mirror of
https://github.com/rust-lang/rust.git
synced 2025-04-28 11:07:42 +00:00

The default diagnostic handler considers all remarks to be disabled by default unless configured otherwise through LLVM internal flags: `-pass-remarks`, `-pass-remarks-missed`, and `-pass-remarks-analysis`. This behaviour makes `-Cremark` ineffective on its own. Fix this by configuring a custom diagnostic handler that enables optimization remarks based on the value of `-Cremark` option. With `-Cremark=all` enabling all remarks.
1199 lines
46 KiB
Rust
1199 lines
46 KiB
Rust
use crate::back::lto::ThinBuffer;
|
|
use crate::back::profiling::{
|
|
selfprofile_after_pass_callback, selfprofile_before_pass_callback, LlvmSelfProfiler,
|
|
};
|
|
use crate::base;
|
|
use crate::common;
|
|
use crate::consts;
|
|
use crate::llvm::{self, DiagnosticInfo, PassManager, SMDiagnostic};
|
|
use crate::llvm_util;
|
|
use crate::type_::Type;
|
|
use crate::LlvmCodegenBackend;
|
|
use crate::ModuleLlvm;
|
|
use rustc_codegen_ssa::back::link::ensure_removed;
|
|
use rustc_codegen_ssa::back::write::{
|
|
BitcodeSection, CodegenContext, EmitObj, ModuleConfig, TargetMachineFactoryConfig,
|
|
TargetMachineFactoryFn,
|
|
};
|
|
use rustc_codegen_ssa::traits::*;
|
|
use rustc_codegen_ssa::{CompiledModule, ModuleCodegen};
|
|
use rustc_data_structures::profiling::SelfProfilerRef;
|
|
use rustc_data_structures::small_c_str::SmallCStr;
|
|
use rustc_errors::{FatalError, Handler, Level};
|
|
use rustc_fs_util::{link_or_copy, path_to_c_string};
|
|
use rustc_middle::bug;
|
|
use rustc_middle::ty::TyCtxt;
|
|
use rustc_session::config::{self, Lto, OutputType, Passes, SwitchWithOptPath};
|
|
use rustc_session::Session;
|
|
use rustc_span::symbol::sym;
|
|
use rustc_span::InnerSpan;
|
|
use rustc_target::spec::{CodeModel, RelocModel, SanitizerSet, SplitDebuginfo};
|
|
use tracing::debug;
|
|
|
|
use libc::{c_char, c_int, c_uint, c_void, size_t};
|
|
use std::ffi::CString;
|
|
use std::fs;
|
|
use std::io::{self, Write};
|
|
use std::path::{Path, PathBuf};
|
|
use std::slice;
|
|
use std::str;
|
|
use std::sync::Arc;
|
|
|
|
pub fn llvm_err(handler: &rustc_errors::Handler, msg: &str) -> FatalError {
|
|
match llvm::last_error() {
|
|
Some(err) => handler.fatal(&format!("{}: {}", msg, err)),
|
|
None => handler.fatal(msg),
|
|
}
|
|
}
|
|
|
|
pub fn write_output_file(
|
|
handler: &rustc_errors::Handler,
|
|
target: &'ll llvm::TargetMachine,
|
|
pm: &llvm::PassManager<'ll>,
|
|
m: &'ll llvm::Module,
|
|
output: &Path,
|
|
dwo_output: Option<&Path>,
|
|
file_type: llvm::FileType,
|
|
self_profiler_ref: &SelfProfilerRef,
|
|
) -> Result<(), FatalError> {
|
|
unsafe {
|
|
let output_c = path_to_c_string(output);
|
|
let result = if let Some(dwo_output) = dwo_output {
|
|
let dwo_output_c = path_to_c_string(dwo_output);
|
|
llvm::LLVMRustWriteOutputFile(
|
|
target,
|
|
pm,
|
|
m,
|
|
output_c.as_ptr(),
|
|
dwo_output_c.as_ptr(),
|
|
file_type,
|
|
)
|
|
} else {
|
|
llvm::LLVMRustWriteOutputFile(
|
|
target,
|
|
pm,
|
|
m,
|
|
output_c.as_ptr(),
|
|
std::ptr::null(),
|
|
file_type,
|
|
)
|
|
};
|
|
|
|
// Record artifact sizes for self-profiling
|
|
if result == llvm::LLVMRustResult::Success {
|
|
let artifact_kind = match file_type {
|
|
llvm::FileType::ObjectFile => "object_file",
|
|
llvm::FileType::AssemblyFile => "assembly_file",
|
|
};
|
|
record_artifact_size(self_profiler_ref, artifact_kind, output);
|
|
if let Some(dwo_file) = dwo_output {
|
|
record_artifact_size(self_profiler_ref, "dwo_file", dwo_file);
|
|
}
|
|
}
|
|
|
|
result.into_result().map_err(|()| {
|
|
let msg = format!("could not write output to {}", output.display());
|
|
llvm_err(handler, &msg)
|
|
})
|
|
}
|
|
}
|
|
|
|
pub fn create_informational_target_machine(sess: &Session) -> &'static mut llvm::TargetMachine {
|
|
let config = TargetMachineFactoryConfig { split_dwarf_file: None };
|
|
target_machine_factory(sess, config::OptLevel::No)(config)
|
|
.unwrap_or_else(|err| llvm_err(sess.diagnostic(), &err).raise())
|
|
}
|
|
|
|
pub fn create_target_machine(tcx: TyCtxt<'_>, mod_name: &str) -> &'static mut llvm::TargetMachine {
|
|
let split_dwarf_file = if tcx.sess.target_can_use_split_dwarf() {
|
|
tcx.output_filenames(()).split_dwarf_path(tcx.sess.split_debuginfo(), Some(mod_name))
|
|
} else {
|
|
None
|
|
};
|
|
let config = TargetMachineFactoryConfig { split_dwarf_file };
|
|
target_machine_factory(tcx.sess, tcx.backend_optimization_level(()))(config)
|
|
.unwrap_or_else(|err| llvm_err(tcx.sess.diagnostic(), &err).raise())
|
|
}
|
|
|
|
pub fn to_llvm_opt_settings(
|
|
cfg: config::OptLevel,
|
|
) -> (llvm::CodeGenOptLevel, llvm::CodeGenOptSize) {
|
|
use self::config::OptLevel::*;
|
|
match cfg {
|
|
No => (llvm::CodeGenOptLevel::None, llvm::CodeGenOptSizeNone),
|
|
Less => (llvm::CodeGenOptLevel::Less, llvm::CodeGenOptSizeNone),
|
|
Default => (llvm::CodeGenOptLevel::Default, llvm::CodeGenOptSizeNone),
|
|
Aggressive => (llvm::CodeGenOptLevel::Aggressive, llvm::CodeGenOptSizeNone),
|
|
Size => (llvm::CodeGenOptLevel::Default, llvm::CodeGenOptSizeDefault),
|
|
SizeMin => (llvm::CodeGenOptLevel::Default, llvm::CodeGenOptSizeAggressive),
|
|
}
|
|
}
|
|
|
|
fn to_pass_builder_opt_level(cfg: config::OptLevel) -> llvm::PassBuilderOptLevel {
|
|
use config::OptLevel::*;
|
|
match cfg {
|
|
No => llvm::PassBuilderOptLevel::O0,
|
|
Less => llvm::PassBuilderOptLevel::O1,
|
|
Default => llvm::PassBuilderOptLevel::O2,
|
|
Aggressive => llvm::PassBuilderOptLevel::O3,
|
|
Size => llvm::PassBuilderOptLevel::Os,
|
|
SizeMin => llvm::PassBuilderOptLevel::Oz,
|
|
}
|
|
}
|
|
|
|
fn to_llvm_relocation_model(relocation_model: RelocModel) -> llvm::RelocModel {
|
|
match relocation_model {
|
|
RelocModel::Static => llvm::RelocModel::Static,
|
|
// LLVM doesn't have a PIE relocation model, it represents PIE as PIC with an extra attribute.
