mirror of
https://github.com/rust-lang/rust.git
synced 2025-05-02 21:17:39 +00:00
516 lines
19 KiB
Rust
516 lines
19 KiB
Rust
/*!
|
|
|
|
# typeck: check phase
|
|
|
|
Within the check phase of type check, we check each item one at a time
|
|
(bodies of function expressions are checked as part of the containing
|
|
function). Inference is used to supply types wherever they are unknown.
|
|
|
|
By far the most complex case is checking the body of a function. This
|
|
can be broken down into several distinct phases:
|
|
|
|
- gather: creates type variables to represent the type of each local
|
|
variable and pattern binding.
|
|
|
|
- main: the main pass does the lion's share of the work: it
|
|
determines the types of all expressions, resolves
|
|
methods, checks for most invalid conditions, and so forth. In
|
|
some cases, where a type is unknown, it may create a type or region
|
|
variable and use that as the type of an expression.
|
|
|
|
In the process of checking, various constraints will be placed on
|
|
these type variables through the subtyping relationships requested
|
|
through the `demand` module. The `infer` module is in charge
|
|
of resolving those constraints.
|
|
|
|
- regionck: after main is complete, the regionck pass goes over all
|
|
types looking for regions and making sure that they did not escape
|
|
into places where they are not in scope. This may also influence the
|
|
final assignments of the various region variables if there is some
|
|
flexibility.
|
|
|
|
- writeback: writes the final types within a function body, replacing
|
|
type variables with their final inferred types. These final types
|
|
are written into the `tcx.node_types` table, which should *never* contain
|
|
any reference to a type variable.
|
|
|
|
## Intermediate types
|
|
|
|
While type checking a function, the intermediate types for the
|
|
expressions, blocks, and so forth contained within the function are
|
|
stored in `fcx.node_types` and `fcx.node_substs`. These types
|
|
may contain unresolved type variables. After type checking is
|
|
complete, the functions in the writeback module are used to take the
|
|
types from this table, resolve them, and then write them into their
|
|
permanent home in the type context `tcx`.
|
|
|
|
This means that during inferencing you should use `fcx.write_ty()`
|
|
and `fcx.expr_ty()` / `fcx.node_ty()` to write/obtain the types of
|
|
nodes within the function.
|
|
|
|
The types of top-level items, which never contain unbound type
|
|
variables, are stored directly into the `tcx` typeck_results.
|
|
|
|
N.B., a type variable is not the same thing as a type parameter. A
|
|
type variable is an instance of a type parameter. That is,
|
|
given a generic function `fn foo<T>(t: T)`, while checking the
|
|
function `foo`, the type `ty_param(0)` refers to the type `T`, which
|
|
is treated in abstract. However, when `foo()` is called, `T` will be
|
|
substituted for a fresh type variable `N`. This variable will
|
|
eventually be resolved to some concrete type (which might itself be
|
|
a type parameter).
|
|
|
|
*/
|
|
|
|
mod check;
|
|
mod compare_method;
|
|
pub mod dropck;
|
|
pub mod intrinsic;
|
|
pub mod intrinsicck;
|
|
mod region;
|
|
pub mod wfcheck;
|
|
|
|
pub use check::check_abi;
|
|
|
|
use check::check_mod_item_types;
|
|
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
|
|
use rustc_errors::{pluralize, struct_span_err, Applicability, Diagnostic, DiagnosticBuilder};
|
|
use rustc_hir as hir;
|
|
use rustc_hir::def_id::{DefId, LocalDefId};
|
|
use rustc_hir::intravisit::Visitor;
|
|
use rustc_index::bit_set::BitSet;
|
|
use rustc_middle::ty::query::Providers;
|
|
use rustc_middle::ty::{self, Ty, TyCtxt};
|
|
use rustc_middle::ty::{InternalSubsts, SubstsRef};
|
|
use rustc_session::parse::feature_err;
|
|
use rustc_span::source_map::DUMMY_SP;
|
|
use rustc_span::symbol::{kw, Ident};
|
|
use rustc_span::{self, BytePos, Span, Symbol};
|
|
use rustc_target::abi::VariantIdx;
|
|
use rustc_target::spec::abi::Abi;
|
|
use rustc_trait_selection::traits::error_reporting::suggestions::ReturnsVisitor;
|
|
use std::num::NonZeroU32;
|
|
|
|
use crate::require_c_abi_if_c_variadic;
|
|
use crate::util::common::indenter;
|
|
|
|
use self::compare_method::collect_trait_impl_trait_tys;
|
|
use self::region::region_scope_tree;
|
|
|
|
pub fn provide(providers: &mut Providers) {
|
|
wfcheck::provide(providers);
|
|
*providers = Providers {
|
|
adt_destructor,
|
|
check_mod_item_types,
|
|
region_scope_tree,
|
|
collect_trait_impl_trait_tys,
|
|
compare_assoc_const_impl_item_with_trait_item: compare_method::raw_compare_const_impl,
|
|
..*providers
|
|
};
|
|
}
|
|
|
|
fn adt_destructor(tcx: TyCtxt<'_>, def_id: DefId) -> Option<ty::Destructor> {
|
|
tcx.calculate_dtor(def_id, dropck::check_drop_impl)
|
|
}
|
|
|
|
/// Given a `DefId` for an opaque type in return position, find its parent item's return
|
|
/// expressions.
