mirror of
https://github.com/rust-lang/rust.git
synced 2025-05-01 04:27:38 +00:00

check_mistyped_turbofish_with_multiple_type_params was previously expecting type arguments between angle brackets, which is not right, as we can also see const expressions. We now use generic argument parser instead of type parser. Test with one, two, and three generic arguments added to check consistentcy between 1. check_no_chained_comparison: Called after parsing a nested binop application like `x < A > ...` where angle brackets are interpreted as binary operators and `A` is an expression. 2. check_mistyped_turbofish_with_multiple_type_params: called by `parse_full_stmt` when we expect to see a semicolon after parsing an expression but don't see it. (In `T2<1, 2>::C;`, the expression is `T2 < 1`)
586 lines
24 KiB
Rust
586 lines
24 KiB
Rust
use super::ty::{AllowPlus, RecoverQPath, RecoverReturnSign};
|
|
use super::{Parser, TokenType};
|
|
use crate::maybe_whole;
|
|
use rustc_ast::ptr::P;
|
|
use rustc_ast::token::{self, Token};
|
|
use rustc_ast::{self as ast, AngleBracketedArg, AngleBracketedArgs, ParenthesizedArgs};
|
|
use rustc_ast::{AnonConst, AssocTyConstraint, AssocTyConstraintKind, BlockCheckMode};
|
|
use rustc_ast::{GenericArg, GenericArgs};
|
|
use rustc_ast::{Path, PathSegment, QSelf};
|
|
use rustc_errors::{pluralize, Applicability, PResult};
|
|
use rustc_span::source_map::{BytePos, Span};
|
|
use rustc_span::symbol::{kw, sym, Ident};
|
|
|
|
use std::mem;
|
|
use tracing::debug;
|
|
|
|
/// Specifies how to parse a path.
|
|
#[derive(Copy, Clone, PartialEq)]
|
|
pub enum PathStyle {
|
|
/// In some contexts, notably in expressions, paths with generic arguments are ambiguous
|
|
/// with something else. For example, in expressions `segment < ....` can be interpreted
|
|
/// as a comparison and `segment ( ....` can be interpreted as a function call.
|
|
/// In all such contexts the non-path interpretation is preferred by default for practical
|
|
/// reasons, but the path interpretation can be forced by the disambiguator `::`, e.g.
|
|
/// `x<y>` - comparisons, `x::<y>` - unambiguously a path.
|
|
Expr,
|
|
/// In other contexts, notably in types, no ambiguity exists and paths can be written
|
|
/// without the disambiguator, e.g., `x<y>` - unambiguously a path.
|
|
/// Paths with disambiguators are still accepted, `x::<Y>` - unambiguously a path too.
|
|
Type,
|
|
/// A path with generic arguments disallowed, e.g., `foo::bar::Baz`, used in imports,
|
|
/// visibilities or attributes.
|
|
/// Technically, this variant is unnecessary and e.g., `Expr` can be used instead
|
|
/// (paths in "mod" contexts have to be checked later for absence of generic arguments
|
|
/// anyway, due to macros), but it is used to avoid weird suggestions about expected
|
|
/// tokens when something goes wrong.
|
|
Mod,
|
|
}
|
|
|
|
impl<'a> Parser<'a> {
|
|
/// Parses a qualified path.
|
|
/// Assumes that the leading `<` has been parsed already.
|
|
///
|
|
/// `qualified_path = <type [as trait_ref]>::path`
|
|
///
|
|
/// # Examples
|
|
/// `<T>::default`
|
|
/// `<T as U>::a`
|
|
/// `<T as U>::F::a<S>` (without disambiguator)
|
|
/// `<T as U>::F::a::<S>` (with disambiguator)
|
|
pub(super) fn parse_qpath(&mut self, style: PathStyle) -> PResult<'a, (QSelf, Path)> {
|
|
let lo = self.prev_token.span;
|
|
let ty = self.parse_ty()?;
|
|
|
|
// `path` will contain the prefix of the path up to the `>`,
|
|
// if any (e.g., `U` in the `<T as U>::*` examples
|
|
// above). `path_span` has the span of that path, or an empty
|
|
// span in the case of something like `<T>::Bar`.
