rust/compiler/rustc_resolve/src/late.rs
Mara Bos ffcbeefd64
Rollup merge of #80765 - petrochenkov:traitsinscope, r=matthewjasper
resolve: Simplify collection of traits in scope

"Traits in scope" for a given location are collected by walking all scopes in type namespace, collecting traits in them and pruning traits that don't have an associated item with the given name and namespace.

Previously we tried to prune traits using some kind of hygienic resolution for associated items, but that was complex and likely incorrect, e.g. in #80762 correction to visibilites of trait items caused some traits to not be in scope anymore.
I previously had some comments and concerns about this in https://github.com/rust-lang/rust/pull/65351.

In this PR we are doing some much simpler pruning based on `Symbol` and `Namespace` comparisons, it should be enough to throw away 99.9% of unnecessary traits.
It is not necessary for pruning to be precise because for trait aliases, for example, we don't do any pruning at all, and precise hygienic resolution for associated items needs to be done in typeck anyway.

The somewhat unexpected effect is that trait imports introduced by macros 2.0 now bring traits into scope due to the removed hygienic check on associated item names.
I'm not sure whether it is desirable or not, but I think it's acceptable for now.
The old check was certainly incorrect because macros 2.0 did bring trait aliases into scope.
If doing this is not desirable, then we should come up with some other way to avoid bringing traits from macros 2.0 into scope, that would accommodate for trait aliases as well.

---

The PR also contains a couple of pure refactorings
- Scope walk is done by using `visit_scopes` instead of a hand-rolled version.
- Code is restructured to accomodate for rustdoc that also wants to query traits in scope, but doesn't want to filter them by associated items at all.

r? ```@matthewjasper```
2021-01-17 12:24:47 +00:00

2406 lines
100 KiB
Rust

//! "Late resolution" is the pass that resolves most of names in a crate beside imports and macros.
//! It runs when the crate is fully expanded and its module structure is fully built.
//! So it just walks through the crate and resolves all the expressions, types, etc.
//!
//! If you wonder why there's no `early.rs`, that's because it's split into three files -
//! `build_reduced_graph.rs`, `macros.rs` and `imports.rs`.
use RibKind::*;
use crate::{path_names_to_string, BindingError, CrateLint, LexicalScopeBinding};
use crate::{Module, ModuleOrUniformRoot, ParentScope, PathResult};
use crate::{ResolutionError, Resolver, Segment, UseError};
use rustc_ast::ptr::P;
use rustc_ast::visit::{self, AssocCtxt, FnCtxt, FnKind, Visitor};
use rustc_ast::*;
use rustc_ast_lowering::ResolverAstLowering;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_errors::DiagnosticId;
use rustc_hir::def::Namespace::{self, *};
use rustc_hir::def::{self, CtorKind, DefKind, PartialRes, PerNS};
use rustc_hir::def_id::{DefId, CRATE_DEF_INDEX};
use rustc_hir::TraitCandidate;
use rustc_middle::{bug, span_bug};
use rustc_session::lint;
use rustc_span::symbol::{kw, sym, Ident, Symbol};
use rustc_span::Span;
use smallvec::{smallvec, SmallVec};
use rustc_span::source_map::{respan, Spanned};
use std::collections::{hash_map::Entry, BTreeSet};
use std::mem::{replace, take};
use tracing::debug;
mod diagnostics;
crate mod lifetimes;
type Res = def::Res<NodeId>;
type IdentMap<T> = FxHashMap<Ident, T>;
/// Map from the name in a pattern to its binding mode.
type BindingMap = IdentMap<BindingInfo>;
#[derive(Copy, Clone, Debug)]
struct BindingInfo {
span: Span,
binding_mode: BindingMode,
}
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
enum PatternSource {
Match,
Let,
For,
FnParam,
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum IsRepeatExpr {
No,
Yes,
}
impl PatternSource {
fn descr(self) -> &'static str {
match self {
PatternSource::Match => "match binding",
PatternSource::Let => "let binding",
PatternSource::For => "for binding",
PatternSource::FnParam => "function parameter",
}
}
}
/// Denotes whether the context for the set of already bound bindings is a `Product`
/// or `Or` context. This is used in e.g., `fresh_binding` and `resolve_pattern_inner`.
/// See those functions for more information.
#[derive(PartialEq)]
enum PatBoundCtx {
/// A product pattern context, e.g., `Variant(a, b)`.
Product,
/// An or-pattern context, e.g., `p_0 | ... | p_n`.
Or,
}
/// Does this the item (from the item rib scope) allow generic parameters?
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
crate enum HasGenericParams {
Yes,
No,
}
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
crate enum ConstantItemKind {
Const,
Static,
}
/// The rib kind restricts certain accesses,
/// e.g. to a `Res::Local` of an outer item.
#[derive(Copy, Clone, Debug)]
crate enum RibKind<'a> {
/// No restriction needs to be applied.
NormalRibKind,
/// We passed through an impl or trait and are now in one of its
/// methods or associated types. Allow references to ty params that impl or trait
/// binds. Disallow any other upvars (including other ty params that are
/// upvars).
AssocItemRibKind,
/// We passed through a closure. Disallow labels.
ClosureOrAsyncRibKind,
/// We passed through a function definition. Disallow upvars.
/// Permit only those const parameters that are specified in the function's generics.
FnItemRibKind,
/// We passed through an item scope. Disallow upvars.
ItemRibKind(HasGenericParams),
/// We're in a constant item. Can't refer to dynamic stuff.
///
/// The `bool` indicates if this constant may reference generic parameters
/// and is used to only allow generic parameters to be used in trivial constant expressions.
ConstantItemRibKind(bool, Option<(Ident, ConstantItemKind)>),
/// We passed through a module.
ModuleRibKind(Module<'a>),
/// We passed through a `macro_rules!` statement
MacroDefinition(DefId),
/// All bindings in this rib are type parameters that can't be used
/// from the default of a type parameter because they're not declared
/// before said type parameter. Also see the `visit_generics` override.
ForwardTyParamBanRibKind,
/// We are inside of the type of a const parameter. Can't refer to any
/// parameters.
ConstParamTyRibKind,
}
impl RibKind<'_> {
/// Whether this rib kind contains generic parameters, as opposed to local
/// variables.
crate fn contains_params(&self) -> bool {
match self {
NormalRibKind
| ClosureOrAsyncRibKind
| FnItemRibKind
| ConstantItemRibKind(..)
| ModuleRibKind(_)
| MacroDefinition(_)
| ConstParamTyRibKind => false,
AssocItemRibKind | ItemRibKind(_) | ForwardTyParamBanRibKind => true,
}
}
}
/// A single local scope.
///
/// A rib represents a scope names can live in. Note that these appear in many places, not just
/// around braces. At any place where the list of accessible names (of the given namespace)
/// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
/// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
/// etc.
///
/// Different [rib kinds](enum.RibKind) are transparent for different names.
///
/// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
/// resolving, the name is looked up from inside out.
#[derive(Debug)]
crate struct Rib<'a, R = Res> {
pub bindings: IdentMap<R>,
pub kind: RibKind<'a>,
}
impl<'a, R> Rib<'a, R> {
fn new(kind: RibKind<'a>) -> Rib<'a, R> {
Rib { bindings: Default::default(), kind }
}
}
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
crate enum AliasPossibility {
No,
Maybe,
}
#[derive(Copy, Clone, Debug)]
crate enum PathSource<'a> {
// Type paths `Path`.