|
|
RelocModel::Pic | RelocModel::Pie => llvm::RelocModel::PIC,
|
|
RelocModel::DynamicNoPic => llvm::RelocModel::DynamicNoPic,
|
|
RelocModel::Ropi => llvm::RelocModel::ROPI,
|
|
RelocModel::Rwpi => llvm::RelocModel::RWPI,
|
|
RelocModel::RopiRwpi => llvm::RelocModel::ROPI_RWPI,
|
|
}
|
|
}
|
|
|
|
pub(crate) fn to_llvm_code_model(code_model: Option<CodeModel>) -> llvm::CodeModel {
|
|
match code_model {
|
|
Some(CodeModel::Tiny) => llvm::CodeModel::Tiny,
|
|
Some(CodeModel::Small) => llvm::CodeModel::Small,
|
|
Some(CodeModel::Kernel) => llvm::CodeModel::Kernel,
|
|
Some(CodeModel::Medium) => llvm::CodeModel::Medium,
|
|
Some(CodeModel::Large) => llvm::CodeModel::Large,
|
|
None => llvm::CodeModel::None,
|
|
}
|
|
}
|
|
|
|
pub fn target_machine_factory(
|
|
sess: &Session,
|
|
optlvl: config::OptLevel,
|
|
) -> TargetMachineFactoryFn<LlvmCodegenBackend> {
|
|
let reloc_model = to_llvm_relocation_model(sess.relocation_model());
|
|
|
|
let (opt_level, _) = to_llvm_opt_settings(optlvl);
|
|
let use_softfp = sess.opts.cg.soft_float;
|
|
|
|
let ffunction_sections =
|
|
sess.opts.debugging_opts.function_sections.unwrap_or(sess.target.function_sections);
|
|
let fdata_sections = ffunction_sections;
|
|
let funique_section_names = !sess.opts.debugging_opts.no_unique_section_names;
|
|
|
|
let code_model = to_llvm_code_model(sess.code_model());
|
|
|
|
let mut singlethread = sess.target.singlethread;
|
|
|
|
// On the wasm target once the `atomics` feature is enabled that means that
|
|
// we're no longer single-threaded, or otherwise we don't want LLVM to
|
|
// lower atomic operations to single-threaded operations.
|
|
if singlethread && sess.target.is_like_wasm && sess.target_features.contains(&sym::atomics) {
|
|
singlethread = false;
|
|
}
|
|
|
|
let triple = SmallCStr::new(&sess.target.llvm_target);
|
|
let cpu = SmallCStr::new(llvm_util::target_cpu(sess));
|
|
let features = llvm_util::llvm_global_features(sess).join(",");
|
|
let features = CString::new(features).unwrap();
|
|
let abi = SmallCStr::new(&sess.target.llvm_abiname);
|
|
let trap_unreachable =
|
|
sess.opts.debugging_opts.trap_unreachable.unwrap_or(sess.target.trap_unreachable);
|
|
let emit_stack_size_section = sess.opts.debugging_opts.emit_stack_sizes;
|
|
|
|
let asm_comments = sess.asm_comments();
|
|
let relax_elf_relocations =
|
|
sess.opts.debugging_opts.relax_elf_relocations.unwrap_or(sess.target.relax_elf_relocations);
|
|
|
|
let use_init_array =
|
|
!sess.opts.debugging_opts.use_ctors_section.unwrap_or(sess.target.use_ctors_section);
|
|
|
|
Arc::new(move |config: TargetMachineFactoryConfig| {
|
|
let split_dwarf_file = config.split_dwarf_file.unwrap_or_default();
|
|
let split_dwarf_file = CString::new(split_dwarf_file.to_str().unwrap()).unwrap();
|
|
|
|
let tm = unsafe {
|
|
llvm::LLVMRustCreateTargetMachine(
|
|
triple.as_ptr(),
|
|
cpu.as_ptr(),
|
|
features.as_ptr(),
|
|
abi.as_ptr(),
|
|
code_model,
|
|
reloc_model,
|
|
opt_level,
|
|
use_softfp,
|
|
ffunction_sections,
|
|
fdata_sections,
|
|
funique_section_names,
|
|
trap_unreachable,
|
|
singlethread,
|
|
asm_comments,
|
|
emit_stack_size_section,
|
|
relax_elf_relocations,
|
|
use_init_array,
|
|
split_dwarf_file.as_ptr(),
|
|
)
|
|
};
|
|
|
|
tm.ok_or_else(|| {
|
|
format!("Could not create LLVM TargetMachine for triple: {}", triple.to_str().unwrap())
|
|
})
|
|
})
|
|
}
|
|
|
|
pub(crate) fn save_temp_bitcode(
|
|
cgcx: &CodegenContext<LlvmCodegenBackend>,
|
|
module: &ModuleCodegen<ModuleLlvm>,
|
|
name: &str,
|
|
) {
|
|
if !cgcx.save_temps {
|
|
return;
|
|
}
|
|
unsafe {
|
|
let ext = format!("{}.bc", name);
|
|
let cgu = Some(&module.name[..]);
|
|
let path = cgcx.output_filenames.temp_path_ext(&ext, cgu);
|
|
let cstr = path_to_c_string(&path);
|
|
let llmod = module.module_llvm.llmod();
|
|
llvm::LLVMWriteBitcodeToFile(llmod, cstr.as_ptr());
|
|
}
|
|
}
|
|
|
|
pub struct DiagnosticHandlers<'a> {
|
|
data: *mut (&'a CodegenContext<LlvmCodegenBackend>, &'a Handler),
|
|
llcx: &'a llvm::Context,
|
|
old_handler: Option<&'a llvm::DiagnosticHandler>,
|
|
}
|
|
|
|
impl<'a> DiagnosticHandlers<'a> {
|
|
pub fn new(
|
|
cgcx: &'a CodegenContext<LlvmCodegenBackend>,
|
|
handler: &'a Handler,
|
|
llcx: &'a llvm::Context,
|
|
) -> Self {
|
|
let remark_passes_all: bool;
|
|
let remark_passes: Vec<CString>;
|
|
match &cgcx.remark {
|
|
Passes::All => {
|
|
remark_passes_all = true;
|
|
remark_passes = Vec::new();
|
|
}
|
|
Passes::Some(passes) => {
|
|
remark_passes_all = false;
|
|
remark_passes =
|
|
passes.iter().map(|name| CString::new(name.as_str()).unwrap()).collect();
|
|
}
|
|
};
|
|
let remark_passes: Vec<*const c_char> =
|
|
remark_passes.iter().map(|name: &CString| name.as_ptr()).collect();
|
|
let data = Box::into_raw(Box::new((cgcx, handler)));
|
|
unsafe {
|
|
let old_handler = llvm::LLVMRustContextGetDiagnosticHandler(llcx);
|
|
llvm::LLVMRustContextConfigureDiagnosticHandler(
|
|
llcx,
|
|
diagnostic_handler,
|
|
data.cast(),
|
|
remark_passes_all,
|
|
remark_passes.as_ptr(),
|
|
remark_passes.len(),
|
|
);
|
|
llvm::LLVMRustSetInlineAsmDiagnosticHandler(llcx, inline_asm_handler, data.cast());
|
|
DiagnosticHandlers { data, llcx, old_handler }
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a> Drop for DiagnosticHandlers<'a> {
|
|
fn drop(&mut self) {
|
|
use std::ptr::null_mut;
|
|
unsafe {
|
|
llvm::LLVMRustSetInlineAsmDiagnosticHandler(self.llcx, inline_asm_handler, null_mut());
|
|
llvm::LLVMRustContextSetDiagnosticHandler(self.llcx, self.old_handler);
|
|
drop(Box::from_raw(self.data));
|
|
}
|
|
}
|
|
}
|
|
|
|
fn report_inline_asm(
|
|
cgcx: &CodegenContext<LlvmCodegenBackend>,
|
|
msg: String,
|
|
level: llvm::DiagnosticLevel,
|
|
mut cookie: c_uint,
|
|
source: Option<(String, Vec<InnerSpan>)>,
|
|
) {
|
|
// In LTO build we may get srcloc values from other crates which are invalid
|
|
// since they use a different source map. To be safe we just suppress these
|
|
// in LTO builds.
