHARED_ITER_MAX).map(Box::new);
assert_trusted_len(&iter);
// Collecting into a `Vec<T>` or `Rc<[T]>` should make no difference:
let vec = iter.clone().collect::<Vec<_>>();
let rc = iter.collect::<Rc<[_]>>();
assert_eq!(&*vec, &*rc);
assert_eq!(size_of::<Box<u16>>() * SHARED_ITER_MAX as usize, size_of_val(&*rc));
// Clone a bit and let these get dropped.
{
let _rc_2 = rc.clone();
let _rc_3 = rc.clone();
let _rc_4 = Rc::downgrade(&_rc_3);
}
} // Drop what hasn't been here.
// Try a ZST to make sure it is handled well.
{
let iter = (0..SHARED_ITER_MAX).map(drop);
let vec = iter.clone().collect::<Vec<_>>();
let rc = iter.collect::<Rc<[_]>>();
assert_eq!(&*vec, &*rc);
assert_eq!(0, size_of_val(&*rc));
{
let _rc_2 = rc.clone();
let _rc_3 = rc.clone();
let _rc_4 = Rc::downgrade(&_rc_3);
}
}
}
#[test]
#[should_panic = "I've almost got 99 problems."]
fn shared_from_iter_trustedlen_panic() {
// Exercise the `TrustedLen` implementation when `size_hint()` matches
// `(_, Some(exact_len))` but where `.next()` drops before the last iteration.
let iter = (0..SHARED_ITER_MAX).map(|val| match val {
98 => panic!("I've almost got 99 problems."),
_ => Box::new(val),
});
assert_trusted_len(&iter);
let _ = iter.collect::<Rc<[_]>>();
panic!("I am unreachable.");
}
#[test]
fn shared_from_iter_trustedlen_no_fuse() {
// Exercise the `TrustedLen` implementation when `size_hint()` matches
// `(_, Some(exact_len))` but where the iterator does not behave in a fused manner.
struct Iter(std::vec::IntoIter<Option<Box<u8>>>);
unsafe impl TrustedLen for Iter {}
impl Iterator for Iter {
fn size_hint(&self) -> (usize, Option<usize>) {
(2, Some(2))
}
type Item = Box<u8>;
fn next(&mut self) -> Option<Self::Item> {
self.0.next().flatten()
}
}
let vec = vec![Some(Box::new(42)), Some(Box::new(24)), None, Some(Box::new(12))];
let iter = Iter(vec.into_iter());
assert_trusted_len(&iter);
assert_eq!(&[Box::new(42), Box::new(24)], &*iter.collect::<Rc<[_]>>());
}
#[test]
fn weak_may_dangle() {
fn hmm<'a>(val: &'a mut Weak<&'a str>) -> Weak<&'a str> {
val.clone()
}
// Without #[may_dangle] we get:
let mut val = Weak::new();
hmm(&mut val);
// ~~~~~~~~ borrowed value does not live long enough
//
// `val` dropped here while still borrowed
// borrow might be used here, when `val` is dropped and runs the `Drop` code for type `std::rc::Weak`
}
/// Test that a panic from a destructor does not leak the allocation.