Type,
// Trait paths in bounds or impls.
Trait(AliasPossibility),
// Expression paths `path`, with optional parent context.
Expr(Option<&'a Expr>),
// Paths in path patterns `Path`.
Pat,
// Paths in struct expressions and patterns `Path { .. }`.
Struct,
// Paths in tuple struct patterns `Path(..)`.
TupleStruct(Span, &'a [Span]),
// `m::A::B` in `<T as m::A>::B::C`.
TraitItem(Namespace),
}
impl<'a> PathSource<'a> {
fn namespace(self) -> Namespace {
match self {
PathSource::Type | PathSource::Trait(_) | PathSource::Struct => TypeNS,
PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct(..) => ValueNS,
PathSource::TraitItem(ns) => ns,
}
}
fn defer_to_typeck(self) -> bool {
match self {
PathSource::Type
| PathSource::Expr(..)
| PathSource::Pat
| PathSource::Struct
| PathSource::TupleStruct(..) => true,
PathSource::Trait(_) | PathSource::TraitItem(..) => false,
}
}
fn descr_expected(self) -> &'static str {
match &self {
PathSource::Type => "type",
PathSource::Trait(_) => "trait",
PathSource::Pat => "unit struct, unit variant or constant",
PathSource::Struct => "struct, variant or union type",
PathSource::TupleStruct(..) => "tuple struct or tuple variant",
PathSource::TraitItem(ns) => match ns {
TypeNS => "associated type",
ValueNS => "method or associated constant",
MacroNS => bug!("associated macro"),
},
PathSource::Expr(parent) => match parent.as_ref().map(|p| &p.kind) {
// "function" here means "anything callable" rather than `DefKind::Fn`,
// this is not precise but usually more helpful than just "value".
Some(ExprKind::Call(call_expr, _)) => match &call_expr.kind {
ExprKind::Path(_, path) => {
let mut msg = "function";
if let Some(segment) = path.segments.iter().last() {
if let Some(c) = segment.ident.to_string().chars().next() {
if c.is_uppercase() {
msg = "function, tuple struct or tuple variant";
}
}
}
msg
}
_ => "function",
},
_ => "value",
},
}
}
fn is_call(self) -> bool {
matches!(self, PathSource::Expr(Some(&Expr { kind: ExprKind::Call(..), .. })))
}
crate fn is_expected(self, res: Res) -> bool {
match self {
PathSource::Type => matches!(
res,
Res::Def(
DefKind::Struct
| DefKind::Union
| DefKind::Enum
| DefKind::Trait
| DefKind::TraitAlias
| DefKind::TyAlias
| DefKind::AssocTy
| DefKind::TyParam
| DefKind::OpaqueTy
| DefKind::ForeignTy,
_,
) | Res::PrimTy(..)
| Res::SelfTy(..)
),
PathSource::Trait(AliasPossibility::No) => matches!(res, Res::Def(DefKind::Trait, _)),
PathSource::Trait(AliasPossibility::Maybe) => {
matches!(res, Res::Def(DefKind::Trait | DefKind::TraitAlias, _))
}
PathSource::Expr(..) => matches!(
res,
Res::Def(
DefKind::Ctor(_, CtorKind::Const | CtorKind::Fn)
| DefKind::Const
| DefKind::Static
| DefKind::Fn
| DefKind::AssocFn
| DefKind::AssocConst
| DefKind::ConstParam,
_,
) | Res::Local(..)
| Res::SelfCtor(..)
),
PathSource::Pat => matches!(
res,
Res::Def(
DefKind::Ctor(_, CtorKind::Const) | DefKind::Const | DefKind::AssocConst,
_,
) | Res::SelfCtor(..)
),
PathSource::TupleStruct(..) => res.expected_in_tuple_struct_pat(),
PathSource::Struct => matches!(
res,
Res::Def(
DefKind::Struct
| DefKind::Union
| DefKind::Variant
| DefKind::TyAlias
| DefKind::AssocTy,
_,
) | Res::SelfTy(..)
),
PathSource::TraitItem(ns) => match res {
Res::Def(DefKind::AssocConst | DefKind::AssocFn, _) if ns == ValueNS => true,
Res::Def(DefKind::AssocTy, _) if ns == TypeNS => true,
_ => false,
},
}
}
fn error_code(self, has_unexpected_resolution: bool) -> DiagnosticId {
use rustc_errors::error_code;
match (self, has_unexpected_resolution) {
(PathSource::Trait(_), true) => error_code!(E0404),
(PathSource::Trait(_), false) => error_code!(E0405),
(PathSource::Type, true) => error_code!(E0573),
(PathSource::Type, false) => error_code!(E0412),
(PathSource::Struct, true) => error_code!(E0574),
(PathSource::Struct, false) => error_code!(E0422),
(PathSource::Expr(..), true) => error_code!(E0423),
(PathSource::Expr(..), false) => error_code!(E0425),
(PathSource::Pat | PathSource::TupleStruct(..), true) => error_code!(E0532),
(PathSource::Pat | PathSource::TupleStruct(..), false) => error_code!(E0531),
(PathSource::TraitItem(..), true) => error_code!(E0575),
(PathSource::TraitItem(..), false) => error_code!(E0576),
}
}
}
#[derive(Default)]
struct DiagnosticMetadata<'ast> {
/// The current trait's associated items' ident, used for diagnostic suggestions.
current_trait_assoc_items: Option<&'ast [P<AssocItem>]>,
/// The current self type if inside an impl (used for better errors).
current_self_type: Option<Ty>,
/// The current self item if inside an ADT (used for better errors).
current_self_item: Option<NodeId>,
/// The current trait (used to suggest).
current_item: Option<&'ast Item>,
/// When processing generics and encountering a type not found, suggest introducing a type
/// param.
currently_processing_generics: bool,
/// The current enclosing (non-closure) function (used for better errors).
current_function: Option<(FnKind<'ast>, Span)>,
/// A list of labels as of yet unused. Labels will be removed from this map when
/// they are used (in a `break` or `continue` statement)
unused_labels: FxHashMap<NodeId, Span>,
/// Only used for better errors on `fn(): fn()`.
current_type_ascription: Vec<Span>,
/// Only used for better errors on `let <pat>: <expr, not type>;`.
current_let_binding: Option<(Span, Option<Span>, Option<Span>)>,
/// Used to detect possible `if let` written without `let` and to provide structured suggestion.
in_if_condition: Option<&'ast Expr>,
/// If we are currently in a trait object definition. Used to point at the bounds when
/// encountering a struct or enum.
current_trait_object: Option<&'ast [ast::GenericBound]>,
/// Given `where <T as Bar>::Baz: String`, suggest `where T: Bar<Baz = String>`.
current_where_predicate: Option<&'ast WherePredicate>,
}
struct LateResolutionVisitor<'a, 'b, 'ast> {
r: &'b mut Resolver<'a>,
/// The module that represents the current item scope.
parent_scope: ParentScope<'a>,
/// The current set of local scopes for types and values.