|
|
let (mut path, path_span);
|
|
if self.eat_keyword(kw::As) {
|
|
let path_lo = self.token.span;
|
|
path = self.parse_path(PathStyle::Type)?;
|
|
path_span = path_lo.to(self.prev_token.span);
|
|
} else {
|
|
path_span = self.token.span.to(self.token.span);
|
|
path = ast::Path { segments: Vec::new(), span: path_span, tokens: None };
|
|
}
|
|
|
|
// See doc comment for `unmatched_angle_bracket_count`.
|
|
self.expect(&token::Gt)?;
|
|
if self.unmatched_angle_bracket_count > 0 {
|
|
self.unmatched_angle_bracket_count -= 1;
|
|
debug!("parse_qpath: (decrement) count={:?}", self.unmatched_angle_bracket_count);
|
|
}
|
|
|
|
if !self.recover_colon_before_qpath_proj() {
|
|
self.expect(&token::ModSep)?;
|
|
}
|
|
|
|
let qself = QSelf { ty, path_span, position: path.segments.len() };
|
|
self.parse_path_segments(&mut path.segments, style)?;
|
|
|
|
Ok((
|
|
qself,
|
|
Path { segments: path.segments, span: lo.to(self.prev_token.span), tokens: None },
|
|
))
|
|
}
|
|
|
|
/// Recover from an invalid single colon, when the user likely meant a qualified path.
|
|
/// We avoid emitting this if not followed by an identifier, as our assumption that the user
|
|
/// intended this to be a qualified path may not be correct.
|
|
///
|
|
/// ```ignore (diagnostics)
|
|
/// <Bar as Baz<T>>:Qux
|
|
/// ^ help: use double colon
|
|
/// ```
|
|
fn recover_colon_before_qpath_proj(&mut self) -> bool {
|
|
if self.token.kind != token::Colon
|
|
|| self.look_ahead(1, |t| !t.is_ident() || t.is_reserved_ident())
|
|
{
|
|
return false;
|
|
}
|
|
|
|
self.bump(); // colon
|
|
|
|
self.diagnostic()
|
|
.struct_span_err(
|
|
self.prev_token.span,
|
|
"found single colon before projection in qualified path",
|
|
)
|
|
.span_suggestion(
|
|
self.prev_token.span,
|
|
"use double colon",
|
|
"::".to_string(),
|
|
Applicability::MachineApplicable,
|
|
)
|
|
.emit();
|
|
|
|
true
|
|
}
|
|
|
|
/// Parses simple paths.
|
|
///
|
|
/// `path = [::] segment+`
|
|
/// `segment = ident | ident[::]<args> | ident[::](args) [-> type]`
|
|
///
|
|
/// # Examples
|
|
/// `a::b::C<D>` (without disambiguator)
|
|
/// `a::b::C::<D>` (with disambiguator)
|
|
/// `Fn(Args)` (without disambiguator)
|
|
/// `Fn::(Args)` (with disambiguator)
|
|
pub(super) fn parse_path(&mut self, style: PathStyle) -> PResult<'a, Path> {
|
|
maybe_whole!(self, NtPath, |path| {
|
|
if style == PathStyle::Mod && path.segments.iter().any(|segment| segment.args.is_some())
|
|
{
|
|
self.struct_span_err(
|
|
path.segments
|
|
.iter()
|
|
.filter_map(|segment| segment.args.as_ref())
|
|
.map(|arg| arg.span())
|
|
.collect::<Vec<_>>(),
|
|
"unexpected generic arguments in path",
|
|
)
|
|
.emit();
|
|
}
|
|
path
|
|
});
|
|
|
|
let lo = self.token.span;
|
|
let mut segments = Vec::new();
|
|
let mod_sep_ctxt = self.token.span.ctxt();
|
|
if self.eat(&token::ModSep) {
|
|
segments.push(PathSegment::path_root(lo.shrink_to_lo().with_ctxt(mod_sep_ctxt)));
|
|
}
|
|
self.parse_path_segments(&mut segments, style)?;
|
|
|
|
Ok(Path { segments, span: lo.to(self.prev_token.span), tokens: None })