|
|
if matches!(cgcx.lto, Lto::Fat | Lto::Thin) {
|
|
cookie = 0;
|
|
}
|
|
let level = match level {
|
|
llvm::DiagnosticLevel::Error => Level::Error { lint: false },
|
|
llvm::DiagnosticLevel::Warning => Level::Warning,
|
|
llvm::DiagnosticLevel::Note | llvm::DiagnosticLevel::Remark => Level::Note,
|
|
};
|
|
cgcx.diag_emitter.inline_asm_error(cookie as u32, msg, level, source);
|
|
}
|
|
|
|
unsafe extern "C" fn inline_asm_handler(diag: &SMDiagnostic, user: *const c_void, cookie: c_uint) {
|
|
if user.is_null() {
|
|
return;
|
|
}
|
|
let (cgcx, _) = *(user as *const (&CodegenContext<LlvmCodegenBackend>, &Handler));
|
|
|
|
let smdiag = llvm::diagnostic::SrcMgrDiagnostic::unpack(diag);
|
|
report_inline_asm(cgcx, smdiag.message, smdiag.level, cookie, smdiag.source);
|
|
}
|
|
|
|
unsafe extern "C" fn diagnostic_handler(info: &DiagnosticInfo, user: *mut c_void) {
|
|
if user.is_null() {
|
|
return;
|
|
}
|
|
let (cgcx, diag_handler) = *(user as *const (&CodegenContext<LlvmCodegenBackend>, &Handler));
|
|
|
|
match llvm::diagnostic::Diagnostic::unpack(info) {
|
|
llvm::diagnostic::InlineAsm(inline) => {
|
|
report_inline_asm(cgcx, inline.message, inline.level, inline.cookie, inline.source);
|
|
}
|
|
|
|
llvm::diagnostic::Optimization(opt) => {
|
|
let enabled = match cgcx.remark {
|
|
Passes::All => true,
|
|
Passes::Some(ref v) => v.iter().any(|s| *s == opt.pass_name),
|
|
};
|
|
|
|
if enabled {
|
|
diag_handler.note_without_error(&format!(
|
|
"{}:{}:{}: {}: {}",
|
|
opt.filename, opt.line, opt.column, opt.pass_name, opt.message,
|
|
));
|
|
}
|
|
}
|
|
llvm::diagnostic::PGO(diagnostic_ref) | llvm::diagnostic::Linker(diagnostic_ref) => {
|
|
let msg = llvm::build_string(|s| {
|
|
llvm::LLVMRustWriteDiagnosticInfoToString(diagnostic_ref, s)
|
|
})
|
|
.expect("non-UTF8 diagnostic");
|
|
diag_handler.warn(&msg);
|
|
}
|
|
llvm::diagnostic::Unsupported(diagnostic_ref) => {
|
|
let msg = llvm::build_string(|s| {
|
|
llvm::LLVMRustWriteDiagnosticInfoToString(diagnostic_ref, s)
|
|
})
|
|
.expect("non-UTF8 diagnostic");
|
|
diag_handler.err(&msg);
|
|
}
|
|
llvm::diagnostic::UnknownDiagnostic(..) => {}
|
|
}
|
|
}
|
|
|
|
fn get_pgo_gen_path(config: &ModuleConfig) -> Option<CString> {
|
|
match config.pgo_gen {
|
|
SwitchWithOptPath::Enabled(ref opt_dir_path) => {
|
|
let path = if let Some(dir_path) = opt_dir_path {
|
|
dir_path.join("default_%m.profraw")
|
|
} else {
|
|
PathBuf::from("default_%m.profraw")
|
|
};
|
|
|
|
Some(CString::new(format!("{}", path.display())).unwrap())
|
|
}
|
|
SwitchWithOptPath::Disabled => None,
|
|
}
|
|
}
|
|
|
|
fn get_pgo_use_path(config: &ModuleConfig) -> Option<CString> {
|
|
config
|
|
.pgo_use
|
|
.as_ref()
|
|
.map(|path_buf| CString::new(path_buf.to_string_lossy().as_bytes()).unwrap())
|
|
}
|
|
|
|
fn get_pgo_sample_use_path(config: &ModuleConfig) -> Option<CString> {
|
|
config
|
|
.pgo_sample_use
|
|
.as_ref()
|
|
.map(|path_buf| CString::new(path_buf.to_string_lossy().as_bytes()).unwrap())
|
|
}
|
|
|
|
pub(crate) fn should_use_new_llvm_pass_manager(
|
|
cgcx: &CodegenContext<LlvmCodegenBackend>,
|
|
config: &ModuleConfig,
|
|
) -> bool {
|
|
// The new pass manager is enabled by default for LLVM >= 13.
|
|
// This matches Clang, which also enables it since Clang 13.
|
|
|
|
// FIXME: There are some perf issues with the new pass manager
|
|
// when targeting s390x, so it is temporarily disabled for that
|
|
// arch, see https://github.com/rust-lang/rust/issues/89609
|
|
config
|
|
.new_llvm_pass_manager
|
|
.unwrap_or_else(|| cgcx.target_arch != "s390x" && llvm_util::get_version() >= (13, 0, 0))
|
|
}
|
|
|
|
pub(crate) unsafe fn optimize_with_new_llvm_pass_manager(
|
|
cgcx: &CodegenContext<LlvmCodegenBackend>,
|
|
diag_handler: &Handler,
|
|
module: &ModuleCodegen<ModuleLlvm>,
|
|
config: &ModuleConfig,
|
|
opt_level: config::OptLevel,
|
|
opt_stage: llvm::OptStage,
|
|
) -> Result<(), FatalError> {
|
|
let unroll_loops =
|
|
opt_level != config::OptLevel::Size && opt_level != config::OptLevel::SizeMin;
|
|
let using_thin_buffers = opt_stage == llvm::OptStage::PreLinkThinLTO || config.bitcode_needed();
|
|
let pgo_gen_path = get_pgo_gen_path(config);
|
|
let pgo_use_path = get_pgo_use_path(config);
|
|
let pgo_sample_use_path = get_pgo_sample_use_path(config);
|
|
let is_lto = opt_stage == llvm::OptStage::ThinLTO || opt_stage == llvm::OptStage::FatLTO;
|
|
// Sanitizer instrumentation is only inserted during the pre-link optimization stage.
