mirror of
https://github.com/rust-lang/rust.git
synced 2024-11-30 18:53:39 +00:00
162 lines
5.7 KiB
Rust
162 lines
5.7 KiB
Rust
extern crate rand;
|
|
extern crate timely;
|
|
extern crate differential_dataflow;
|
|
|
|
use rand::{Rng, SeedableRng, StdRng};
|
|
|
|
use timely::dataflow::operators::*;
|
|
|
|
use differential_dataflow::AsCollection;
|
|
use differential_dataflow::operators::*;
|
|
use differential_dataflow::input::InputSession;
|
|
|
|
// mod loglikelihoodratio;
|
|
|
|
fn main() {
|
|
|
|
// define a new timely dataflow computation.
|
|
timely::execute_from_args(std::env::args().skip(6), move |worker| {
|
|
|
|
// capture parameters of the experiment.
|
|
let users: usize = std::env::args().nth(1).unwrap().parse().unwrap();
|
|
let items: usize = std::env::args().nth(2).unwrap().parse().unwrap();
|
|
let scale: usize = std::env::args().nth(3).unwrap().parse().unwrap();
|
|
let batch: usize = std::env::args().nth(4).unwrap().parse().unwrap();
|
|
let noisy: bool = std::env::args().nth(5).unwrap() == "noisy";
|
|
|
|
let index = worker.index();
|
|
let peers = worker.peers();
|
|
|
|
let (input, probe) = worker.dataflow(|scope| {
|
|
|
|
// input of (user, item) collection.
|
|
let (input, occurrences) = scope.new_input();
|
|
let occurrences = occurrences.as_collection();
|
|
|
|
//TODO adjust code to only work with upper triangular half of cooccurrence matrix
|
|
|
|
/* Compute the cooccurrence matrix C = A'A from the binary interaction matrix A. */
|
|
let cooccurrences =
|
|
occurrences
|
|
.join_map(&occurrences, |_user, &item_a, &item_b| (item_a, item_b))
|
|
.filter(|&(item_a, item_b)| item_a != item_b)
|
|
.count();
|
|
|
|
/* compute the rowsums of C indicating how often we encounter individual items. */
|
|
let row_sums =
|
|
occurrences
|
|
.map(|(_user, item)| item)
|
|
.count();
|
|
|
|
// row_sums.inspect(|record| println!("[row_sums] {:?}", record));
|
|
|
|
/* Join the cooccurrence pairs with the corresponding row sums. */
|
|
let mut cooccurrences_with_row_sums = cooccurrences
|
|
.map(|((item_a, item_b), num_cooccurrences)| (item_a, (item_b, num_cooccurrences)))
|
|
.join_map(&row_sums, |&item_a, &(item_b, num_cooccurrences), &row_sum_a| {
|
|
assert!(row_sum_a > 0);
|
|
(item_b, (item_a, num_cooccurrences, row_sum_a))
|
|
})
|
|
.join_map(&row_sums, |&item_b, &(item_a, num_cooccurrences, row_sum_a), &row_sum_b| {
|
|
assert!(row_sum_a > 0);
|
|
assert!(row_sum_b > 0);
|
|
(item_a, (item_b, num_cooccurrences, row_sum_a, row_sum_b))
|
|
});
|
|
|
|
// cooccurrences_with_row_sums
|
|
// .inspect(|record| println!("[cooccurrences_with_row_sums] {:?}", record));
|
|
|
|
// //TODO compute top-k "similar items" per item
|
|
// /* Compute LLR scores for each item pair. */
|
|
// let llr_scores = cooccurrences_with_row_sums.map(
|
|
// |(item_a, (item_b, num_cooccurrences, row_sum_a, row_sum_b))| {
|
|
|
|
// println!(
|
|
// "[llr_scores] item_a={} item_b={}, num_cooccurrences={} row_sum_a={} row_sum_b={}",
|
|
// item_a, item_b, num_cooccurrences, row_sum_a, row_sum_b);
|
|
|
|
// let k11: isize = num_cooccurrences;
|
|
// let k12: isize = row_sum_a as isize - k11;
|
|
// let k21: isize = row_sum_b as isize - k11;
|
|
// let k22: isize = 10000 - k12 - k21 + k11;
|
|
|
|
// let llr_score = loglikelihoodratio::log_likelihood_ratio(k11, k12, k21, k22);
|
|
|
|
// ((item_a, item_b), llr_score)
|
|
// });
|
|
|
|
if noisy {
|
|
cooccurrences_with_row_sums =
|
|
cooccurrences_with_row_sums
|
|
.inspect(|x| println!("change: {:?}", x));
|
|
}
|
|
|
|
let probe =
|
|
cooccurrences_with_row_sums
|
|
.probe();
|
|
/*
|
|
// produce the (item, item) collection
|
|
let cooccurrences = occurrences
|
|
.join_map(&occurrences, |_user, &item_a, &item_b| (item_a, item_b));
|
|
// count the occurrences of each item.
|
|
let counts = cooccurrences
|
|
.map(|(item_a,_)| item_a)
|
|
.count();
|
|
// produce ((item1, item2), count1, count2, count12) tuples
|
|
let cooccurrences_with_counts = cooccurrences
|
|
.join_map(&counts, |&item_a, &item_b, &count_item_a| (item_b, (item_a, count_item_a)))
|
|
.join_map(&counts, |&item_b, &(item_a, count_item_a), &count_item_b| {
|
|
((item_a, item_b), count_item_a, count_item_b)
|
|
});
|
|
let probe = cooccurrences_with_counts
|
|
.inspect(|x| println!("change: {:?}", x))
|
|
.probe();
|
|
*/
|
|
(input, probe)
|
|
});
|
|
|
|
let seed: &[_] = &[1, 2, 3, index];
|
|
let mut rng1: StdRng = SeedableRng::from_seed(seed); // rng for edge additions
|
|
let mut rng2: StdRng = SeedableRng::from_seed(seed); // rng for edge deletions
|
|
|
|
let mut input = InputSession::from(input);
|
|
|
|
for count in 0 .. scale {
|
|
if count % peers == index {
|
|
let user = rng1.gen_range(0, users);
|
|
let item = rng1.gen_range(0, items);
|
|
// println!("[INITIAL INPUT] ({}, {})", user, item);
|
|
input.insert((user, item));
|
|
}
|
|
}
|
|
|
|
// load the initial data up!
|
|
while probe.less_than(input.time()) { worker.step(); }
|
|
|
|
for round in 1 .. {
|
|
|
|
for element in (round * batch) .. ((round + 1) * batch) {
|
|
if element % peers == index {
|
|
// advance the input timestamp.
|
|
input.advance_to(round * batch);
|
|
// insert a new item.
|
|
let user = rng1.gen_range(0, users);
|
|
let item = rng1.gen_range(0, items);
|
|
if noisy { println!("[INPUT: insert] ({}, {})", user, item); }
|
|
input.insert((user, item));
|
|
// remove an old item.
|
|
let user = rng2.gen_range(0, users);
|
|
let item = rng2.gen_range(0, items);
|
|
if noisy { println!("[INPUT: remove] ({}, {})", user, item); }
|
|
input.remove((user, item));
|
|
}
|
|
}
|
|
|
|
input.advance_to(round * batch);
|
|
input.flush();
|
|
|
|
while probe.less_than(input.time()) { worker.step(); }
|
|
}
|
|
}).unwrap();
|
|
}
|