#[test]
#[cfg_attr(not(panic = "unwind"), ignore = "test requires unwinding support")]
fn panic_no_leak() {
use std::alloc::{AllocError, Allocator, Global, Layout};
use std::panic::{AssertUnwindSafe, catch_unwind};
use std::ptr::NonNull;
struct AllocCount(Cell<i32>);
unsafe impl Allocator for AllocCount {
fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
self.0.set(self.0.get() + 1);
Global.allocate(layout)
}
unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) {
self.0.set(self.0.get() - 1);
unsafe { Global.deallocate(ptr, layout) }
}
}
struct PanicOnDrop;
impl Drop for PanicOnDrop {
fn drop(&mut self) {
panic!("PanicOnDrop");
}
}
let alloc = AllocCount(Cell::new(0));
let rc = Rc::new_in(PanicOnDrop, &alloc);
assert_eq!(alloc.0.get(), 1);
let panic_message = catch_unwind(AssertUnwindSafe(|| drop(rc))).unwrap_err();
assert_eq!(*panic_message.downcast_ref::<&'static str>().unwrap(), "PanicOnDrop");
assert_eq!(alloc.0.get(), 0);
}
#[allow(unused)]
mod pin_coerce_unsized {
use alloc::rc::{Rc, UniqueRc};
use core::pin::Pin;
pub trait MyTrait {}
impl MyTrait for String {}
// Pin coercion should work for Rc
pub fn pin_rc(arg: Pin<Rc<String>>) -> Pin<Rc<dyn MyTrait>> {
arg
}
pub fn pin_unique_rc(arg: Pin<UniqueRc<String>>) -> Pin<UniqueRc<dyn MyTrait>> {
arg
}
}
#[test]
fn test_clone() {
let x = Rc::new(RefCell::new(5));
let y = x.clone();
*x.borrow_mut() = 20;
assert_eq!(*y.borrow(), 20);
}
#[test]
fn test_simple() {
let x = Rc::new(5);
assert_eq!(*x, 5);
}
#[test]
fn test_simple_clone() {
let x = Rc::new(5);
let y = x.clone();
assert_eq!(*x, 5);
assert_eq!(*y, 5);
}
#[test]
fn test_destructor() {
let x: Rc<Box<_>> = Rc::new(Box::new(5));
assert_eq!(**x, 5);
}
#[test]
fn test_live() {
let x = Rc::new(5);
let y = Rc::downgrade(&x);
assert!(y.upgrade().is_some());
}
#[test]
fn test_dead() {
let x = Rc::new(5);
let y = Rc::downgrade(&x);
drop(x);
assert!(y.upgrade().is_none());
}
#[test]
fn weak_self_cyclic() {
struct Cycle {
x: RefCell<Option<Weak<Cycle>>>,
}
let a = Rc::new(Cycle { x: RefCell::new(None) });
let b = Rc::downgrade(&a.clone());
*a.x.borrow_mut() = Some(b);
// hopefully we don't double-free (or leak)...
}
#[test]
fn is_unique() {
fn is_unique<T>(this: &Rc<T>) -> bool {
Rc::weak_count(this) == 0 && Rc::strong_count(this) == 1
}
let x = Rc::new(3);
assert!(is_unique(&x));
let y = x.clone();
assert!(!is_unique(&x));
drop(y);
assert!(is_unique(&x));
let w = Rc::downgrade(&x);
assert!(!is_unique(&x));
drop(w);
assert!(is_unique(&x));
}
#[test]
fn test_strong_count() {
let a = Rc::new(0);
assert!(Rc::strong_count(&a) == 1);
let w = Rc::downgrade(&a);
assert!(Rc::strong_count(&a) == 1);
let b = w.upgrade().expect("upgrade of live rc failed");
assert!(Rc::strong_count(&b) == 2);
assert!(Rc::strong_count(&a) == 2);
drop(w);
drop(a);
assert!(Rc::strong_count(&b) == 1);
let c = b.clone();
assert!(Rc::strong_count(&b) == 2);
assert!(Rc::strong_count(&c) == 2);
}
#[test]
fn test_weak_count() {
let a = Rc::new(0);
assert!(Rc::strong_count(&a) == 1);