|
|
let sanitizer_options = if !is_lto {
|
|
Some(llvm::SanitizerOptions {
|
|
sanitize_address: config.sanitizer.contains(SanitizerSet::ADDRESS),
|
|
sanitize_address_recover: config.sanitizer_recover.contains(SanitizerSet::ADDRESS),
|
|
sanitize_memory: config.sanitizer.contains(SanitizerSet::MEMORY),
|
|
sanitize_memory_recover: config.sanitizer_recover.contains(SanitizerSet::MEMORY),
|
|
sanitize_memory_track_origins: config.sanitizer_memory_track_origins as c_int,
|
|
sanitize_thread: config.sanitizer.contains(SanitizerSet::THREAD),
|
|
sanitize_hwaddress: config.sanitizer.contains(SanitizerSet::HWADDRESS),
|
|
sanitize_hwaddress_recover: config.sanitizer_recover.contains(SanitizerSet::HWADDRESS),
|
|
})
|
|
} else {
|
|
None
|
|
};
|
|
|
|
let mut llvm_profiler = if cgcx.prof.llvm_recording_enabled() {
|
|
Some(LlvmSelfProfiler::new(cgcx.prof.get_self_profiler().unwrap()))
|
|
} else {
|
|
None
|
|
};
|
|
|
|
let llvm_selfprofiler =
|
|
llvm_profiler.as_mut().map(|s| s as *mut _ as *mut c_void).unwrap_or(std::ptr::null_mut());
|
|
|
|
let extra_passes = config.passes.join(",");
|
|
|
|
// FIXME: NewPM doesn't provide a facility to pass custom InlineParams.
|
|
// We would have to add upstream support for this first, before we can support
|
|
// config.inline_threshold and our more aggressive default thresholds.
|
|
let result = llvm::LLVMRustOptimizeWithNewPassManager(
|
|
module.module_llvm.llmod(),
|
|
&*module.module_llvm.tm,
|
|
to_pass_builder_opt_level(opt_level),
|
|
opt_stage,
|
|
config.no_prepopulate_passes,
|
|
config.verify_llvm_ir,
|
|
using_thin_buffers,
|
|
config.merge_functions,
|
|
unroll_loops,
|
|
config.vectorize_slp,
|
|
config.vectorize_loop,
|
|
config.no_builtins,
|
|
config.emit_lifetime_markers,
|
|
sanitizer_options.as_ref(),
|
|
pgo_gen_path.as_ref().map_or(std::ptr::null(), |s| s.as_ptr()),
|
|
pgo_use_path.as_ref().map_or(std::ptr::null(), |s| s.as_ptr()),
|
|
config.instrument_coverage,
|
|
config.instrument_gcov,
|
|
pgo_sample_use_path.as_ref().map_or(std::ptr::null(), |s| s.as_ptr()),
|
|
config.debug_info_for_profiling,
|
|
llvm_selfprofiler,
|
|
selfprofile_before_pass_callback,
|
|
selfprofile_after_pass_callback,
|
|
extra_passes.as_ptr().cast(),
|
|
extra_passes.len(),
|
|
);
|
|
result.into_result().map_err(|()| llvm_err(diag_handler, "failed to run LLVM passes"))
|
|
}
|
|
|
|
// Unsafe due to LLVM calls.
|
|
pub(crate) unsafe fn optimize(
|
|
cgcx: &CodegenContext<LlvmCodegenBackend>,
|
|
diag_handler: &Handler,
|
|
module: &ModuleCodegen<ModuleLlvm>,
|
|
config: &ModuleConfig,
|
|
) -> Result<(), FatalError> {
|
|
let _timer = cgcx.prof.generic_activity_with_arg("LLVM_module_optimize", &module.name[..]);
|
|
|
|
let llmod = module.module_llvm.llmod();
|
|
let llcx = &*module.module_llvm.llcx;
|
|
let tm = &*module.module_llvm.tm;
|
|
let _handlers = DiagnosticHandlers::new(cgcx, diag_handler, llcx);
|
|
|
|
let module_name = module.name.clone();
|
|
let module_name = Some(&module_name[..]);
|
|
|
|
if config.emit_no_opt_bc {
|
|
let out = cgcx.output_filenames.temp_path_ext("no-opt.bc", module_name);
|
|
let out = path_to_c_string(&out);
|
|
llvm::LLVMWriteBitcodeToFile(llmod, out.as_ptr());
|
|
}
|
|
|
|
if let Some(opt_level) = config.opt_level {
|
|
if should_use_new_llvm_pass_manager(cgcx, config) {
|
|
let opt_stage = match cgcx.lto {
|
|
Lto::Fat => llvm::OptStage::PreLinkFatLTO,
|
|
Lto::Thin | Lto::ThinLocal => llvm::OptStage::PreLinkThinLTO,
|
|
_ if cgcx.opts.cg.linker_plugin_lto.enabled() => llvm::OptStage::PreLinkThinLTO,
|
|
_ => llvm::OptStage::PreLinkNoLTO,
|
|
};
|
|
return optimize_with_new_llvm_pass_manager(
|
|
cgcx,
|
|
diag_handler,
|
|
module,
|
|
config,
|
|
opt_level,
|
|
opt_stage,
|
|
);
|
|
}
|
|
|
|
if cgcx.prof.llvm_recording_enabled() {
|
|
diag_handler
|
|
.warn("`-Z self-profile-events = llvm` requires `-Z new-llvm-pass-manager`");
|
|
}
|
|
|
|
// Create the two optimizing pass managers. These mirror what clang
|
|
// does, and are by populated by LLVM's default PassManagerBuilder.
|
|
// Each manager has a different set of passes, but they also share
|
|
// some common passes.
|
|
let fpm = llvm::LLVMCreateFunctionPassManagerForModule(llmod);
|
|
let mpm = llvm::LLVMCreatePassManager();
|
|
|
|
{
|
|
let find_pass = |pass_name: &str| {
|
|
let pass_name = SmallCStr::new(pass_name);
|
|
llvm::LLVMRustFindAndCreatePass(pass_name.as_ptr())
|
|
};
|
|
|
|
if config.verify_llvm_ir {
|
|
// Verification should run as the very first pass.
|
|
llvm::LLVMRustAddPass(fpm, find_pass("verify").unwrap());
|
|
}
|
|
|
|
let mut extra_passes = Vec::new();
|
|
let mut have_name_anon_globals_pass = false;
|
|
|
|
for pass_name in &config.passes {
|
|
if pass_name == "lint" {
|
|
// Linting should also be performed early, directly on the generated IR.