|
|
fn get_owner_return_paths<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
def_id: LocalDefId,
|
|
) -> Option<(LocalDefId, ReturnsVisitor<'tcx>)> {
|
|
let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
|
|
let parent_id = tcx.hir().get_parent_item(hir_id).def_id;
|
|
tcx.hir().find_by_def_id(parent_id).and_then(|node| node.body_id()).map(|body_id| {
|
|
let body = tcx.hir().body(body_id);
|
|
let mut visitor = ReturnsVisitor::default();
|
|
visitor.visit_body(body);
|
|
(parent_id, visitor)
|
|
})
|
|
}
|
|
|
|
/// Forbid defining intrinsics in Rust code,
|
|
/// as they must always be defined by the compiler.
|
|
// FIXME: Move this to a more appropriate place.
|
|
pub fn fn_maybe_err(tcx: TyCtxt<'_>, sp: Span, abi: Abi) {
|
|
if let Abi::RustIntrinsic | Abi::PlatformIntrinsic = abi {
|
|
tcx.sess.span_err(sp, "intrinsic must be in `extern \"rust-intrinsic\" { ... }` block");
|
|
}
|
|
}
|
|
|
|
fn maybe_check_static_with_link_section(tcx: TyCtxt<'_>, id: LocalDefId) {
|
|
// Only restricted on wasm target for now
|
|
if !tcx.sess.target.is_like_wasm {
|
|
return;
|
|
}
|
|
|
|
// If `#[link_section]` is missing, then nothing to verify
|
|
let attrs = tcx.codegen_fn_attrs(id);
|
|
if attrs.link_section.is_none() {
|
|
return;
|
|
}
|
|
|
|
// For the wasm32 target statics with `#[link_section]` are placed into custom
|
|
// sections of the final output file, but this isn't link custom sections of
|
|
// other executable formats. Namely we can only embed a list of bytes,
|
|
// nothing with provenance (pointers to anything else). If any provenance
|
|
// show up, reject it here.
|
|
// `#[link_section]` may contain arbitrary, or even undefined bytes, but it is
|
|
// the consumer's responsibility to ensure all bytes that have been read
|
|
// have defined values.
|
|
if let Ok(alloc) = tcx.eval_static_initializer(id.to_def_id())
|
|
&& alloc.inner().provenance().len() != 0
|
|
{
|
|
let msg = "statics with a custom `#[link_section]` must be a \
|
|
simple list of bytes on the wasm target with no \
|
|
extra levels of indirection such as references";
|
|
tcx.sess.span_err(tcx.def_span(id), msg);
|
|
}
|
|
}
|
|
|
|
fn report_forbidden_specialization(
|
|
tcx: TyCtxt<'_>,
|
|
impl_item: &hir::ImplItemRef,
|
|
parent_impl: DefId,
|
|
) {
|
|
let mut err = struct_span_err!(
|
|
tcx.sess,
|
|
impl_item.span,
|
|
E0520,
|
|
"`{}` specializes an item from a parent `impl`, but \
|
|
that item is not marked `default`",
|
|
impl_item.ident
|
|
);
|
|
err.span_label(impl_item.span, format!("cannot specialize default item `{}`", impl_item.ident));
|
|
|
|
match tcx.span_of_impl(parent_impl) {
|
|
Ok(span) => {
|
|
err.span_label(span, "parent `impl` is here");
|
|
err.note(&format!(
|
|
"to specialize, `{}` in the parent `impl` must be marked `default`",
|
|
impl_item.ident
|
|
));
|
|
}
|
|
Err(cname) => {
|
|
err.note(&format!("parent implementation is in crate `{cname}`"));
|
|
}
|
|
}
|
|
|
|
err.emit();
|
|
}
|
|
|
|
fn missing_items_err(
|
|
tcx: TyCtxt<'_>,
|
|
impl_span: Span,
|
|
missing_items: &[&ty::AssocItem],
|
|
full_impl_span: Span,
|
|
) {
|
|
let missing_items_msg = missing_items
|
|
.iter()
|
|
.map(|trait_item| trait_item.name.to_string())
|
|
.collect::<Vec<_>>()
|
|
.join("`, `");
|
|
|
|
let mut err = struct_span_err!(
|
|
tcx.sess,
|
|
impl_span,
|
|
E0046,
|
|
"not all trait items implemented, missing: `{missing_items_msg}`",
|
|
);
|
|
err.span_label(impl_span, format!("missing `{missing_items_msg}` in implementation"));
|
|
|
|
// `Span` before impl block closing brace.