/// FIXME #4948: Reuse ribs to avoid allocation.
ribs: PerNS<Vec<Rib<'a>>>,
/// The current set of local scopes, for labels.
label_ribs: Vec<Rib<'a, NodeId>>,
/// The trait that the current context can refer to.
current_trait_ref: Option<(Module<'a>, TraitRef)>,
/// Fields used to add information to diagnostic errors.
diagnostic_metadata: DiagnosticMetadata<'ast>,
/// State used to know whether to ignore resolution errors for function bodies.
///
/// In particular, rustdoc uses this to avoid giving errors for `cfg()` items.
/// In most cases this will be `None`, in which case errors will always be reported.
/// If it is `true`, then it will be updated when entering a nested function or trait body.
in_func_body: bool,
}
/// Walks the whole crate in DFS order, visiting each item, resolving names as it goes.
impl<'a: 'ast, 'ast> Visitor<'ast> for LateResolutionVisitor<'a, '_, 'ast> {
fn visit_item(&mut self, item: &'ast Item) {
let prev = replace(&mut self.diagnostic_metadata.current_item, Some(item));
// Always report errors in items we just entered.
let old_ignore = replace(&mut self.in_func_body, false);
self.resolve_item(item);
self.in_func_body = old_ignore;
self.diagnostic_metadata.current_item = prev;
}
fn visit_arm(&mut self, arm: &'ast Arm) {
self.resolve_arm(arm);
}
fn visit_block(&mut self, block: &'ast Block) {
self.resolve_block(block);
}
fn visit_anon_const(&mut self, constant: &'ast AnonConst) {
// We deal with repeat expressions explicitly in `resolve_expr`.
self.resolve_anon_const(constant, IsRepeatExpr::No);
}
fn visit_expr(&mut self, expr: &'ast Expr) {
self.resolve_expr(expr, None);
}
fn visit_local(&mut self, local: &'ast Local) {
let local_spans = match local.pat.kind {
// We check for this to avoid tuple struct fields.
PatKind::Wild => None,
_ => Some((
local.pat.span,
local.ty.as_ref().map(|ty| ty.span),
local.init.as_ref().map(|init| init.span),
)),
};
let original = replace(&mut self.diagnostic_metadata.current_let_binding, local_spans);
self.resolve_local(local);
self.diagnostic_metadata.current_let_binding = original;
}
fn visit_ty(&mut self, ty: &'ast Ty) {
let prev = self.diagnostic_metadata.current_trait_object;
match ty.kind {
TyKind::Path(ref qself, ref path) => {
self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
}
TyKind::ImplicitSelf => {
let self_ty = Ident::with_dummy_span(kw::SelfUpper);
let res = self
.resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span)
.map_or(Res::Err, |d| d.res());
self.r.record_partial_res(ty.id, PartialRes::new(res));
}
TyKind::TraitObject(ref bounds, ..) => {
self.diagnostic_metadata.current_trait_object = Some(&bounds[..]);
}
_ => (),
}
visit::walk_ty(self, ty);
self.diagnostic_metadata.current_trait_object = prev;
}
fn visit_poly_trait_ref(&mut self, tref: &'ast PolyTraitRef, m: &'ast TraitBoundModifier) {
self.smart_resolve_path(
tref.trait_ref.ref_id,
None,
&tref.trait_ref.path,
PathSource::Trait(AliasPossibility::Maybe),
);
visit::walk_poly_trait_ref(self, tref, m);
}
fn visit_foreign_item(&mut self, foreign_item: &'ast ForeignItem) {
match foreign_item.kind {
ForeignItemKind::Fn(_, _, ref generics, _)
| ForeignItemKind::TyAlias(_, ref generics, ..) => {
self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
visit::walk_foreign_item(this, foreign_item);
});
}
ForeignItemKind::Static(..) => {
self.with_item_rib(HasGenericParams::No, |this| {
visit::walk_foreign_item(this, foreign_item);
});
}
ForeignItemKind::MacCall(..) => {
visit::walk_foreign_item(self, foreign_item);
}
}
}
fn visit_fn(&mut self, fn_kind: FnKind<'ast>, sp: Span, _: NodeId) {
let rib_kind = match fn_kind {
// Bail if there's no body.
FnKind::Fn(.., None) => return visit::walk_fn(self, fn_kind, sp),
FnKind::Fn(FnCtxt::Free | FnCtxt::Foreign, ..) => FnItemRibKind,
FnKind::Fn(FnCtxt::Assoc(_), ..) => NormalRibKind,
FnKind::Closure(..) => ClosureOrAsyncRibKind,
};
let previous_value = self.diagnostic_metadata.current_function;
if matches!(fn_kind, FnKind::Fn(..)) {
self.diagnostic_metadata.current_function = Some((fn_kind, sp));
}
debug!("(resolving function) entering function");
let declaration = fn_kind.decl();
// Create a value rib for the function.
self.with_rib(ValueNS, rib_kind, |this| {
// Create a label rib for the function.
this.with_label_rib(rib_kind, |this| {
// Add each argument to the rib.
this.resolve_params(&declaration.inputs);
visit::walk_fn_ret_ty(this, &declaration.output);
// Ignore errors in function bodies if this is rustdoc
// Be sure not to set this until the function signature has been resolved.
let previous_state = replace(&mut this.in_func_body, true);
// Resolve the function body, potentially inside the body of an async closure
match fn_kind {
FnKind::Fn(.., body) => walk_list!(this, visit_block, body),
FnKind::Closure(_, body) => this.visit_expr(body),
};
debug!("(resolving function) leaving function");
this.in_func_body = previous_state;
})
});
self.diagnostic_metadata.current_function = previous_value;
}
fn visit_generics(&mut self, generics: &'ast Generics) {
// For type parameter defaults, we have to ban access
// to following type parameters, as the InternalSubsts can only
// provide previous type parameters as they're built. We
// put all the parameters on the ban list and then remove
// them one by one as they are processed and become available.
let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
let mut found_default = false;
default_ban_rib.bindings.extend(generics.params.iter().filter_map(
|param| match param.kind {
GenericParamKind::Const { .. } | GenericParamKind::Lifetime { .. } => None,
GenericParamKind::Type { ref default, .. } => {
found_default |= default.is_some();
found_default.then_some((Ident::with_dummy_span(param.ident.name), Res::Err))
}
},
));
// rust-lang/rust#61631: The type `Self` is essentially
// another type parameter. For ADTs, we consider it
// well-defined only after all of the ADT type parameters have
// been provided. Therefore, we do not allow use of `Self`
// anywhere in ADT type parameter defaults.
//
// (We however cannot ban `Self` for defaults on *all* generic
// lists; e.g. trait generics can usefully refer to `Self`,
// such as in the case of `trait Add<Rhs = Self>`.)
if self.diagnostic_metadata.current_self_item.is_some() {
// (`Some` if + only if we are in ADT's generics.)
default_ban_rib.bindings.insert(Ident::with_dummy_span(kw::SelfUpper), Res::Err);
}
for param in &generics.params {
match param.kind {
GenericParamKind::Lifetime => self.visit_generic_param(param),
GenericParamKind::Type { ref default } => {
for bound in &param.bounds {
self.visit_param_bound(bound);
}
if let Some(ref ty) = default {
self.ribs[TypeNS].push(default_ban_rib);
self.with_rib(ValueNS, ForwardTyParamBanRibKind, |this| {
// HACK: We use an empty `ForwardTyParamBanRibKind` here which
// is only used to forbid the use of const parameters inside of
// type defaults.