|
|
llvm::LLVMRustAddPass(fpm, find_pass("lint").unwrap());
|
|
continue;
|
|
}
|
|
|
|
if let Some(pass) = find_pass(pass_name) {
|
|
extra_passes.push(pass);
|
|
} else {
|
|
diag_handler.warn(&format!("unknown pass `{}`, ignoring", pass_name));
|
|
}
|
|
|
|
if pass_name == "name-anon-globals" {
|
|
have_name_anon_globals_pass = true;
|
|
}
|
|
}
|
|
|
|
// Instrumentation must be inserted before optimization,
|
|
// otherwise LLVM may optimize some functions away which
|
|
// breaks llvm-cov.
|
|
//
|
|
// This mirrors what Clang does in lib/CodeGen/BackendUtil.cpp.
|
|
if config.instrument_gcov {
|
|
llvm::LLVMRustAddPass(mpm, find_pass("insert-gcov-profiling").unwrap());
|
|
}
|
|
if config.instrument_coverage {
|
|
llvm::LLVMRustAddPass(mpm, find_pass("instrprof").unwrap());
|
|
}
|
|
if config.debug_info_for_profiling {
|
|
llvm::LLVMRustAddPass(mpm, find_pass("add-discriminators").unwrap());
|
|
}
|
|
|
|
add_sanitizer_passes(config, &mut extra_passes);
|
|
|
|
// Some options cause LLVM bitcode to be emitted, which uses ThinLTOBuffers, so we need
|
|
// to make sure we run LLVM's NameAnonGlobals pass when emitting bitcode; otherwise
|
|
// we'll get errors in LLVM.
|
|
let using_thin_buffers = config.bitcode_needed();
|
|
if !config.no_prepopulate_passes {
|
|
llvm::LLVMAddAnalysisPasses(tm, fpm);
|
|
llvm::LLVMAddAnalysisPasses(tm, mpm);
|
|
let opt_level = to_llvm_opt_settings(opt_level).0;
|
|
let prepare_for_thin_lto = cgcx.lto == Lto::Thin
|
|
|| cgcx.lto == Lto::ThinLocal
|
|
|| (cgcx.lto != Lto::Fat && cgcx.opts.cg.linker_plugin_lto.enabled());
|
|
with_llvm_pmb(llmod, config, opt_level, prepare_for_thin_lto, &mut |b| {
|
|
llvm::LLVMRustAddLastExtensionPasses(
|
|
b,
|
|
extra_passes.as_ptr(),
|
|
extra_passes.len() as size_t,
|
|
);
|
|
llvm::LLVMPassManagerBuilderPopulateFunctionPassManager(b, fpm);
|
|
llvm::LLVMPassManagerBuilderPopulateModulePassManager(b, mpm);
|
|
});
|
|
|
|
have_name_anon_globals_pass = have_name_anon_globals_pass || prepare_for_thin_lto;
|
|
if using_thin_buffers && !prepare_for_thin_lto {
|
|
llvm::LLVMRustAddPass(mpm, find_pass("name-anon-globals").unwrap());
|
|
have_name_anon_globals_pass = true;
|
|
}
|
|
} else {
|
|
// If we don't use the standard pipeline, directly populate the MPM
|
|
// with the extra passes.
|
|
for pass in extra_passes {
|
|
llvm::LLVMRustAddPass(mpm, pass);
|
|
}
|
|
}
|
|
|
|
if using_thin_buffers && !have_name_anon_globals_pass {
|
|
// As described above, this will probably cause an error in LLVM
|
|
if config.no_prepopulate_passes {
|
|
diag_handler.err(
|
|
"The current compilation is going to use thin LTO buffers \
|
|
without running LLVM's NameAnonGlobals pass. \
|
|
This will likely cause errors in LLVM. Consider adding \
|
|
-C passes=name-anon-globals to the compiler command line.",
|
|
);
|
|
} else {
|
|
bug!(
|
|
"We are using thin LTO buffers without running the NameAnonGlobals pass. \
|
|
This will likely cause errors in LLVM and should never happen."
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
diag_handler.abort_if_errors();
|
|
|
|
// Finally, run the actual optimization passes
|
|
{
|
|
let _timer = cgcx.prof.extra_verbose_generic_activity(
|
|
"LLVM_module_optimize_function_passes",
|
|
&module.name[..],
|
|
);
|
|
llvm::LLVMRustRunFunctionPassManager(fpm, llmod);
|
|
}
|
|
{
|
|
let _timer = cgcx.prof.extra_verbose_generic_activity(
|
|
"LLVM_module_optimize_module_passes",
|
|
&module.name[..],
|
|
);
|
|
llvm::LLVMRunPassManager(mpm, llmod);
|
|
}
|
|
|
|
// Deallocate managers that we're now done with
|
|
llvm::LLVMDisposePassManager(fpm);
|
|
llvm::LLVMDisposePassManager(mpm);
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
unsafe fn add_sanitizer_passes(config: &ModuleConfig, passes: &mut Vec<&'static mut llvm::Pass>) {
|
|
if config.sanitizer.contains(SanitizerSet::ADDRESS) {
|
|
let recover = config.sanitizer_recover.contains(SanitizerSet::ADDRESS);
|
|
passes.push(llvm::LLVMRustCreateAddressSanitizerFunctionPass(recover));
|
|
passes.push(llvm::LLVMRustCreateModuleAddressSanitizerPass(recover));
|
|
}
|
|
if config.sanitizer.contains(SanitizerSet::MEMORY) {
|
|
let track_origins = config.sanitizer_memory_track_origins as c_int;
|
|
let recover = config.sanitizer_recover.contains(SanitizerSet::MEMORY);
|
|
passes.push(llvm::LLVMRustCreateMemorySanitizerPass(track_origins, recover));
|
|
}
|
|
if config.sanitizer.contains(SanitizerSet::THREAD) {
|
|
passes.push(llvm::LLVMRustCreateThreadSanitizerPass());
|
|
}
|
|
if config.sanitizer.contains(SanitizerSet::HWADDRESS) {
|
|
let recover = config.sanitizer_recover.contains(SanitizerSet::HWADDRESS);
|
|
passes.push(llvm::LLVMRustCreateHWAddressSanitizerPass(recover));
|
|
}
|
|
}
|
|
|
|
pub(crate) fn link(
|
|
cgcx: &CodegenContext<LlvmCodegenBackend>,
|
|
diag_handler: &Handler,
|
|
mut modules: Vec<ModuleCodegen<ModuleLlvm>>,
|
|
) -> Result<ModuleCodegen<ModuleLlvm>, FatalError> {
|
|
use super::lto::{Linker, ModuleBuffer};
|
|
// Sort the modules by name to ensure to ensure deterministic behavior.