assert!(Rc::weak_count(&a) == 0);
let w = Rc::downgrade(&a);
assert!(Rc::strong_count(&a) == 1);
assert!(Rc::weak_count(&a) == 1);
drop(w);
assert!(Rc::strong_count(&a) == 1);
assert!(Rc::weak_count(&a) == 0);
let c = a.clone();
assert!(Rc::strong_count(&a) == 2);
assert!(Rc::weak_count(&a) == 0);
drop(c);
}
#[test]
fn weak_counts() {
assert_eq!(Weak::weak_count(&Weak::<u64>::new()), 0);
assert_eq!(Weak::strong_count(&Weak::<u64>::new()), 0);
let a = Rc::new(0);
let w = Rc::downgrade(&a);
assert_eq!(Weak::strong_count(&w), 1);
assert_eq!(Weak::weak_count(&w), 1);
let w2 = w.clone();
assert_eq!(Weak::strong_count(&w), 1);
assert_eq!(Weak::weak_count(&w), 2);
assert_eq!(Weak::strong_count(&w2), 1);
assert_eq!(Weak::weak_count(&w2), 2);
drop(w);
assert_eq!(Weak::strong_count(&w2), 1);
assert_eq!(Weak::weak_count(&w2), 1);
let a2 = a.clone();
assert_eq!(Weak::strong_count(&w2), 2);
assert_eq!(Weak::weak_count(&w2), 1);
drop(a2);
drop(a);
assert_eq!(Weak::strong_count(&w2), 0);
assert_eq!(Weak::weak_count(&w2), 0);
drop(w2);
}
#[test]
fn try_unwrap() {
let x = Rc::new(3);
assert_eq!(Rc::try_unwrap(x), Ok(3));
let x = Rc::new(4);
let _y = x.clone();
assert_eq!(Rc::try_unwrap(x), Err(Rc::new(4)));
let x = Rc::new(5);
let _w = Rc::downgrade(&x);
assert_eq!(Rc::try_unwrap(x), Ok(5));
}
#[test]
fn into_inner() {
let x = Rc::new(3);
assert_eq!(Rc::into_inner(x), Some(3));
let x = Rc::new(4);
let y = Rc::clone(&x);
assert_eq!(Rc::into_inner(x), None);
assert_eq!(Rc::into_inner(y), Some(4));
let x = Rc::new(5);
let _w = Rc::downgrade(&x);
assert_eq!(Rc::into_inner(x), Some(5));
}
#[test]
fn into_from_raw() {
let x = Rc::new(Box::new("hello"));
let y = x.clone();
let x_ptr = Rc::into_raw(x);
drop(y);
unsafe {
assert_eq!(**x_ptr, "hello");
let x = Rc::from_raw(x_ptr);
assert_eq!(**x, "hello");
assert_eq!(Rc::try_unwrap(x).map(|x| *x), Ok("hello"));
}
}
#[test]
fn test_into_from_raw_unsized() {
use std::fmt::Display;
use std::string::ToString;
let rc: Rc<str> = Rc::from("foo");
let ptr = Rc::into_raw(rc.clone());
let rc2 = unsafe { Rc::from_raw(ptr) };
assert_eq!(unsafe { &*ptr }, "foo");
assert_eq!(rc, rc2);
let rc: Rc<dyn Display> = Rc::new(123);
let ptr = Rc::into_raw(rc.clone());
let rc2 = unsafe { Rc::from_raw(ptr) };
assert_eq!(unsafe { &*ptr }.to_string(), "123");
assert_eq!(rc2.to_string(), "123");
}
#[test]
fn into_from_weak_raw() {
let x = Rc::new(Box::new("hello"));
let y = Rc::downgrade(&x);
let y_ptr = Weak::into_raw(y);
unsafe {
assert_eq!(**y_ptr, "hello");
let y = Weak::from_raw(y_ptr);
let y_up = Weak::upgrade(&y).unwrap();
assert_eq!(**y_up, "hello");
drop(y_up);
assert_eq!(Rc::try_unwrap(x).map(|x| *x), Ok("hello"));
}
}
#[test]
fn test_into_from_weak_raw_unsized() {
use std::fmt::Display;
use std::string::ToString;
let arc: Rc<str> = Rc::from("foo");
let weak: Weak<str> = Rc::downgrade(&arc);
let ptr = Weak::into_raw(weak.clone());
let weak2 = unsafe { Weak::from_raw(ptr) };
assert_eq!(unsafe { &*ptr }, "foo");
assert!(weak.ptr_eq(&weak2));