//
// While the rib name doesn't really fit here, it does allow us to use the same
// code for both const and type parameters.
this.visit_ty(ty);
});
default_ban_rib = self.ribs[TypeNS].pop().unwrap();
}
// Allow all following defaults to refer to this type parameter.
default_ban_rib.bindings.remove(&Ident::with_dummy_span(param.ident.name));
}
GenericParamKind::Const { ref ty, kw_span: _, default: _ } => {
// FIXME(const_generics_defaults): handle `default` value here
for bound in &param.bounds {
self.visit_param_bound(bound);
}
self.ribs[TypeNS].push(Rib::new(ConstParamTyRibKind));
self.ribs[ValueNS].push(Rib::new(ConstParamTyRibKind));
self.visit_ty(ty);
self.ribs[TypeNS].pop().unwrap();
self.ribs[ValueNS].pop().unwrap();
}
}
}
for p in &generics.where_clause.predicates {
self.visit_where_predicate(p);
}
}
fn visit_generic_arg(&mut self, arg: &'ast GenericArg) {
debug!("visit_generic_arg({:?})", arg);
let prev = replace(&mut self.diagnostic_metadata.currently_processing_generics, true);
match arg {
GenericArg::Type(ref ty) => {
// We parse const arguments as path types as we cannot distinguish them during
// parsing. We try to resolve that ambiguity by attempting resolution the type
// namespace first, and if that fails we try again in the value namespace. If
// resolution in the value namespace succeeds, we have an generic const argument on
// our hands.
if let TyKind::Path(ref qself, ref path) = ty.kind {
// We cannot disambiguate multi-segment paths right now as that requires type
// checking.
if path.segments.len() == 1 && path.segments[0].args.is_none() {
let mut check_ns = |ns| {
self.resolve_ident_in_lexical_scope(
path.segments[0].ident,
ns,
None,
path.span,
)
.is_some()
};
if !check_ns(TypeNS) && check_ns(ValueNS) {
// This must be equivalent to `visit_anon_const`, but we cannot call it
// directly due to visitor lifetimes so we have to copy-paste some code.
//
// Note that we might not be inside of an repeat expression here,
// but considering that `IsRepeatExpr` is only relevant for
// non-trivial constants this is doesn't matter.
self.with_constant_rib(IsRepeatExpr::No, true, None, |this| {
this.smart_resolve_path(
ty.id,
qself.as_ref(),
path,
PathSource::Expr(None),
);
if let Some(ref qself) = *qself {
this.visit_ty(&qself.ty);
}
this.visit_path(path, ty.id);
});
self.diagnostic_metadata.currently_processing_generics = prev;
return;
}
}
}
self.visit_ty(ty);
}
GenericArg::Lifetime(lt) => self.visit_lifetime(lt),
GenericArg::Const(ct) => self.visit_anon_const(ct),
}
self.diagnostic_metadata.currently_processing_generics = prev;
}
fn visit_where_predicate(&mut self, p: &'ast WherePredicate) {
debug!("visit_where_predicate {:?}", p);
let previous_value =
replace(&mut self.diagnostic_metadata.current_where_predicate, Some(p));
visit::walk_where_predicate(self, p);
self.diagnostic_metadata.current_where_predicate = previous_value;
}
}
impl<'a: 'ast, 'b, 'ast> LateResolutionVisitor<'a, 'b, 'ast> {
fn new(resolver: &'b mut Resolver<'a>) -> LateResolutionVisitor<'a, 'b, 'ast> {
// During late resolution we only track the module component of the parent scope,
// although it may be useful to track other components as well for diagnostics.
let graph_root = resolver.graph_root;
let parent_scope = ParentScope::module(graph_root, resolver);
let start_rib_kind = ModuleRibKind(graph_root);
LateResolutionVisitor {
r: resolver,
parent_scope,
ribs: PerNS {
value_ns: vec![Rib::new(start_rib_kind)],
type_ns: vec![Rib::new(start_rib_kind)],
macro_ns: vec![Rib::new(start_rib_kind)],
},
label_ribs: Vec::new(),
current_trait_ref: None,
diagnostic_metadata: DiagnosticMetadata::default(),
// errors at module scope should always be reported
in_func_body: false,
}
}
fn resolve_ident_in_lexical_scope(
&mut self,
ident: Ident,
ns: Namespace,
record_used_id: Option<NodeId>,
path_span: Span,
) -> Option<LexicalScopeBinding<'a>> {
self.r.resolve_ident_in_lexical_scope(
ident,
ns,
&self.parent_scope,
record_used_id,
path_span,
&self.ribs[ns],
)
}
fn resolve_path(
&mut self,
path: &[Segment],
opt_ns: Option<Namespace>, // `None` indicates a module path in import
record_used: bool,
path_span: Span,
crate_lint: CrateLint,
) -> PathResult<'a> {
self.r.resolve_path_with_ribs(
path,
opt_ns,
&self.parent_scope,
record_used,
path_span,
crate_lint,
Some(&self.ribs),
)
}
// AST resolution
//
// We maintain a list of value ribs and type ribs.
//
// Simultaneously, we keep track of the current position in the module
// graph in the `parent_scope.module` pointer. When we go to resolve a name in
// the value or type namespaces, we first look through all the ribs and
// then query the module graph. When we resolve a name in the module
// namespace, we can skip all the ribs (since nested modules are not
// allowed within blocks in Rust) and jump straight to the current module
// graph node.
//
// Named implementations are handled separately. When we find a method
// call, we consult the module node to find all of the implementations in
// scope. This information is lazily cached in the module node. We then
// generate a fake "implementation scope" containing all the
// implementations thus found, for compatibility with old resolve pass.
/// Do some `work` within a new innermost rib of the given `kind` in the given namespace (`ns`).
fn with_rib<T>(
&mut self,
ns: Namespace,
kind: RibKind<'a>,
work: impl FnOnce(&mut Self) -> T,
) -> T {
self.ribs[ns].push(Rib::new(kind));
let ret = work(self);
self.ribs[ns].pop();
ret
}
fn with_scope<T>(&mut self, id: NodeId, f: impl FnOnce(&mut Self) -> T) -> T {
let id = self.r.local_def_id(id);
let module = self.r.module_map.get(&id).cloned(); // clones a reference
if let Some(module) = module {
// Move down in the graph.
let orig_module = replace(&mut self.parent_scope.module, module);
self.with_rib(ValueNS, ModuleRibKind(module), |this| {
this.with_rib(TypeNS, ModuleRibKind(module), |this| {
let ret = f(this);
this.parent_scope.module = orig_module;
ret
})
})
} else {
f(self)
}
}
/// Searches the current set of local scopes for labels. Returns the `NodeId` of the resolved
/// label and reports an error if the label is not found or is unreachable.
fn resolve_label(&self, mut label: Ident) -> Option<NodeId> {
let mut suggestion = None;
// Preserve the original span so that errors contain "in this macro invocation"
// information.
let original_span = label.span;
for i in (0..self.label_ribs.len()).rev() {
let rib = &self.label_ribs[i];
if let MacroDefinition(def) = rib.kind {
// If an invocation of this macro created `ident`, give up on `ident`
// and switch to `ident`'s source from the macro definition.
if def == self.r.macro_def(label.span.ctxt()) {
label.span.remove_mark();
}
}
let ident = label.normalize_to_macro_rules();
if let Some((ident, id)) = rib.bindings.get_key_value(&ident) {
return if self.is_label_valid_from_rib(i) {
Some(*id)
} else {
self.report_error(
original_span,
ResolutionError::UnreachableLabel {
name: label.name,
definition_span: ident.span,
suggestion,
},
);
None
};
}
// Diagnostics: Check if this rib contains a label with a similar name, keep track of
// the first such label that is encountered.
suggestion = suggestion.or_else(|| self.suggestion_for_label_in_rib(i, label));
}
self.report_error(
original_span,
ResolutionError::UndeclaredLabel { name: label.name, suggestion },
);
None
}
/// Determine whether or not a label from the `rib_index`th label rib is reachable.
fn is_label_valid_from_rib(&self, rib_index: usize) -> bool {
let ribs = &self.label_ribs[rib_index + 1..];
for rib in ribs {
match rib.kind {
NormalRibKind | MacroDefinition(..) => {
// Nothing to do. Continue.