|
|
}
|
|
|
|
pub(super) fn parse_path_segments(
|
|
&mut self,
|
|
segments: &mut Vec<PathSegment>,
|
|
style: PathStyle,
|
|
) -> PResult<'a, ()> {
|
|
loop {
|
|
let segment = self.parse_path_segment(style)?;
|
|
if style == PathStyle::Expr {
|
|
// In order to check for trailing angle brackets, we must have finished
|
|
// recursing (`parse_path_segment` can indirectly call this function),
|
|
// that is, the next token must be the highlighted part of the below example:
|
|
//
|
|
// `Foo::<Bar as Baz<T>>::Qux`
|
|
// ^ here
|
|
//
|
|
// As opposed to the below highlight (if we had only finished the first
|
|
// recursion):
|
|
//
|
|
// `Foo::<Bar as Baz<T>>::Qux`
|
|
// ^ here
|
|
//
|
|
// `PathStyle::Expr` is only provided at the root invocation and never in
|
|
// `parse_path_segment` to recurse and therefore can be checked to maintain
|
|
// this invariant.
|
|
self.check_trailing_angle_brackets(&segment, &[&token::ModSep]);
|
|
}
|
|
segments.push(segment);
|
|
|
|
if self.is_import_coupler() || !self.eat(&token::ModSep) {
|
|
return Ok(());
|
|
}
|
|
}
|
|
}
|
|
|
|
pub(super) fn parse_path_segment(&mut self, style: PathStyle) -> PResult<'a, PathSegment> {
|
|
let ident = self.parse_path_segment_ident()?;
|
|
let is_args_start = |token: &Token| {
|
|
matches!(
|
|
token.kind,
|
|
token::Lt
|
|
| token::BinOp(token::Shl)
|
|
| token::OpenDelim(token::Paren)
|
|
| token::LArrow
|
|
)
|
|
};
|
|
let check_args_start = |this: &mut Self| {
|
|
this.expected_tokens.extend_from_slice(&[
|
|
TokenType::Token(token::Lt),
|
|
TokenType::Token(token::OpenDelim(token::Paren)),
|
|
]);
|
|
is_args_start(&this.token)
|
|
};
|
|
|
|
Ok(
|
|
if style == PathStyle::Type && check_args_start(self)
|
|
|| style != PathStyle::Mod
|
|
&& self.check(&token::ModSep)
|
|
&& self.look_ahead(1, |t| is_args_start(t))
|
|
{
|
|
// We use `style == PathStyle::Expr` to check if this is in a recursion or not. If
|
|
// it isn't, then we reset the unmatched angle bracket count as we're about to start
|
|
// parsing a new path.
|
|
if style == PathStyle::Expr {
|
|
self.unmatched_angle_bracket_count = 0;
|
|
self.max_angle_bracket_count = 0;
|
|
}
|
|
|
|
// Generic arguments are found - `<`, `(`, `::<` or `::(`.
|
|
self.eat(&token::ModSep);
|
|
let lo = self.token.span;
|
|
let args = if self.eat_lt() {
|
|
// `<'a, T, A = U>`
|
|
let args =
|
|
self.parse_angle_args_with_leading_angle_bracket_recovery(style, lo)?;
|
|
self.expect_gt()?;
|
|
let span = lo.to(self.prev_token.span);
|
|
AngleBracketedArgs { args, span }.into()
|
|
} else {
|
|
// `(T, U) -> R`
|
|
let (inputs, _) = self.parse_paren_comma_seq(|p| p.parse_ty())?;
|
|
let inputs_span = lo.to(self.prev_token.span);
|
|
let span = ident.span.to(self.prev_token.span);
|
|
let output =
|
|
self.parse_ret_ty(AllowPlus::No, RecoverQPath::No, RecoverReturnSign::No)?;
|
|
ParenthesizedArgs { span, inputs, inputs_span, output }.into()
|
|
};
|
|
|
|
PathSegment { ident, args, id: ast::DUMMY_NODE_ID }
|
|
} else {
|
|
// Generic arguments are not found.