|
|
let hi = full_impl_span.hi() - BytePos(1);
|
|
// Point at the place right before the closing brace of the relevant `impl` to suggest
|
|
// adding the associated item at the end of its body.
|
|
let sugg_sp = full_impl_span.with_lo(hi).with_hi(hi);
|
|
// Obtain the level of indentation ending in `sugg_sp`.
|
|
let padding =
|
|
tcx.sess.source_map().indentation_before(sugg_sp).unwrap_or_else(|| String::new());
|
|
|
|
for trait_item in missing_items {
|
|
let snippet = suggestion_signature(trait_item, tcx);
|
|
let code = format!("{}{}\n{}", padding, snippet, padding);
|
|
let msg = format!("implement the missing item: `{snippet}`");
|
|
let appl = Applicability::HasPlaceholders;
|
|
if let Some(span) = tcx.hir().span_if_local(trait_item.def_id) {
|
|
err.span_label(span, format!("`{}` from trait", trait_item.name));
|
|
err.tool_only_span_suggestion(sugg_sp, &msg, code, appl);
|
|
} else {
|
|
err.span_suggestion_hidden(sugg_sp, &msg, code, appl);
|
|
}
|
|
}
|
|
err.emit();
|
|
}
|
|
|
|
fn missing_items_must_implement_one_of_err(
|
|
tcx: TyCtxt<'_>,
|
|
impl_span: Span,
|
|
missing_items: &[Ident],
|
|
annotation_span: Option<Span>,
|
|
) {
|
|
let missing_items_msg =
|
|
missing_items.iter().map(Ident::to_string).collect::<Vec<_>>().join("`, `");
|
|
|
|
let mut err = struct_span_err!(
|
|
tcx.sess,
|
|
impl_span,
|
|
E0046,
|
|
"not all trait items implemented, missing one of: `{missing_items_msg}`",
|
|
);
|
|
err.span_label(impl_span, format!("missing one of `{missing_items_msg}` in implementation"));
|
|
|
|
if let Some(annotation_span) = annotation_span {
|
|
err.span_note(annotation_span, "required because of this annotation");
|
|
}
|
|
|
|
err.emit();
|
|
}
|
|
|
|
fn default_body_is_unstable(
|
|
tcx: TyCtxt<'_>,
|
|
impl_span: Span,
|
|
item_did: DefId,
|
|
feature: Symbol,
|
|
reason: Option<Symbol>,
|
|
issue: Option<NonZeroU32>,
|
|
) {
|
|
let missing_item_name = &tcx.associated_item(item_did).name;
|
|
let use_of_unstable_library_feature_note = match reason {
|
|
Some(r) => format!("use of unstable library feature '{feature}': {r}"),
|
|
None => format!("use of unstable library feature '{feature}'"),
|
|
};
|
|
|
|
let mut err = struct_span_err!(
|
|
tcx.sess,
|
|
impl_span,
|
|
E0046,
|
|
"not all trait items implemented, missing: `{missing_item_name}`",
|
|
);
|
|
err.note(format!("default implementation of `{missing_item_name}` is unstable"));
|
|
err.note(use_of_unstable_library_feature_note);
|
|
rustc_session::parse::add_feature_diagnostics_for_issue(
|
|
&mut err,
|
|
&tcx.sess.parse_sess,
|
|
feature,
|
|
rustc_feature::GateIssue::Library(issue),
|
|
);
|
|
err.emit();
|
|
}
|
|
|
|
/// Re-sugar `ty::GenericPredicates` in a way suitable to be used in structured suggestions.