}
AssocItemRibKind
| ClosureOrAsyncRibKind
| FnItemRibKind
| ItemRibKind(..)
| ConstantItemRibKind(..)
| ModuleRibKind(..)
| ForwardTyParamBanRibKind
| ConstParamTyRibKind => {
return false;
}
}
}
true
}
fn resolve_adt(&mut self, item: &'ast Item, generics: &'ast Generics) {
debug!("resolve_adt");
self.with_current_self_item(item, |this| {
this.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
let item_def_id = this.r.local_def_id(item.id).to_def_id();
this.with_self_rib(Res::SelfTy(None, Some((item_def_id, false))), |this| {
visit::walk_item(this, item);
});
});
});
}
fn future_proof_import(&mut self, use_tree: &UseTree) {
let segments = &use_tree.prefix.segments;
if !segments.is_empty() {
let ident = segments[0].ident;
if ident.is_path_segment_keyword() || ident.span.rust_2015() {
return;
}
let nss = match use_tree.kind {
UseTreeKind::Simple(..) if segments.len() == 1 => &[TypeNS, ValueNS][..],
_ => &[TypeNS],
};
let report_error = |this: &Self, ns| {
let what = if ns == TypeNS { "type parameters" } else { "local variables" };
if this.should_report_errs() {
this.r
.session
.span_err(ident.span, &format!("imports cannot refer to {}", what));
}
};
for &ns in nss {
match self.resolve_ident_in_lexical_scope(ident, ns, None, use_tree.prefix.span) {
Some(LexicalScopeBinding::Res(..)) => {
report_error(self, ns);
}
Some(LexicalScopeBinding::Item(binding)) => {
let orig_unusable_binding =
replace(&mut self.r.unusable_binding, Some(binding));
if let Some(LexicalScopeBinding::Res(..)) = self
.resolve_ident_in_lexical_scope(ident, ns, None, use_tree.prefix.span)
{
report_error(self, ns);
}
self.r.unusable_binding = orig_unusable_binding;
}
None => {}
}
}
} else if let UseTreeKind::Nested(use_trees) = &use_tree.kind {
for (use_tree, _) in use_trees {
self.future_proof_import(use_tree);
}
}
}
fn resolve_item(&mut self, item: &'ast Item) {
let name = item.ident.name;
debug!("(resolving item) resolving {} ({:?})", name, item.kind);
match item.kind {
ItemKind::TyAlias(_, ref generics, _, _) | ItemKind::Fn(_, _, ref generics, _) => {
self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
visit::walk_item(this, item)
});
}
ItemKind::Enum(_, ref generics)
| ItemKind::Struct(_, ref generics)
| ItemKind::Union(_, ref generics) => {
self.resolve_adt(item, generics);
}
ItemKind::Impl {
ref generics,
ref of_trait,
ref self_ty,
items: ref impl_items,
..
} => {
self.resolve_implementation(generics, of_trait, &self_ty, item.id, impl_items);
}
ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
// Create a new rib for the trait-wide type parameters.
self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
let local_def_id = this.r.local_def_id(item.id).to_def_id();
this.with_self_rib(Res::SelfTy(Some(local_def_id), None), |this| {
this.visit_generics(generics);
walk_list!(this, visit_param_bound, bounds);
let walk_assoc_item = |this: &mut Self, generics, item| {
this.with_generic_param_rib(generics, AssocItemRibKind, |this| {
visit::walk_assoc_item(this, item, AssocCtxt::Trait)
});
};
this.with_trait_items(trait_items, |this| {
for item in trait_items {
match &item.kind {
AssocItemKind::Const(_, ty, default) => {
this.visit_ty(ty);
// Only impose the restrictions of `ConstRibKind` for an
// actual constant expression in a provided default.
if let Some(expr) = default {
// We allow arbitrary const expressions inside of associated consts,
// even if they are potentially not const evaluatable.
//
// Type parameters can already be used and as associated consts are
// not used as part of the type system, this is far less surprising.
this.with_constant_rib(
IsRepeatExpr::No,
true,
None,
|this| this.visit_expr(expr),
);
}
}
AssocItemKind::Fn(_, _, generics, _) => {
walk_assoc_item(this, generics, item);
}
AssocItemKind::TyAlias(_, generics, _, _) => {
walk_assoc_item(this, generics, item);
}
AssocItemKind::MacCall(_) => {
panic!("unexpanded macro in resolve!")
}
};
}
});
});
});
}
ItemKind::TraitAlias(ref generics, ref bounds) => {
// Create a new rib for the trait-wide type parameters.
self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
let local_def_id = this.r.local_def_id(item.id).to_def_id();
this.with_self_rib(Res::SelfTy(Some(local_def_id), None), |this| {
this.visit_generics(generics);
walk_list!(this, visit_param_bound, bounds);
});
});
}
ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
self.with_scope(item.id, |this| {
visit::walk_item(this, item);
});
}
ItemKind::Static(ref ty, _, ref expr) | ItemKind::Const(_, ref ty, ref expr) => {
debug!("resolve_item ItemKind::Const");
self.with_item_rib(HasGenericParams::No, |this| {
this.visit_ty(ty);
if let Some(expr) = expr {
let constant_item_kind = match item.kind {
ItemKind::Const(..) => ConstantItemKind::Const,
ItemKind::Static(..) => ConstantItemKind::Static,
_ => unreachable!(),
};
// We already forbid generic params because of the above item rib,
// so it doesn't matter whether this is a trivial constant.
this.with_constant_rib(
IsRepeatExpr::No,
true,
Some((item.ident, constant_item_kind)),
|this| this.visit_expr(expr),
);
}
});
}
ItemKind::Use(ref use_tree) => {
self.future_proof_import(use_tree);
}
ItemKind::ExternCrate(..) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(..) => {
// do nothing, these are just around to be encoded
}
ItemKind::MacCall(_) => panic!("unexpanded macro in resolve!"),
}
}
fn with_generic_param_rib<'c, F>(&'c mut self, generics: &'c Generics, kind: RibKind<'a>, f: F)
where
F: FnOnce(&mut Self),
{
debug!("with_generic_param_rib");
let mut function_type_rib = Rib::new(kind);
let mut function_value_rib = Rib::new(kind);
let mut seen_bindings = FxHashMap::default();
// We also can't shadow bindings from the parent item
if let AssocItemRibKind = kind {
let mut add_bindings_for_ns = |ns| {
let parent_rib = self.ribs[ns]
.iter()
.rfind(|r| matches!(r.kind, ItemRibKind(_)))
.expect("associated item outside of an item");
seen_bindings
.extend(parent_rib.bindings.iter().map(|(ident, _)| (*ident, ident.span)));
};
add_bindings_for_ns(ValueNS);
add_bindings_for_ns(TypeNS);
}
for param in &generics.params {
if let GenericParamKind::Lifetime { .. } = param.kind {
continue;
}
let ident = param.ident.normalize_to_macros_2_0();
debug!("with_generic_param_rib: {}", param.id);
match seen_bindings.entry(ident) {
Entry::Occupied(entry) => {
let span = *entry.get();
let err = ResolutionError::NameAlreadyUsedInParameterList(ident.name, span);
self.report_error(param.ident.span, err);
}
Entry::Vacant(entry) => {
entry.insert(param.ident.span);
}
}
// Plain insert (no renaming).