let arc: Rc<dyn Display> = Rc::new(123);
let weak: Weak<dyn Display> = Rc::downgrade(&arc);
let ptr = Weak::into_raw(weak.clone());
let weak2 = unsafe { Weak::from_raw(ptr) };
assert_eq!(unsafe { &*ptr }.to_string(), "123");
assert!(weak.ptr_eq(&weak2));
}
#[test]
fn get_mut() {
let mut x = Rc::new(3);
*Rc::get_mut(&mut x).unwrap() = 4;
assert_eq!(*x, 4);
let y = x.clone();
assert!(Rc::get_mut(&mut x).is_none());
drop(y);
assert!(Rc::get_mut(&mut x).is_some());
let _w = Rc::downgrade(&x);
assert!(Rc::get_mut(&mut x).is_none());
}
#[test]
fn test_cowrc_clone_make_unique() {
let mut cow0 = Rc::new(75);
let mut cow1 = cow0.clone();
let mut cow2 = cow1.clone();
assert!(75 == *Rc::make_mut(&mut cow0));
assert!(75 == *Rc::make_mut(&mut cow1));
assert!(75 == *Rc::make_mut(&mut cow2));
*Rc::make_mut(&mut cow0) += 1;
*Rc::make_mut(&mut cow1) += 2;
*Rc::make_mut(&mut cow2) += 3;
assert!(76 == *cow0);
assert!(77 == *cow1);
assert!(78 == *cow2);
// none should point to the same backing memory
assert!(*cow0 != *cow1);
assert!(*cow0 != *cow2);
assert!(*cow1 != *cow2);
}
#[test]
fn test_cowrc_clone_unique2() {
let mut cow0 = Rc::new(75);
let cow1 = cow0.clone();
let cow2 = cow1.clone();
assert!(75 == *cow0);
assert!(75 == *cow1);
assert!(75 == *cow2);
*Rc::make_mut(&mut cow0) += 1;
assert!(76 == *cow0);
assert!(75 == *cow1);
assert!(75 == *cow2);
// cow1 and cow2 should share the same contents
// cow0 should have a unique reference
assert!(*cow0 != *cow1);
assert!(*cow0 != *cow2);
assert!(*cow1 == *cow2);
}
#[test]
fn test_cowrc_clone_weak() {
let mut cow0 = Rc::new(75);
let cow1_weak = Rc::downgrade(&cow0);
assert!(75 == *cow0);
assert!(75 == *cow1_weak.upgrade().unwrap());
*Rc::make_mut(&mut cow0) += 1;
assert!(76 == *cow0);
assert!(cow1_weak.upgrade().is_none());
}
/// This is similar to the doc-test for `Rc::make_mut()`, but on an unsized type (slice).
#[test]
fn test_cowrc_unsized() {
use std::rc::Rc;
let mut data: Rc<[i32]> = Rc::new([10, 20, 30]);
Rc::make_mut(&mut data)[0] += 1; // Won't clone anything
let mut other_data = Rc::clone(&data); // Won't clone inner data
Rc::make_mut(&mut data)[1] += 1; // Clones inner data
Rc::make_mut(&mut data)[2] += 1; // Won't clone anything
Rc::make_mut(&mut other_data)[0] *= 10; // Won't clone anything
// Now `data` and `other_data` point to different allocations.
assert_eq!(*data, [11, 21, 31]);
assert_eq!(*other_data, [110, 20, 30]);
}
#[test]
fn test_show() {
let foo = Rc::new(75);
assert_eq!(format!("{foo:?}"), "75");
}
#[test]
fn test_unsized() {
let foo: Rc<[i32]> = Rc::new([1, 2, 3]);
assert_eq!(foo, foo.clone());
}
#[test]
fn test_maybe_thin_unsized() {
// If/when custom thin DSTs exist, this test should be updated to use one
use std::ffi::CStr;
let x: Rc<CStr> = Rc::from(c"swordfish");
assert_eq!(format!("{x:?}"), "\"swordfish\"");
let y: Weak<CStr> = Rc::downgrade(&x);
drop(x);
// At this point, the weak points to a dropped DST
assert!(y.upgrade().is_none());
// But we still need to be able to get the alloc layout to drop.