|
|
fn bounds_from_generic_predicates<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
predicates: ty::GenericPredicates<'tcx>,
|
|
) -> (String, String) {
|
|
let mut types: FxHashMap<Ty<'tcx>, Vec<DefId>> = FxHashMap::default();
|
|
let mut projections = vec![];
|
|
for (predicate, _) in predicates.predicates {
|
|
debug!("predicate {:?}", predicate);
|
|
let bound_predicate = predicate.kind();
|
|
match bound_predicate.skip_binder() {
|
|
ty::PredicateKind::Trait(trait_predicate) => {
|
|
let entry = types.entry(trait_predicate.self_ty()).or_default();
|
|
let def_id = trait_predicate.def_id();
|
|
if Some(def_id) != tcx.lang_items().sized_trait() {
|
|
// Type params are `Sized` by default, do not add that restriction to the list
|
|
// if it is a positive requirement.
|
|
entry.push(trait_predicate.def_id());
|
|
}
|
|
}
|
|
ty::PredicateKind::Projection(projection_pred) => {
|
|
projections.push(bound_predicate.rebind(projection_pred));
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
let generics = if types.is_empty() {
|
|
"".to_string()
|
|
} else {
|
|
format!(
|
|
"<{}>",
|
|
types
|
|
.keys()
|
|
.filter_map(|t| match t.kind() {
|
|
ty::Param(_) => Some(t.to_string()),
|
|
// Avoid suggesting the following:
|
|
// fn foo<T, <T as Trait>::Bar>(_: T) where T: Trait, <T as Trait>::Bar: Other {}
|
|
_ => None,
|
|
})
|
|
.collect::<Vec<_>>()
|
|
.join(", ")
|
|
)
|
|
};
|
|
let mut where_clauses = vec![];
|
|
for (ty, bounds) in types {
|
|
where_clauses
|
|
.extend(bounds.into_iter().map(|bound| format!("{}: {}", ty, tcx.def_path_str(bound))));
|
|
}
|
|
for projection in &projections {
|
|
let p = projection.skip_binder();
|
|
// FIXME: this is not currently supported syntax, we should be looking at the `types` and
|
|
// insert the associated types where they correspond, but for now let's be "lazy" and
|
|
// propose this instead of the following valid resugaring:
|
|
// `T: Trait, Trait::Assoc = K` → `T: Trait<Assoc = K>`
|
|
where_clauses.push(format!(
|
|
"{} = {}",
|
|
tcx.def_path_str(p.projection_ty.item_def_id),
|
|
p.term,
|
|
));
|
|
}
|
|
let where_clauses = if where_clauses.is_empty() {
|
|
String::new()
|
|
} else {
|
|
format!(" where {}", where_clauses.join(", "))
|
|
};
|
|
(generics, where_clauses)
|
|
}
|
|
|
|
/// Return placeholder code for the given function.
|
|
fn fn_sig_suggestion<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
sig: ty::FnSig<'tcx>,
|
|
ident: Ident,
|
|
predicates: ty::GenericPredicates<'tcx>,
|
|
assoc: &ty::AssocItem,
|
|
) -> String {
|
|
let args = sig
|
|
.inputs()
|
|
.iter()
|
|
.enumerate()
|
|
.map(|(i, ty)| {
|
|
Some(match ty.kind() {
|
|
ty::Param(_) if assoc.fn_has_self_parameter && i == 0 => "self".to_string(),
|
|
ty::Ref(reg, ref_ty, mutability) if i == 0 => {
|
|
let reg = format!("{reg} ");
|
|
let reg = match ®[..] {
|
|
"'_ " | " " => "",
|
|
reg => reg,
|
|
};
|
|
if assoc.fn_has_self_parameter {
|
|
match ref_ty.kind() {
|
|
ty::Param(param) if param.name == kw::SelfUpper => {
|
|
format!("&{}{}self", reg, mutability.prefix_str())
|
|
}
|
|
|
|
_ => format!("self: {ty}"),
|
|
}
|
|
} else {
|
|
format!("_: {ty}")
|
|
}
|
|
}
|
|
_ => {
|
|
if assoc.fn_has_self_parameter && i == 0 {
|
|
format!("self: {ty}")
|
|
} else {
|
|
format!("_: {ty}")
|
|
}
|
|
}
|
|
})
|
|
})
|
|
.chain(std::iter::once(if sig.c_variadic { Some("...".to_string()) } else { None }))
|
|
.flatten()
|
|
.collect::<Vec<String>>()
|
|
.join(", ");
|
|
let output = sig.output();
|
|
let output = if !output.is_unit() { format!(" -> {output}") } else { String::new() };
|
|
|
|
let unsafety = sig.unsafety.prefix_str();
|
|
let (generics, where_clauses) = bounds_from_generic_predicates(tcx, predicates);
|
|
|
|
// FIXME: this is not entirely correct, as the lifetimes from borrowed params will
|
|
// not be present in the `fn` definition, not will we account for renamed
|
|
// lifetimes between the `impl` and the `trait`, but this should be good enough to
|
|
// fill in a significant portion of the missing code, and other subsequent
|
|
// suggestions can help the user fix the code.