let (rib, def_kind) = match param.kind {
GenericParamKind::Type { .. } => (&mut function_type_rib, DefKind::TyParam),
GenericParamKind::Const { .. } => (&mut function_value_rib, DefKind::ConstParam),
_ => unreachable!(),
};
let res = Res::Def(def_kind, self.r.local_def_id(param.id).to_def_id());
self.r.record_partial_res(param.id, PartialRes::new(res));
rib.bindings.insert(ident, res);
}
self.ribs[ValueNS].push(function_value_rib);
self.ribs[TypeNS].push(function_type_rib);
f(self);
self.ribs[TypeNS].pop();
self.ribs[ValueNS].pop();
}
fn with_label_rib(&mut self, kind: RibKind<'a>, f: impl FnOnce(&mut Self)) {
self.label_ribs.push(Rib::new(kind));
f(self);
self.label_ribs.pop();
}
fn with_item_rib(&mut self, has_generic_params: HasGenericParams, f: impl FnOnce(&mut Self)) {
let kind = ItemRibKind(has_generic_params);
self.with_rib(ValueNS, kind, |this| this.with_rib(TypeNS, kind, f))
}
// HACK(min_const_generics,const_evaluatable_unchecked): We
// want to keep allowing `[0; std::mem::size_of::<*mut T>()]`
// with a future compat lint for now. We do this by adding an
// additional special case for repeat expressions.
//
// Note that we intentionally still forbid `[0; N + 1]` during
// name resolution so that we don't extend the future
// compat lint to new cases.
fn with_constant_rib(
&mut self,
is_repeat: IsRepeatExpr,
is_trivial: bool,
item: Option<(Ident, ConstantItemKind)>,
f: impl FnOnce(&mut Self),
) {
debug!("with_constant_rib: is_repeat={:?} is_trivial={}", is_repeat, is_trivial);
self.with_rib(ValueNS, ConstantItemRibKind(is_trivial, item), |this| {
this.with_rib(
TypeNS,
ConstantItemRibKind(is_repeat == IsRepeatExpr::Yes || is_trivial, item),
|this| {
this.with_label_rib(ConstantItemRibKind(is_trivial, item), f);
},
)
});
}
fn with_current_self_type<T>(&mut self, self_type: &Ty, f: impl FnOnce(&mut Self) -> T) -> T {
// Handle nested impls (inside fn bodies)
let previous_value =
replace(&mut self.diagnostic_metadata.current_self_type, Some(self_type.clone()));
let result = f(self);
self.diagnostic_metadata.current_self_type = previous_value;
result
}
fn with_current_self_item<T>(&mut self, self_item: &Item, f: impl FnOnce(&mut Self) -> T) -> T {
let previous_value =
replace(&mut self.diagnostic_metadata.current_self_item, Some(self_item.id));
let result = f(self);
self.diagnostic_metadata.current_self_item = previous_value;
result
}
/// When evaluating a `trait` use its associated types' idents for suggestions in E0412.
fn with_trait_items<T>(
&mut self,
trait_items: &'ast [P<AssocItem>],
f: impl FnOnce(&mut Self) -> T,
) -> T {
let trait_assoc_items =
replace(&mut self.diagnostic_metadata.current_trait_assoc_items, Some(&trait_items));
let result = f(self);
self.diagnostic_metadata.current_trait_assoc_items = trait_assoc_items;
result
}
/// This is called to resolve a trait reference from an `impl` (i.e., `impl Trait for Foo`).
fn with_optional_trait_ref<T>(
&mut self,
opt_trait_ref: Option<&TraitRef>,
f: impl FnOnce(&mut Self, Option<DefId>) -> T,
) -> T {
let mut new_val = None;
let mut new_id = None;
if let Some(trait_ref) = opt_trait_ref {
let path: Vec<_> = Segment::from_path(&trait_ref.path);
let res = self.smart_resolve_path_fragment(
trait_ref.ref_id,
None,
&path,
trait_ref.path.span,
PathSource::Trait(AliasPossibility::No),
CrateLint::SimplePath(trait_ref.ref_id),
);
let res = res.base_res();
if res != Res::Err {
new_id = Some(res.def_id());
let span = trait_ref.path.span;
if let PathResult::Module(ModuleOrUniformRoot::Module(module)) = self.resolve_path(
&path,
Some(TypeNS),
false,
span,
CrateLint::SimplePath(trait_ref.ref_id),
) {
new_val = Some((module, trait_ref.clone()));
}
}
}
let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
let result = f(self, new_id);
self.current_trait_ref = original_trait_ref;
result
}
fn with_self_rib_ns(&mut self, ns: Namespace, self_res: Res, f: impl FnOnce(&mut Self)) {
let mut self_type_rib = Rib::new(NormalRibKind);
// Plain insert (no renaming, since types are not currently hygienic)
self_type_rib.bindings.insert(Ident::with_dummy_span(kw::SelfUpper), self_res);
self.ribs[ns].push(self_type_rib);
f(self);
self.ribs[ns].pop();
}
fn with_self_rib(&mut self, self_res: Res, f: impl FnOnce(&mut Self)) {
self.with_self_rib_ns(TypeNS, self_res, f)
}
fn resolve_implementation(
&mut self,
generics: &'ast Generics,
opt_trait_reference: &'ast Option<TraitRef>,
self_type: &'ast Ty,
item_id: NodeId,
impl_items: &'ast [P<AssocItem>],
) {
debug!("resolve_implementation");
// If applicable, create a rib for the type parameters.
self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
// Dummy self type for better errors if `Self` is used in the trait path.
this.with_self_rib(Res::SelfTy(None, None), |this| {
// Resolve the trait reference, if necessary.
this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
let item_def_id = this.r.local_def_id(item_id).to_def_id();
this.with_self_rib(Res::SelfTy(trait_id, Some((item_def_id, false))), |this| {
if let Some(trait_ref) = opt_trait_reference.as_ref() {
// Resolve type arguments in the trait path.
visit::walk_trait_ref(this, trait_ref);
}
// Resolve the self type.
this.visit_ty(self_type);
// Resolve the generic parameters.
this.visit_generics(generics);
// Resolve the items within the impl.
this.with_current_self_type(self_type, |this| {
this.with_self_rib_ns(ValueNS, Res::SelfCtor(item_def_id), |this| {
debug!("resolve_implementation with_self_rib_ns(ValueNS, ...)");
for item in impl_items {
use crate::ResolutionError::*;
match &item.kind {
AssocItemKind::Const(_default, _ty, _expr) => {
debug!("resolve_implementation AssocItemKind::Const",);
// If this is a trait impl, ensure the const
// exists in trait
this.check_trait_item(
item.ident,
ValueNS,
item.span,
|n, s| ConstNotMemberOfTrait(n, s),
);
// We allow arbitrary const expressions inside of associated consts,
// even if they are potentially not const evaluatable.