// CStr has no drop glue, but custom DSTs might, and need to work.
drop(y);
}
#[test]
fn test_from_owned() {
let foo = 123;
let foo_rc = Rc::from(foo);
assert!(123 == *foo_rc);
}
#[test]
fn test_new_weak() {
let foo: Weak<usize> = Weak::new();
assert!(foo.upgrade().is_none());
}
#[test]
fn test_ptr_eq() {
let five = Rc::new(5);
let same_five = five.clone();
let other_five = Rc::new(5);
assert!(Rc::ptr_eq(&five, &same_five));
assert!(!Rc::ptr_eq(&five, &other_five));
}
#[test]
fn test_from_str() {
let r: Rc<str> = Rc::from("foo");
assert_eq!(&r[..], "foo");
}
#[test]
fn test_copy_from_slice() {
let s: &[u32] = &[1, 2, 3];
let r: Rc<[u32]> = Rc::from(s);
assert_eq!(&r[..], [1, 2, 3]);
}
#[test]
fn test_clone_from_slice() {
#[derive(Clone, Debug, Eq, PartialEq)]
struct X(u32);
let s: &[X] = &[X(1), X(2), X(3)];
let r: Rc<[X]> = Rc::from(s);
assert_eq!(&r[..], s);
}
#[test]
#[should_panic]
fn test_clone_from_slice_panic() {
use std::string::{String, ToString};
struct Fail(u32, String);
impl Clone for Fail {
fn clone(&self) -> Fail {
if self.0 == 2 {
panic!();
}
Fail(self.0, self.1.clone())
}
}
let s: &[Fail] =
&[Fail(0, "foo".to_string()), Fail(1, "bar".to_string()), Fail(2, "baz".to_string())];
// Should panic, but not cause memory corruption
let _r: Rc<[Fail]> = Rc::from(s);
}
#[test]
fn test_from_box() {
let b: Box<u32> = Box::new(123);
let r: Rc<u32> = Rc::from(b);
assert_eq!(*r, 123);
}
#[test]
fn test_from_box_str() {
use std::string::String;
let s = String::from("foo").into_boxed_str();
assert_eq!((&&&s).as_str(), "foo");
let r: Rc<str> = Rc::from(s);
assert_eq!((&r).as_str(), "foo");
assert_eq!(r.as_str(), "foo");
assert_eq!(&r[..], "foo");
}
#[test]
fn test_from_box_slice() {
let s = vec![1, 2, 3].into_boxed_slice();
let r: Rc<[u32]> = Rc::from(s);
assert_eq!(&r[..], [1, 2, 3]);
}
#[test]
fn test_from_box_trait() {
use std::fmt::Display;
use std::string::ToString;
let b: Box<dyn Display> = Box::new(123);
let r: Rc<dyn Display> = Rc::from(b);
assert_eq!(r.to_string(), "123");
}
#[test]
fn test_from_box_trait_zero_sized() {
use std::fmt::Debug;
let b: Box<dyn Debug> = Box::new(());
let r: Rc<dyn Debug> = Rc::from(b);
assert_eq!(format!("{r:?}"), "()");
}
#[test]
fn test_from_vec() {
let v = vec![1, 2, 3];
let r: Rc<[u32]> = Rc::from(v);
assert_eq!(&r[..], [1, 2, 3]);
}
#[test]
fn test_downcast() {
use std::any::Any;
let r1: Rc<dyn Any> = Rc::new(i32::MAX);
let r2: Rc<dyn Any> = Rc::new("abc");
assert!(r1.clone().downcast::<u32>().is_err());
let r1i32 = r1.downcast::<i32>();
assert!(r1i32.is_ok());
assert_eq!(r1i32.unwrap(), Rc::new(i32::MAX));
assert!(r2.clone().downcast::<i32>().is_err());
let r2str = r2.downcast::<&'static str>();
assert!(r2str.is_ok());
assert_eq!(r2str.unwrap(), Rc::new("abc"));
}
#[test]
fn test_array_from_slice() {
let v = vec![1, 2, 3];
let r: Rc<[u32]> = Rc::from(v);
let a: Result<Rc<[u32; 3]>, _> = r.clone().try_into();
assert!(a.is_ok());
let a: Result<Rc<[u32; 2]>, _> = r.clone().try_into();