|
|
PathSegment::from_ident(ident)
|
|
},
|
|
)
|
|
}
|
|
|
|
pub(super) fn parse_path_segment_ident(&mut self) -> PResult<'a, Ident> {
|
|
match self.token.ident() {
|
|
Some((ident, false)) if ident.is_path_segment_keyword() => {
|
|
self.bump();
|
|
Ok(ident)
|
|
}
|
|
_ => self.parse_ident(),
|
|
}
|
|
}
|
|
|
|
/// Parses generic args (within a path segment) with recovery for extra leading angle brackets.
|
|
/// For the purposes of understanding the parsing logic of generic arguments, this function
|
|
/// can be thought of being the same as just calling `self.parse_angle_args()` if the source
|
|
/// had the correct amount of leading angle brackets.
|
|
///
|
|
/// ```ignore (diagnostics)
|
|
/// bar::<<<<T as Foo>::Output>();
|
|
/// ^^ help: remove extra angle brackets
|
|
/// ```
|
|
fn parse_angle_args_with_leading_angle_bracket_recovery(
|
|
&mut self,
|
|
style: PathStyle,
|
|
lo: Span,
|
|
) -> PResult<'a, Vec<AngleBracketedArg>> {
|
|
// We need to detect whether there are extra leading left angle brackets and produce an
|
|
// appropriate error and suggestion. This cannot be implemented by looking ahead at
|
|
// upcoming tokens for a matching `>` character - if there are unmatched `<` tokens
|
|
// then there won't be matching `>` tokens to find.
|
|
//
|
|
// To explain how this detection works, consider the following example:
|
|
//
|
|
// ```ignore (diagnostics)
|
|
// bar::<<<<T as Foo>::Output>();
|
|
// ^^ help: remove extra angle brackets
|
|
// ```
|
|
//
|
|
// Parsing of the left angle brackets starts in this function. We start by parsing the
|
|
// `<` token (incrementing the counter of unmatched angle brackets on `Parser` via
|
|
// `eat_lt`):
|
|
//
|
|
// *Upcoming tokens:* `<<<<T as Foo>::Output>;`
|
|
// *Unmatched count:* 1
|
|
// *`parse_path_segment` calls deep:* 0
|
|
//
|
|
// This has the effect of recursing as this function is called if a `<` character
|
|
// is found within the expected generic arguments:
|
|
//
|
|
// *Upcoming tokens:* `<<<T as Foo>::Output>;`
|
|
// *Unmatched count:* 2
|
|
// *`parse_path_segment` calls deep:* 1
|
|
//
|
|
// Eventually we will have recursed until having consumed all of the `<` tokens and
|
|
// this will be reflected in the count:
|
|
//
|
|
// *Upcoming tokens:* `T as Foo>::Output>;`
|
|
// *Unmatched count:* 4
|
|
// `parse_path_segment` calls deep:* 3
|
|
//
|
|
// The parser will continue until reaching the first `>` - this will decrement the
|
|
// unmatched angle bracket count and return to the parent invocation of this function
|
|
// having succeeded in parsing:
|
|
//
|
|
// *Upcoming tokens:* `::Output>;`
|
|
// *Unmatched count:* 3
|
|
// *`parse_path_segment` calls deep:* 2
|
|
//
|
|
// This will continue until the next `>` character which will also return successfully
|
|
// to the parent invocation of this function and decrement the count:
|
|
//
|
|
// *Upcoming tokens:* `;`
|
|
// *Unmatched count:* 2
|
|
// *`parse_path_segment` calls deep:* 1
|
|
//
|
|
// At this point, this function will expect to find another matching `>` character but
|
|
// won't be able to and will return an error. This will continue all the way up the
|
|
// call stack until the first invocation:
|
|
//
|
|
// *Upcoming tokens:* `;`
|
|
// *Unmatched count:* 2
|
|
// *`parse_path_segment` calls deep:* 0
|
|
//
|
|
// In doing this, we have managed to work out how many unmatched leading left angle
|
|
// brackets there are, but we cannot recover as the unmatched angle brackets have
|
|
// already been consumed. To remedy this, we keep a snapshot of the parser state
|
|
// before we do the above. We can then inspect whether we ended up with a parsing error
|
|
// and unmatched left angle brackets and if so, restore the parser state before we
|
|
// consumed any `<` characters to emit an error and consume the erroneous tokens to
|
|
// recover by attempting to parse again.