//
// Type parameters can already be used and as associated consts are
// not used as part of the type system, this is far less surprising.
this.with_constant_rib(
IsRepeatExpr::No,
true,
None,
|this| {
visit::walk_assoc_item(
this,
item,
AssocCtxt::Impl,
)
},
);
}
AssocItemKind::Fn(_, _, generics, _) => {
// We also need a new scope for the impl item type parameters.
this.with_generic_param_rib(
generics,
AssocItemRibKind,
|this| {
// If this is a trait impl, ensure the method
// exists in trait
this.check_trait_item(
item.ident,
ValueNS,
item.span,
|n, s| MethodNotMemberOfTrait(n, s),
);
visit::walk_assoc_item(
this,
item,
AssocCtxt::Impl,
)
},
);
}
AssocItemKind::TyAlias(_, generics, _, _) => {
// We also need a new scope for the impl item type parameters.
this.with_generic_param_rib(
generics,
AssocItemRibKind,
|this| {
// If this is a trait impl, ensure the type
// exists in trait
this.check_trait_item(
item.ident,
TypeNS,
item.span,
|n, s| TypeNotMemberOfTrait(n, s),
);
visit::walk_assoc_item(
this,
item,
AssocCtxt::Impl,
)
},
);
}
AssocItemKind::MacCall(_) => {
panic!("unexpanded macro in resolve!")
}
}
}
});
});
});
});
});
});
}
fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
where
F: FnOnce(Symbol, &str) -> ResolutionError<'_>,
{
// If there is a TraitRef in scope for an impl, then the method must be in the
// trait.
if let Some((module, _)) = self.current_trait_ref {
if self
.r
.resolve_ident_in_module(
ModuleOrUniformRoot::Module(module),
ident,
ns,
&self.parent_scope,
false,
span,
)
.is_err()
{
let path = &self.current_trait_ref.as_ref().unwrap().1.path;
self.report_error(span, err(ident.name, &path_names_to_string(path)));
}
}
}
fn resolve_params(&mut self, params: &'ast [Param]) {
let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
for Param { pat, ty, .. } in params {
self.resolve_pattern(pat, PatternSource::FnParam, &mut bindings);
self.visit_ty(ty);
debug!("(resolving function / closure) recorded parameter");
}
}
fn resolve_local(&mut self, local: &'ast Local) {
debug!("resolving local ({:?})", local);
// Resolve the type.
walk_list!(self, visit_ty, &local.ty);
// Resolve the initializer.
walk_list!(self, visit_expr, &local.init);
// Resolve the pattern.
self.resolve_pattern_top(&local.pat, PatternSource::Let);
}
/// build a map from pattern identifiers to binding-info's.
/// this is done hygienically. This could arise for a macro
/// that expands into an or-pattern where one 'x' was from the
/// user and one 'x' came from the macro.
fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
let mut binding_map = FxHashMap::default();
pat.walk(&mut |pat| {
match pat.kind {
PatKind::Ident(binding_mode, ident, ref sub_pat)
if sub_pat.is_some() || self.is_base_res_local(pat.id) =>
{
binding_map.insert(ident, BindingInfo { span: ident.span, binding_mode });
}
PatKind::Or(ref ps) => {
// Check the consistency of this or-pattern and
// then add all bindings to the larger map.
for bm in self.check_consistent_bindings(ps) {
binding_map.extend(bm);
}
return false;
}
_ => {}
}
true
});
binding_map
}
fn is_base_res_local(&self, nid: NodeId) -> bool {
matches!(self.r.partial_res_map.get(&nid).map(|res| res.base_res()), Some(Res::Local(..)))
}
/// Checks that all of the arms in an or-pattern have exactly the
/// same set of bindings, with the same binding modes for each.
fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) -> Vec<BindingMap> {
let mut missing_vars = FxHashMap::default();
let mut inconsistent_vars = FxHashMap::default();
// 1) Compute the binding maps of all arms.
let maps = pats.iter().map(|pat| self.binding_mode_map(pat)).collect::<Vec<_>>();
// 2) Record any missing bindings or binding mode inconsistencies.
for (map_outer, pat_outer) in pats.iter().enumerate().map(|(idx, pat)| (&maps[idx], pat)) {
// Check against all arms except for the same pattern which is always self-consistent.
let inners = pats
.iter()
.enumerate()
.filter(|(_, pat)| pat.id != pat_outer.id)
.flat_map(|(idx, _)| maps[idx].iter())
.map(|(key, binding)| (key.name, map_outer.get(&key), binding));
for (name, info, &binding_inner) in inners {
match info {
None => {
// The inner binding is missing in the outer.
let binding_error =
missing_vars.entry(name).or_insert_with(|| BindingError {
name,
origin: BTreeSet::new(),
target: BTreeSet::new(),
could_be_path: name.as_str().starts_with(char::is_uppercase),
});
binding_error.origin.insert(binding_inner.span);
binding_error.target.insert(pat_outer.span);
}
Some(binding_outer) => {
if binding_outer.binding_mode != binding_inner.binding_mode {
// The binding modes in the outer and inner bindings differ.
inconsistent_vars
.entry(name)
.or_insert((binding_inner.span, binding_outer.span));
}
}
}
}
}
// 3) Report all missing variables we found.
let mut missing_vars = missing_vars.iter_mut().collect::<Vec<_>>();
missing_vars.sort_by_key(|(sym, _err)| sym.as_str());
for (name, mut v) in missing_vars {
if inconsistent_vars.contains_key(name) {
v.could_be_path = false;
}
self.report_error(
*v.origin.iter().next().unwrap(),
ResolutionError::VariableNotBoundInPattern(v),
);
}
// 4) Report all inconsistencies in binding modes we found.
let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
inconsistent_vars.sort();
for (name, v) in inconsistent_vars {
self.report_error(v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
}
// 5) Finally bubble up all the binding maps.
maps
}
/// Check the consistency of the outermost or-patterns.
fn check_consistent_bindings_top(&mut self, pat: &'ast Pat) {
pat.walk(&mut |pat| match pat.kind {
PatKind::Or(ref ps) => {
self.check_consistent_bindings(ps);
false
}
_ => true,
})
}
fn resolve_arm(&mut self, arm: &'ast Arm) {
self.with_rib(ValueNS, NormalRibKind, |this| {
this.resolve_pattern_top(&arm.pat, PatternSource::Match);
walk_list!(this, visit_expr, &arm.guard);
this.visit_expr(&arm.body);
});
}
/// Arising from `source`, resolve a top level pattern.
fn resolve_pattern_top(&mut self, pat: &'ast Pat, pat_src: PatternSource) {
let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
self.resolve_pattern(pat, pat_src, &mut bindings);
}
fn resolve_pattern(
&mut self,
pat: &'ast Pat,
pat_src: PatternSource,
bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
) {
self.resolve_pattern_inner(pat, pat_src, bindings);
// This has to happen *after* we determine which pat_idents are variants:
self.check_consistent_bindings_top(pat);
visit::walk_pat(self, pat);
}
/// Resolve bindings in a pattern. This is a helper to `resolve_pattern`.