assert!(a.is_err());
}
#[test]
fn test_rc_cyclic_with_zero_refs() {
struct ZeroRefs {
inner: Weak<ZeroRefs>,
}
let zero_refs = Rc::new_cyclic(|inner| {
assert_eq!(inner.strong_count(), 0);
assert!(inner.upgrade().is_none());
ZeroRefs { inner: Weak::new() }
});
assert_eq!(Rc::strong_count(&zero_refs), 1);
assert_eq!(Rc::weak_count(&zero_refs), 0);
assert_eq!(zero_refs.inner.strong_count(), 0);
assert_eq!(zero_refs.inner.weak_count(), 0);
}
#[test]
fn test_rc_cyclic_with_one_ref() {
struct OneRef {
inner: Weak<OneRef>,
}
let one_ref = Rc::new_cyclic(|inner| {
assert_eq!(inner.strong_count(), 0);
assert!(inner.upgrade().is_none());
OneRef { inner: inner.clone() }
});
assert_eq!(Rc::strong_count(&one_ref), 1);
assert_eq!(Rc::weak_count(&one_ref), 1);
let one_ref2 = Weak::upgrade(&one_ref.inner).unwrap();
assert!(Rc::ptr_eq(&one_ref, &one_ref2));
assert_eq!(one_ref.inner.strong_count(), 2);
assert_eq!(one_ref.inner.weak_count(), 1);
}
#[test]
fn test_rc_cyclic_with_two_ref() {
struct TwoRefs {
inner: Weak<TwoRefs>,
inner1: Weak<TwoRefs>,
}
let two_refs = Rc::new_cyclic(|inner| {
assert_eq!(inner.strong_count(), 0);
assert!(inner.upgrade().is_none());
TwoRefs { inner: inner.clone(), inner1: inner.clone() }
});
assert_eq!(Rc::strong_count(&two_refs), 1);
assert_eq!(Rc::weak_count(&two_refs), 2);
let two_ref3 = Weak::upgrade(&two_refs.inner).unwrap();
assert!(Rc::ptr_eq(&two_refs, &two_ref3));
let two_ref2 = Weak::upgrade(&two_refs.inner1).unwrap();
assert!(Rc::ptr_eq(&two_refs, &two_ref2));
assert_eq!(Rc::strong_count(&two_refs), 3);
assert_eq!(Rc::weak_count(&two_refs), 2);
}
#[test]
fn test_unique_rc_weak() {
let rc = UniqueRc::new(42);
let weak = UniqueRc::downgrade(&rc);
assert!(weak.upgrade().is_none());
let _rc = UniqueRc::into_rc(rc);
assert_eq!(*weak.upgrade().unwrap(), 42);
}
#[test]
fn test_unique_rc_drop_weak() {
let rc = UniqueRc::new(42);
let weak = UniqueRc::downgrade(&rc);
mem::drop(weak);
let rc = UniqueRc::into_rc(rc);
assert_eq!(*rc, 42);
}
#[test]
fn test_unique_rc_drops_contents() {
let mut dropped = false;
struct DropMe<'a>(&'a mut bool);
impl Drop for DropMe<'_> {
fn drop(&mut self) {
*self.0 = true;
}
}
{
let rc = UniqueRc::new(DropMe(&mut dropped));
drop(rc);
}
assert!(dropped);
}
/// Exercise the non-default allocator usage.
#[test]
fn test_unique_rc_with_alloc_drops_contents() {
let mut dropped = false;
struct DropMe<'a>(&'a mut bool);
impl Drop for DropMe<'_> {
fn drop(&mut self) {
*self.0 = true;
}
}
{
let rc = UniqueRc::new_in(DropMe(&mut dropped), std::alloc::System);
drop(rc);
}
assert!(dropped);
}
#[test]
fn test_unique_rc_weak_clone_holding_ref() {
let mut v = UniqueRc::new(0u8);
let w = UniqueRc::downgrade(&v);
let r = &mut *v;
let _ = w.clone(); // touch weak count
*r = 123;
}
#[test]
fn test_unique_rc_unsizing_coercion() {
let mut rc: UniqueRc<[u8]> = UniqueRc::new([0u8; 3]);
assert_eq!(rc.len(), 3);
rc[0] = 123;
let rc: Rc<[u8]> = UniqueRc::into_rc(rc);
assert_eq!(*rc, [123, 0, 0]);
}