|
|
modules.sort_by(|a, b| a.name.cmp(&b.name));
|
|
let (first, elements) =
|
|
modules.split_first().expect("Bug! modules must contain at least one module.");
|
|
|
|
let mut linker = Linker::new(first.module_llvm.llmod());
|
|
for module in elements {
|
|
let _timer =
|
|
cgcx.prof.generic_activity_with_arg("LLVM_link_module", format!("{:?}", module.name));
|
|
let buffer = ModuleBuffer::new(module.module_llvm.llmod());
|
|
linker.add(buffer.data()).map_err(|()| {
|
|
let msg = format!("failed to serialize module {:?}", module.name);
|
|
llvm_err(diag_handler, &msg)
|
|
})?;
|
|
}
|
|
drop(linker);
|
|
Ok(modules.remove(0))
|
|
}
|
|
|
|
pub(crate) unsafe fn codegen(
|
|
cgcx: &CodegenContext<LlvmCodegenBackend>,
|
|
diag_handler: &Handler,
|
|
module: ModuleCodegen<ModuleLlvm>,
|
|
config: &ModuleConfig,
|
|
) -> Result<CompiledModule, FatalError> {
|
|
let _timer = cgcx.prof.generic_activity_with_arg("LLVM_module_codegen", &module.name[..]);
|
|
{
|
|
let llmod = module.module_llvm.llmod();
|
|
let llcx = &*module.module_llvm.llcx;
|
|
let tm = &*module.module_llvm.tm;
|
|
let module_name = module.name.clone();
|
|
let module_name = Some(&module_name[..]);
|
|
let handlers = DiagnosticHandlers::new(cgcx, diag_handler, llcx);
|
|
|
|
if cgcx.msvc_imps_needed {
|
|
create_msvc_imps(cgcx, llcx, llmod);
|
|
}
|
|
|
|
// A codegen-specific pass manager is used to generate object
|
|
// files for an LLVM module.
|
|
//
|
|
// Apparently each of these pass managers is a one-shot kind of
|
|
// thing, so we create a new one for each type of output. The
|
|
// pass manager passed to the closure should be ensured to not
|
|
// escape the closure itself, and the manager should only be
|
|
// used once.
|
|
unsafe fn with_codegen<'ll, F, R>(
|
|
tm: &'ll llvm::TargetMachine,
|
|
llmod: &'ll llvm::Module,
|
|
no_builtins: bool,
|
|
f: F,
|
|
) -> R
|
|
where
|
|
F: FnOnce(&'ll mut PassManager<'ll>) -> R,
|
|
{
|
|
let cpm = llvm::LLVMCreatePassManager();
|
|
llvm::LLVMAddAnalysisPasses(tm, cpm);
|
|
llvm::LLVMRustAddLibraryInfo(cpm, llmod, no_builtins);
|
|
f(cpm)
|
|
}
|
|
|
|
// Two things to note:
|
|
// - If object files are just LLVM bitcode we write bitcode, copy it to
|
|
// the .o file, and delete the bitcode if it wasn't otherwise
|
|
// requested.
|
|
// - If we don't have the integrated assembler then we need to emit
|
|
// asm from LLVM and use `gcc` to create the object file.
|
|
|
|
let bc_out = cgcx.output_filenames.temp_path(OutputType::Bitcode, module_name);
|
|
let obj_out = cgcx.output_filenames.temp_path(OutputType::Object, module_name);
|
|
|
|
if config.bitcode_needed() {
|
|
let _timer = cgcx
|
|
.prof
|
|
.generic_activity_with_arg("LLVM_module_codegen_make_bitcode", &module.name[..]);
|
|
let thin = ThinBuffer::new(llmod);
|
|
let data = thin.data();
|
|
|
|
if let Some(bitcode_filename) = bc_out.file_name() {
|
|
cgcx.prof.artifact_size(
|
|
"llvm_bitcode",
|
|
bitcode_filename.to_string_lossy(),
|
|
data.len() as u64,
|
|
);
|
|
}
|
|
|
|
if config.emit_bc || config.emit_obj == EmitObj::Bitcode {
|
|
let _timer = cgcx.prof.generic_activity_with_arg(
|
|
"LLVM_module_codegen_emit_bitcode",
|
|
&module.name[..],
|
|
);
|
|
if let Err(e) = fs::write(&bc_out, data) {
|
|
let msg = format!("failed to write bytecode to {}: {}", bc_out.display(), e);
|
|
diag_handler.err(&msg);
|
|
}
|
|
}
|
|
|
|
if config.emit_obj == EmitObj::ObjectCode(BitcodeSection::Full) {
|
|
let _timer = cgcx.prof.generic_activity_with_arg(
|
|
"LLVM_module_codegen_embed_bitcode",
|
|
&module.name[..],
|
|
);
|
|
embed_bitcode(cgcx, llcx, llmod, &config.bc_cmdline, data);
|
|
}
|
|
}
|
|
|
|
if config.emit_ir {
|
|
let _timer = cgcx
|
|
.prof
|
|
.generic_activity_with_arg("LLVM_module_codegen_emit_ir", &module.name[..]);
|
|
let out = cgcx.output_filenames.temp_path(OutputType::LlvmAssembly, module_name);
|
|
let out_c = path_to_c_string(&out);
|
|
|
|
extern "C" fn demangle_callback(
|
|
input_ptr: *const c_char,
|
|
input_len: size_t,
|
|
output_ptr: *mut c_char,
|
|
output_len: size_t,
|
|
) -> size_t {
|
|
let input =
|
|
unsafe { slice::from_raw_parts(input_ptr as *const u8, input_len as usize) };
|
|
|
|
let input = match str::from_utf8(input) {
|
|
Ok(s) => s,
|
|
Err(_) => return 0,
|
|
};
|
|
|
|
let output = unsafe {
|
|
slice::from_raw_parts_mut(output_ptr as *mut u8, output_len as usize)
|
|
};
|
|
let mut cursor = io::Cursor::new(output);
|
|
|
|
let demangled = match rustc_demangle::try_demangle(input) {
|
|
Ok(d) => d,
|
|
Err(_) => return 0,
|
|
};
|
|
|
|
if write!(cursor, "{:#}", demangled).is_err() {
|
|
// Possible only if provided buffer is not big enough
|
|
return 0;
|
|
}
|
|
|
|
cursor.position() as size_t
|
|
}
|
|
|
|
let result = llvm::LLVMRustPrintModule(llmod, out_c.as_ptr(), demangle_callback);
|
|
|
|
if result == llvm::LLVMRustResult::Success {
|
|
record_artifact_size(&cgcx.prof, "llvm_ir", &out);
|
|
}
|
|
|
|
result.into_result().map_err(|()| {
|
|
let msg = format!("failed to write LLVM IR to {}", out.display());
|
|
llvm_err(diag_handler, &msg)
|
|
})?;
|
|
}
|
|
|
|
if config.emit_asm {
|
|
let _timer = cgcx
|
|
.prof
|
|
.generic_activity_with_arg("LLVM_module_codegen_emit_asm", &module.name[..]);
|
|
let path = cgcx.output_filenames.temp_path(OutputType::Assembly, module_name);
|
|
|
|
// We can't use the same module for asm and object code output,
|
|
// because that triggers various errors like invalid IR or broken
|
|
// binaries. So we must clone the module to produce the asm output
|
|
// if we are also producing object code.
|
|
let llmod = if let EmitObj::ObjectCode(_) = config.emit_obj {
|
|
llvm::LLVMCloneModule(llmod)
|
|
} else {
|
|
llmod
|
|
};
|
|
with_codegen(tm, llmod, config.no_builtins, |cpm| {
|
|
write_output_file(
|
|
diag_handler,
|
|
tm,
|
|
cpm,
|
|
llmod,
|
|
&path,
|
|
None,
|
|
llvm::FileType::AssemblyFile,
|
|
&cgcx.prof,
|
|
)
|
|
})?;
|
|
}
|
|
|
|
match config.emit_obj {
|
|
EmitObj::ObjectCode(_) => {
|
|
let _timer = cgcx
|
|
.prof
|
|
.generic_activity_with_arg("LLVM_module_codegen_emit_obj", &module.name[..]);
|
|
|
|
let dwo_out = cgcx.output_filenames.temp_path_dwo(module_name);
|
|
let dwo_out = match cgcx.split_debuginfo {
|
|
// Don't change how DWARF is emitted in single mode (or when disabled).