|
|
format!("{unsafety}fn {ident}{generics}({args}){output}{where_clauses} {{ todo!() }}")
|
|
}
|
|
|
|
pub fn ty_kind_suggestion(ty: Ty<'_>) -> Option<&'static str> {
|
|
Some(match ty.kind() {
|
|
ty::Bool => "true",
|
|
ty::Char => "'a'",
|
|
ty::Int(_) | ty::Uint(_) => "42",
|
|
ty::Float(_) => "3.14159",
|
|
ty::Error(_) | ty::Never => return None,
|
|
_ => "value",
|
|
})
|
|
}
|
|
|
|
/// Return placeholder code for the given associated item.
|
|
/// Similar to `ty::AssocItem::suggestion`, but appropriate for use as the code snippet of a
|
|
/// structured suggestion.
|
|
fn suggestion_signature(assoc: &ty::AssocItem, tcx: TyCtxt<'_>) -> String {
|
|
match assoc.kind {
|
|
ty::AssocKind::Fn => {
|
|
// We skip the binder here because the binder would deanonymize all
|
|
// late-bound regions, and we don't want method signatures to show up
|
|
// `as for<'r> fn(&'r MyType)`. Pretty-printing handles late-bound
|
|
// regions just fine, showing `fn(&MyType)`.
|
|
fn_sig_suggestion(
|
|
tcx,
|
|
tcx.fn_sig(assoc.def_id).skip_binder(),
|
|
assoc.ident(tcx),
|
|
tcx.predicates_of(assoc.def_id),
|
|
assoc,
|
|
)
|
|
}
|
|
ty::AssocKind::Type => format!("type {} = Type;", assoc.name),
|
|
ty::AssocKind::Const => {
|
|
let ty = tcx.type_of(assoc.def_id);
|
|
let val = ty_kind_suggestion(ty).unwrap_or("value");
|
|
format!("const {}: {} = {};", assoc.name, ty, val)
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Emit an error when encountering two or more variants in a transparent enum.
|
|
fn bad_variant_count<'tcx>(tcx: TyCtxt<'tcx>, adt: ty::AdtDef<'tcx>, sp: Span, did: DefId) {
|
|
let variant_spans: Vec<_> = adt
|
|
.variants()
|
|
.iter()
|
|
.map(|variant| tcx.hir().span_if_local(variant.def_id).unwrap())
|
|
.collect();
|
|
let msg = format!("needs exactly one variant, but has {}", adt.variants().len(),);
|
|
let mut err = struct_span_err!(tcx.sess, sp, E0731, "transparent enum {msg}");
|
|
err.span_label(sp, &msg);
|
|
if let [start @ .., end] = &*variant_spans {
|
|
for variant_span in start {
|
|
err.span_label(*variant_span, "");
|
|
}
|
|
err.span_label(*end, &format!("too many variants in `{}`", tcx.def_path_str(did)));
|
|
}
|
|
err.emit();
|
|
}
|
|
|
|
/// Emit an error when encountering two or more non-zero-sized fields in a transparent
|
|
/// enum.
|
|
fn bad_non_zero_sized_fields<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
adt: ty::AdtDef<'tcx>,
|
|
field_count: usize,
|
|
field_spans: impl Iterator<Item = Span>,
|
|
sp: Span,
|
|
) {
|
|
let msg = format!("needs at most one non-zero-sized field, but has {field_count}");
|
|
let mut err = struct_span_err!(
|
|
tcx.sess,
|
|
sp,
|
|
E0690,
|
|
"{}transparent {} {}",
|
|
if adt.is_enum() { "the variant of a " } else { "" },
|
|
adt.descr(),
|
|
msg,
|
|
);
|
|
err.span_label(sp, &msg);
|
|
for sp in field_spans {
|
|
err.span_label(sp, "this field is non-zero-sized");
|
|
}
|
|
err.emit();
|
|
}
|
|
|
|
// FIXME: Consider moving this method to a more fitting place.
|
|
pub fn potentially_plural_count(count: usize, word: &str) -> String {
|
|
format!("{} {}{}", count, word, pluralize!(count))
|
|
}
|