|
|
//
|
|
// In practice, the recursion of this function is indirect and there will be other
|
|
// locations that consume some `<` characters - as long as we update the count when
|
|
// this happens, it isn't an issue.
|
|
|
|
let is_first_invocation = style == PathStyle::Expr;
|
|
// Take a snapshot before attempting to parse - we can restore this later.
|
|
let snapshot = if is_first_invocation { Some(self.clone()) } else { None };
|
|
|
|
debug!("parse_generic_args_with_leading_angle_bracket_recovery: (snapshotting)");
|
|
match self.parse_angle_args() {
|
|
Ok(args) => Ok(args),
|
|
Err(ref mut e) if is_first_invocation && self.unmatched_angle_bracket_count > 0 => {
|
|
// Cancel error from being unable to find `>`. We know the error
|
|
// must have been this due to a non-zero unmatched angle bracket
|
|
// count.
|
|
e.cancel();
|
|
|
|
// Swap `self` with our backup of the parser state before attempting to parse
|
|
// generic arguments.
|
|
let snapshot = mem::replace(self, snapshot.unwrap());
|
|
|
|
debug!(
|
|
"parse_generic_args_with_leading_angle_bracket_recovery: (snapshot failure) \
|
|
snapshot.count={:?}",
|
|
snapshot.unmatched_angle_bracket_count,
|
|
);
|
|
|
|
// Eat the unmatched angle brackets.
|
|
for _ in 0..snapshot.unmatched_angle_bracket_count {
|
|
self.eat_lt();
|
|
}
|
|
|
|
// Make a span over ${unmatched angle bracket count} characters.
|
|
let span = lo.with_hi(lo.lo() + BytePos(snapshot.unmatched_angle_bracket_count));
|
|
self.struct_span_err(
|
|
span,
|
|
&format!(
|
|
"unmatched angle bracket{}",
|
|
pluralize!(snapshot.unmatched_angle_bracket_count)
|
|
),
|
|
)
|
|
.span_suggestion(
|
|
span,
|
|
&format!(
|
|
"remove extra angle bracket{}",
|
|
pluralize!(snapshot.unmatched_angle_bracket_count)
|
|
),
|
|
String::new(),
|
|
Applicability::MachineApplicable,
|
|
)
|
|
.emit();
|
|
|
|
// Try again without unmatched angle bracket characters.
|
|
self.parse_angle_args()
|
|
}
|
|
Err(e) => Err(e),
|
|
}
|
|
}
|
|
|
|
/// Parses (possibly empty) list of generic arguments / associated item constraints,
|
|
/// possibly including trailing comma.
|
|
pub(super) fn parse_angle_args(&mut self) -> PResult<'a, Vec<AngleBracketedArg>> {
|
|
let mut args = Vec::new();
|
|
while let Some(arg) = self.parse_angle_arg()? {
|
|
args.push(arg);
|
|
if !self.eat(&token::Comma) {
|
|
if !self.token.kind.should_end_const_arg() {
|
|
if self.handle_ambiguous_unbraced_const_arg(&mut args)? {
|
|
// We've managed to (partially) recover, so continue trying to parse
|
|
// arguments.