|
|
SplitDebuginfo::Off | SplitDebuginfo::Packed => None,
|
|
// Emit (a subset of the) DWARF into a separate file in split mode.
|
|
SplitDebuginfo::Unpacked => {
|
|
if cgcx.target_can_use_split_dwarf {
|
|
Some(dwo_out.as_path())
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
};
|
|
|
|
with_codegen(tm, llmod, config.no_builtins, |cpm| {
|
|
write_output_file(
|
|
diag_handler,
|
|
tm,
|
|
cpm,
|
|
llmod,
|
|
&obj_out,
|
|
dwo_out,
|
|
llvm::FileType::ObjectFile,
|
|
&cgcx.prof,
|
|
)
|
|
})?;
|
|
}
|
|
|
|
EmitObj::Bitcode => {
|
|
debug!("copying bitcode {:?} to obj {:?}", bc_out, obj_out);
|
|
if let Err(e) = link_or_copy(&bc_out, &obj_out) {
|
|
diag_handler.err(&format!("failed to copy bitcode to object file: {}", e));
|
|
}
|
|
|
|
if !config.emit_bc {
|
|
debug!("removing_bitcode {:?}", bc_out);
|
|
ensure_removed(diag_handler, &bc_out);
|
|
}
|
|
}
|
|
|
|
EmitObj::None => {}
|
|
}
|
|
|
|
drop(handlers);
|
|
}
|
|
|
|
Ok(module.into_compiled_module(
|
|
config.emit_obj != EmitObj::None,
|
|
cgcx.target_can_use_split_dwarf && cgcx.split_debuginfo == SplitDebuginfo::Unpacked,
|
|
config.emit_bc,
|
|
&cgcx.output_filenames,
|
|
))
|
|
}
|
|
|
|
/// Embed the bitcode of an LLVM module in the LLVM module itself.
|
|
///
|
|
/// This is done primarily for iOS where it appears to be standard to compile C
|
|
/// code at least with `-fembed-bitcode` which creates two sections in the
|
|
/// executable:
|
|
///
|
|
/// * __LLVM,__bitcode
|
|
/// * __LLVM,__cmdline
|
|
///
|
|
/// It appears *both* of these sections are necessary to get the linker to
|
|
/// recognize what's going on. A suitable cmdline value is taken from the
|
|
/// target spec.
|
|
///
|
|
/// Furthermore debug/O1 builds don't actually embed bitcode but rather just
|
|
/// embed an empty section.
|
|
///
|
|
/// Basically all of this is us attempting to follow in the footsteps of clang
|
|
/// on iOS. See #35968 for lots more info.
|
|
unsafe fn embed_bitcode(
|
|
cgcx: &CodegenContext<LlvmCodegenBackend>,
|
|
llcx: &llvm::Context,
|
|
llmod: &llvm::Module,
|
|
cmdline: &str,
|
|
bitcode: &[u8],
|
|
) {
|
|
let llconst = common::bytes_in_context(llcx, bitcode);
|
|
let llglobal = llvm::LLVMAddGlobal(
|
|
llmod,
|
|
common::val_ty(llconst),
|
|
"rustc.embedded.module\0".as_ptr().cast(),
|
|
);
|
|
llvm::LLVMSetInitializer(llglobal, llconst);
|
|
|
|
let is_apple = cgcx.opts.target_triple.triple().contains("-ios")
|
|
|| cgcx.opts.target_triple.triple().contains("-darwin")
|
|
|| cgcx.opts.target_triple.triple().contains("-tvos");
|
|
|
|
let section = if is_apple { "__LLVM,__bitcode\0" } else { ".llvmbc\0" };
|
|
llvm::LLVMSetSection(llglobal, section.as_ptr().cast());
|
|
llvm::LLVMRustSetLinkage(llglobal, llvm::Linkage::PrivateLinkage);
|
|
llvm::LLVMSetGlobalConstant(llglobal, llvm::True);
|
|
|
|
let llconst = common::bytes_in_context(llcx, cmdline.as_bytes());
|
|
let llglobal = llvm::LLVMAddGlobal(
|
|
llmod,
|
|
common::val_ty(llconst),
|
|
"rustc.embedded.cmdline\0".as_ptr().cast(),
|
|
);
|
|
llvm::LLVMSetInitializer(llglobal, llconst);
|
|
let section = if is_apple { "__LLVM,__cmdline\0" } else { ".llvmcmd\0" };
|
|
llvm::LLVMSetSection(llglobal, section.as_ptr().cast());
|
|
llvm::LLVMRustSetLinkage(llglobal, llvm::Linkage::PrivateLinkage);
|
|
|
|
// We're adding custom sections to the output object file, but we definitely
|
|
// do not want these custom sections to make their way into the final linked
|
|
// executable. The purpose of these custom sections is for tooling
|
|
// surrounding object files to work with the LLVM IR, if necessary. For
|
|
// example rustc's own LTO will look for LLVM IR inside of the object file
|
|
// in these sections by default.
|
|
//
|
|
// To handle this is a bit different depending on the object file format
|
|
// used by the backend, broken down into a few different categories:
|
|
//
|
|
// * Mach-O - this is for macOS. Inspecting the source code for the native
|
|
// linker here shows that the `.llvmbc` and `.llvmcmd` sections are
|
|
// automatically skipped by the linker. In that case there's nothing extra
|
|
// that we need to do here.
|
|
//
|
|
// * Wasm - the native LLD linker is hard-coded to skip `.llvmbc` and
|
|
// `.llvmcmd` sections, so there's nothing extra we need to do.
|
|
//
|
|
// * COFF - if we don't do anything the linker will by default copy all
|
|
// these sections to the output artifact, not what we want! To subvert
|
|
// this we want to flag the sections we inserted here as
|
|
// `IMAGE_SCN_LNK_REMOVE`. Unfortunately though LLVM has no native way to
|
|
// do this. Thankfully though we can do this with some inline assembly,
|
|
// which is easy enough to add via module-level global inline asm.
|
|
//
|
|
// * ELF - this is very similar to COFF above. One difference is that these
|
|
// sections are removed from the output linked artifact when
|
|
// `--gc-sections` is passed, which we pass by default. If that flag isn't
|
|
// passed though then these sections will show up in the final output.
|
|
// Additionally the flag that we need to set here is `SHF_EXCLUDE`.
|
|
if is_apple
|
|
|| cgcx.opts.target_triple.triple().starts_with("wasm")
|
|
|| cgcx.opts.target_triple.triple().starts_with("asmjs")
|
|
{
|
|
// nothing to do here
|
|
} else if cgcx.is_pe_coff {
|
|
let asm = "
|
|
.section .llvmbc,\"n\"
|
|
.section .llvmcmd,\"n\"
|
|
";
|
|
llvm::LLVMRustAppendModuleInlineAsm(llmod, asm.as_ptr().cast(), asm.len());
|
|
} else {
|
|
let asm = "
|
|
.section .llvmbc,\"e\"
|
|
.section .llvmcmd,\"e\"
|
|
";
|
|
llvm::LLVMRustAppendModuleInlineAsm(llmod, asm.as_ptr().cast(), asm.len());
|
|
}
|
|
}
|
|
|
|
pub unsafe fn with_llvm_pmb(
|
|
llmod: &llvm::Module,
|
|
config: &ModuleConfig,
|
|
opt_level: llvm::CodeGenOptLevel,
|
|
prepare_for_thin_lto: bool,
|
|
f: &mut dyn FnMut(&llvm::PassManagerBuilder),
|
|
) {
|
|
use std::ptr;
|
|
|
|
// Create the PassManagerBuilder for LLVM. We configure it with
|
|
// reasonable defaults and prepare it to actually populate the pass
|
|
// manager.
|
|
let builder = llvm::LLVMPassManagerBuilderCreate();
|
|
let opt_size = config.opt_size.map_or(llvm::CodeGenOptSizeNone, |x| to_llvm_opt_settings(x).1);
|
|
let inline_threshold = config.inline_threshold;
|
|
let pgo_gen_path = get_pgo_gen_path(config);
|
|
let pgo_use_path = get_pgo_use_path(config);
|
|
let pgo_sample_use_path = get_pgo_sample_use_path(config);
|
|
|
|
llvm::LLVMRustConfigurePassManagerBuilder(
|
|
builder,
|
|
opt_level,
|
|
config.merge_functions,
|
|
config.vectorize_slp,
|
|
config.vectorize_loop,
|
|
prepare_for_thin_lto,
|
|
pgo_gen_path.as_ref().map_or(ptr::null(), |s| s.as_ptr()),
|
|
pgo_use_path.as_ref().map_or(ptr::null(), |s| s.as_ptr()),
|
|
pgo_sample_use_path.as_ref().map_or(ptr::null(), |s| s.as_ptr()),
|
|
);
|
|
|
|
llvm::LLVMPassManagerBuilderSetSizeLevel(builder, opt_size as u32);
|
|
|
|
if opt_size != llvm::CodeGenOptSizeNone {
|
|
llvm::LLVMPassManagerBuilderSetDisableUnrollLoops(builder, 1);
|
|
}
|
|
|
|
llvm::LLVMRustAddBuilderLibraryInfo(builder, llmod, config.no_builtins);
|
|
|
|
// Here we match what clang does (kinda). For O0 we only inline
|
|
// always-inline functions (but don't add lifetime intrinsics), at O1 we
|
|
// inline with lifetime intrinsics, and O2+ we add an inliner with a
|
|
// thresholds copied from clang.
|
|
match (opt_level, opt_size, inline_threshold) {
|
|
(.., Some(t)) => {
|
|
llvm::LLVMPassManagerBuilderUseInlinerWithThreshold(builder, t);
|
|
}
|
|
(llvm::CodeGenOptLevel::Aggressive, ..) => {
|
|
llvm::LLVMPassManagerBuilderUseInlinerWithThreshold(builder, 275);
|
|
}
|
|
(_, llvm::CodeGenOptSizeDefault, _) => {
|
|
llvm::LLVMPassManagerBuilderUseInlinerWithThreshold(builder, 75);
|
|
}
|
|
(_, llvm::CodeGenOptSizeAggressive, _) => {
|
|
llvm::LLVMPassManagerBuilderUseInlinerWithThreshold(builder, 25);
|
|
}
|
|
(llvm::CodeGenOptLevel::None, ..) => {
|
|
llvm::LLVMRustAddAlwaysInlinePass(builder, config.emit_lifetime_markers);
|
|
}
|
|
(llvm::CodeGenOptLevel::Less, ..) => {
|
|
llvm::LLVMRustAddAlwaysInlinePass(builder, config.emit_lifetime_markers);
|
|
}
|
|
(llvm::CodeGenOptLevel::Default, ..) => {
|
|
llvm::LLVMPassManagerBuilderUseInlinerWithThreshold(builder, 225);
|
|
}
|
|
}
|
|
|
|
f(builder);
|
|
llvm::LLVMPassManagerBuilderDispose(builder);
|
|
}
|
|
|
|
// Create a `__imp_<symbol> = &symbol` global for every public static `symbol`.
|
|
// This is required to satisfy `dllimport` references to static data in .rlibs
|
|
// when using MSVC linker. We do this only for data, as linker can fix up
|
|
// code references on its own.
|
|
// See #26591, #27438
|
|
fn create_msvc_imps(
|
|
cgcx: &CodegenContext<LlvmCodegenBackend>,
|
|
llcx: &llvm::Context,
|
|
llmod: &llvm::Module,
|
|
) {
|
|
if !cgcx.msvc_imps_needed {
|
|
return;
|
|
}
|
|
// The x86 ABI seems to require that leading underscores are added to symbol
|
|
// names, so we need an extra underscore on x86. There's also a leading
|
|
// '\x01' here which disables LLVM's symbol mangling (e.g., no extra
|
|
// underscores added in front).
|
|
let prefix = if cgcx.target_arch == "x86" { "\x01__imp__" } else { "\x01__imp_" };
|
|
|
|
unsafe {
|
|
let i8p_ty = Type::i8p_llcx(llcx);
|
|
let globals = base::iter_globals(llmod)
|
|
.filter(|&val| {
|
|
llvm::LLVMRustGetLinkage(val) == llvm::Linkage::ExternalLinkage
|
|
&& llvm::LLVMIsDeclaration(val) == 0
|
|
})
|
|
.filter_map(|val| {
|
|
// Exclude some symbols that we know are not Rust symbols.
|
|
let name = llvm::get_value_name(val);
|
|
if ignored(name) { None } else { Some((val, name)) }
|
|
})
|
|
.map(move |(val, name)| {
|
|
let mut imp_name = prefix.as_bytes().to_vec();
|
|
imp_name.extend(name);
|
|
let imp_name = CString::new(imp_name).unwrap();
|
|
(imp_name, val)
|
|
})
|
|
.collect::<Vec<_>>();
|
|
|
|
for (imp_name, val) in globals {
|
|
let imp = llvm::LLVMAddGlobal(llmod, i8p_ty, imp_name.as_ptr().cast());
|
|
llvm::LLVMSetInitializer(imp, consts::ptrcast(val, i8p_ty));
|
|
llvm::LLVMRustSetLinkage(imp, llvm::Linkage::ExternalLinkage);
|
|
}
|
|
}
|
|
|
|
// Use this function to exclude certain symbols from `__imp` generation.
|
|
fn ignored(symbol_name: &[u8]) -> bool {
|
|
// These are symbols generated by LLVM's profiling instrumentation
|
|
symbol_name.starts_with(b"__llvm_profile_")
|
|
}
|
|
}
|
|
|
|
fn record_artifact_size(
|
|
self_profiler_ref: &SelfProfilerRef,
|
|
artifact_kind: &'static str,
|
|
path: &Path,
|
|
) {
|
|
// Don't stat the file if we are not going to record its size.
|
|
if !self_profiler_ref.enabled() {
|
|
return;
|
|
}
|
|
|
|
if let Some(artifact_name) = path.file_name() {
|
|
let file_size = std::fs::metadata(path).map(|m| m.len()).unwrap_or(0);
|
|
self_profiler_ref.artifact_size(artifact_kind, artifact_name.to_string_lossy(), file_size);
|
|
}
|
|
}
|