|
|
continue;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
Ok(args)
|
|
}
|
|
|
|
/// Parses a single argument in the angle arguments `<...>` of a path segment.
|
|
fn parse_angle_arg(&mut self) -> PResult<'a, Option<AngleBracketedArg>> {
|
|
let lo = self.token.span;
|
|
let arg = self.parse_generic_arg()?;
|
|
match arg {
|
|
Some(arg) => {
|
|
if self.check(&token::Colon) | self.check(&token::Eq) {
|
|
let (ident, gen_args) = match self.get_ident_from_generic_arg(arg) {
|
|
Ok(ident_gen_args) => ident_gen_args,
|
|
Err(arg) => return Ok(Some(AngleBracketedArg::Arg(arg))),
|
|
};
|
|
let kind = if self.eat(&token::Colon) {
|
|
// Parse associated type constraint bound.
|
|
|
|
let bounds = self.parse_generic_bounds(Some(self.prev_token.span))?;
|
|
AssocTyConstraintKind::Bound { bounds }
|
|
} else if self.eat(&token::Eq) {
|
|
// Parse associated type equality constraint
|
|
|
|
let ty = self.parse_assoc_equality_term(ident, self.prev_token.span)?;
|
|
AssocTyConstraintKind::Equality { ty }
|
|
} else {
|
|
unreachable!();
|
|
};
|
|
|
|
let span = lo.to(self.prev_token.span);
|
|
|
|
// Gate associated type bounds, e.g., `Iterator<Item: Ord>`.
|
|
if let AssocTyConstraintKind::Bound { .. } = kind {
|
|
self.sess.gated_spans.gate(sym::associated_type_bounds, span);
|
|
}
|
|
let constraint =
|
|
AssocTyConstraint { id: ast::DUMMY_NODE_ID, ident, gen_args, kind, span };
|
|
Ok(Some(AngleBracketedArg::Constraint(constraint)))
|
|
} else {
|
|
Ok(Some(AngleBracketedArg::Arg(arg)))
|
|
}
|
|
}
|
|
_ => Ok(None),
|
|
}
|
|
}
|
|
|
|
/// Parse the term to the right of an associated item equality constraint.
|
|
/// That is, parse `<term>` in `Item = <term>`.
|
|
/// Right now, this only admits types in `<term>`.
|
|
fn parse_assoc_equality_term(&mut self, ident: Ident, eq: Span) -> PResult<'a, P<ast::Ty>> {
|
|
let arg = self.parse_generic_arg()?;
|
|
let span = ident.span.to(self.prev_token.span);
|
|
match arg {
|
|
Some(GenericArg::Type(ty)) => return Ok(ty),
|
|
Some(GenericArg::Const(expr)) => {
|
|
self.struct_span_err(span, "cannot constrain an associated constant to a value")
|
|
.span_label(ident.span, "this associated constant...")
|
|
.span_label(expr.value.span, "...cannot be constrained to this value")
|
|
.emit();
|
|
}
|
|
Some(GenericArg::Lifetime(lt)) => {
|
|
self.struct_span_err(span, "associated lifetimes are not supported")
|
|
.span_label(lt.ident.span, "the lifetime is given here")
|
|
.help("if you meant to specify a trait object, write `dyn Trait + 'lifetime`")
|
|
.emit();
|
|
}
|
|
None => {
|
|
let after_eq = eq.shrink_to_hi();
|
|
let before_next = self.token.span.shrink_to_lo();
|
|
self.struct_span_err(after_eq.to(before_next), "missing type to the right of `=`")
|
|
.span_suggestion(
|
|
self.sess.source_map().next_point(eq).to(before_next),
|
|
"to constrain the associated type, add a type after `=`",
|
|
" TheType".to_string(),
|
|
Applicability::HasPlaceholders,
|
|
)
|
|
.span_suggestion(
|
|
eq.to(before_next),
|
|
&format!("remove the `=` if `{}` is a type", ident),
|
|
String::new(),
|
|
Applicability::MaybeIncorrect,
|
|
)
|
|
.emit();
|
|
}
|
|
}
|
|
Ok(self.mk_ty(span, ast::TyKind::Err))
|
|
}
|
|
|
|
/// We do not permit arbitrary expressions as const arguments. They must be one of:
|
|
/// - An expression surrounded in `{}`.
|
|
/// - A literal.
|
|
/// - A numeric literal prefixed by `-`.
|
|
/// - A single-segment path.
|
|
pub(super) fn expr_is_valid_const_arg(&self, expr: &P<rustc_ast::Expr>) -> bool {
|
|
match &expr.kind {
|
|
ast::ExprKind::Block(_, _) | ast::ExprKind::Lit(_) => true,
|
|
ast::ExprKind::Unary(ast::UnOp::Neg, expr) => {
|
|
matches!(expr.kind, ast::ExprKind::Lit(_))
|
|
}
|
|
// We can only resolve single-segment paths at the moment, because multi-segment paths
|
|
// require type-checking: see `visit_generic_arg` in `src/librustc_resolve/late.rs`.
|
|
ast::ExprKind::Path(None, path)
|
|
if path.segments.len() == 1 && path.segments[0].args.is_none() =>
|
|
{
|
|
true
|
|
}
|
|
_ => false,
|
|
}
|
|
}
|
|
|
|
/// Parse a const argument, e.g. `<3>`. It is assumed the angle brackets will be parsed by
|
|
/// the caller.
|
|
pub(super) fn parse_const_arg(&mut self) -> PResult<'a, AnonConst> {
|
|
// Parse const argument.
|
|
let value = if let token::OpenDelim(token::Brace) = self.token.kind {
|
|
self.parse_block_expr(
|
|
None,
|
|
self.token.span,
|
|
BlockCheckMode::Default,
|
|
ast::AttrVec::new(),
|
|
)?
|
|
} else {
|
|
self.handle_unambiguous_unbraced_const_arg()?
|
|
};
|
|
Ok(AnonConst { id: ast::DUMMY_NODE_ID, value })
|
|
}
|
|
|
|
/// Parse a generic argument in a path segment.
|
|
/// This does not include constraints, e.g., `Item = u8`, which is handled in `parse_angle_arg`.
|
|
pub(super) fn parse_generic_arg(&mut self) -> PResult<'a, Option<GenericArg>> {
|
|
let start = self.token.span;
|
|
let arg = if self.check_lifetime() && self.look_ahead(1, |t| !t.is_like_plus()) {
|
|
// Parse lifetime argument.
|
|
GenericArg::Lifetime(self.expect_lifetime())
|
|
} else if self.check_const_arg() {
|
|
// Parse const argument.
|
|
GenericArg::Const(self.parse_const_arg()?)
|
|
} else if self.check_type() {
|
|
// Parse type argument.
|
|
match self.parse_ty() {
|
|
Ok(ty) => GenericArg::Type(ty),
|
|
Err(err) => {
|
|
// Try to recover from possible `const` arg without braces.
|
|
return self.recover_const_arg(start, err).map(Some);
|
|
}
|
|
}
|
|
} else {
|
|
return Ok(None);
|
|
};
|
|
Ok(Some(arg))
|
|
}
|
|
|
|
fn get_ident_from_generic_arg(
|
|
&self,
|
|
gen_arg: GenericArg,
|
|
) -> Result<(Ident, Option<GenericArgs>), GenericArg> {
|
|
if let GenericArg::Type(ty) = &gen_arg {
|
|
if let ast::TyKind::Path(qself, path) = &ty.kind {
|
|
if qself.is_none() && path.segments.len() == 1 {
|
|
let seg = &path.segments[0];
|
|
return Ok((seg.ident, seg.args.as_deref().cloned()));
|
|
}
|
|
}
|
|
}
|
|
Err(gen_arg)
|
|
}
|
|
}
|