///
/// ### `bindings`
///
/// A stack of sets of bindings accumulated.
///
/// In each set, `PatBoundCtx::Product` denotes that a found binding in it should
/// be interpreted as re-binding an already bound binding. This results in an error.
/// Meanwhile, `PatBound::Or` denotes that a found binding in the set should result
/// in reusing this binding rather than creating a fresh one.
///
/// When called at the top level, the stack must have a single element
/// with `PatBound::Product`. Otherwise, pushing to the stack happens as
/// or-patterns (`p_0 | ... | p_n`) are encountered and the context needs
/// to be switched to `PatBoundCtx::Or` and then `PatBoundCtx::Product` for each `p_i`.
/// When each `p_i` has been dealt with, the top set is merged with its parent.
/// When a whole or-pattern has been dealt with, the thing happens.
///
/// See the implementation and `fresh_binding` for more details.
fn resolve_pattern_inner(
&mut self,
pat: &Pat,
pat_src: PatternSource,
bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
) {
// Visit all direct subpatterns of this pattern.
pat.walk(&mut |pat| {
debug!("resolve_pattern pat={:?} node={:?}", pat, pat.kind);
match pat.kind {
PatKind::Ident(bmode, ident, ref sub) => {
// First try to resolve the identifier as some existing entity,
// then fall back to a fresh binding.
let has_sub = sub.is_some();
let res = self
.try_resolve_as_non_binding(pat_src, pat, bmode, ident, has_sub)
.unwrap_or_else(|| self.fresh_binding(ident, pat.id, pat_src, bindings));
self.r.record_partial_res(pat.id, PartialRes::new(res));
}
PatKind::TupleStruct(ref path, ref sub_patterns) => {
self.smart_resolve_path(
pat.id,
None,
path,
PathSource::TupleStruct(
pat.span,
self.r.arenas.alloc_pattern_spans(sub_patterns.iter().map(|p| p.span)),
),
);
}
PatKind::Path(ref qself, ref path) => {
self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
}
PatKind::Struct(ref path, ..) => {
self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
}
PatKind::Or(ref ps) => {
// Add a new set of bindings to the stack. `Or` here records that when a
// binding already exists in this set, it should not result in an error because
// `V1(a) | V2(a)` must be allowed and are checked for consistency later.
bindings.push((PatBoundCtx::Or, Default::default()));
for p in ps {
// Now we need to switch back to a product context so that each
// part of the or-pattern internally rejects already bound names.
// For example, `V1(a) | V2(a, a)` and `V1(a, a) | V2(a)` are bad.
bindings.push((PatBoundCtx::Product, Default::default()));
self.resolve_pattern_inner(p, pat_src, bindings);
// Move up the non-overlapping bindings to the or-pattern.
// Existing bindings just get "merged".
let collected = bindings.pop().unwrap().1;
bindings.last_mut().unwrap().1.extend(collected);
}
// This or-pattern itself can itself be part of a product,
// e.g. `(V1(a) | V2(a), a)` or `(a, V1(a) | V2(a))`.
// Both cases bind `a` again in a product pattern and must be rejected.
let collected = bindings.pop().unwrap().1;
bindings.last_mut().unwrap().1.extend(collected);
// Prevent visiting `ps` as we've already done so above.
return false;
}
_ => {}
}
true
});
}
fn fresh_binding(
&mut self,
ident: Ident,
pat_id: NodeId,
pat_src: PatternSource,
bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
) -> Res {
// Add the binding to the local ribs, if it doesn't already exist in the bindings map.
// (We must not add it if it's in the bindings map because that breaks the assumptions
// later passes make about or-patterns.)
let ident = ident.normalize_to_macro_rules();
let mut bound_iter = bindings.iter().filter(|(_, set)| set.contains(&ident));
// Already bound in a product pattern? e.g. `(a, a)` which is not allowed.
let already_bound_and = bound_iter.clone().any(|(ctx, _)| *ctx == PatBoundCtx::Product);
// Already bound in an or-pattern? e.g. `V1(a) | V2(a)`.
// This is *required* for consistency which is checked later.
let already_bound_or = bound_iter.any(|(ctx, _)| *ctx == PatBoundCtx::Or);
if already_bound_and {
// Overlap in a product pattern somewhere; report an error.
use ResolutionError::*;
let error = match pat_src {
// `fn f(a: u8, a: u8)`:
PatternSource::FnParam => IdentifierBoundMoreThanOnceInParameterList,
// `Variant(a, a)`:
_ => IdentifierBoundMoreThanOnceInSamePattern,
};
self.report_error(ident.span, error(ident.name));
}
// Record as bound if it's valid:
let ident_valid = ident.name != kw::Empty;
if ident_valid {
bindings.last_mut().unwrap().1.insert(ident);
}
if already_bound_or {
// `Variant1(a) | Variant2(a)`, ok
// Reuse definition from the first `a`.
self.innermost_rib_bindings(ValueNS)[&ident]
} else {
let res = Res::Local(pat_id);
if ident_valid {
// A completely fresh binding add to the set if it's valid.
self.innermost_rib_bindings(ValueNS).insert(ident, res);
}
res
}
}
fn innermost_rib_bindings(&mut self, ns: Namespace) -> &mut IdentMap<Res> {
&mut self.ribs[ns].last_mut().unwrap().bindings
}
fn try_resolve_as_non_binding(
&mut self,
pat_src: PatternSource,
pat: &Pat,
bm: BindingMode,
ident: Ident,
has_sub: bool,
) -> Option<Res> {
// An immutable (no `mut`) by-value (no `ref`) binding pattern without
// a sub pattern (no `@ $pat`) is syntactically ambiguous as it could
// also be interpreted as a path to e.g. a constant, variant, etc.
let is_syntactic_ambiguity = !has_sub && bm == BindingMode::ByValue(Mutability::Not);
let ls_binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, pat.span)?;
let (res, binding) = match ls_binding {
LexicalScopeBinding::Item(binding)
if is_syntactic_ambiguity && binding.is_ambiguity() =>
{
// For ambiguous bindings we don't know all their definitions and cannot check
// whether they can be shadowed by fresh bindings or not, so force an error.
// issues/33118#issuecomment-233962221 (see below) still applies here,
// but we have to ignore it for backward compatibility.
self.r.record_use(ident, ValueNS, binding, false);
return None;
}
LexicalScopeBinding::Item(binding) => (binding.res(), Some(binding)),
LexicalScopeBinding::Res(res) => (res, None),
};
match res {
Res::SelfCtor(_) // See #70549.
| Res::Def(
DefKind::Ctor(_, CtorKind::Const) | DefKind::Const | DefKind::ConstParam,
_,
) if is_syntactic_ambiguity => {
// Disambiguate in favor of a unit struct/variant or constant pattern.
if let Some(binding) = binding {
self.r.record_use(ident, ValueNS, binding, false);
}
Some(res)
}
Res::Def(DefKind::Ctor(..) | DefKind::Const | DefKind::Static, _) => {
// This is unambiguously a fresh binding, either syntactically
// (e.g., `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
// to something unusable as a pattern (e.g., constructor function),
// but we still conservatively report an error, see
// issues/33118#issuecomment-233962221 for one reason why.
self.report_error(
ident.span,
ResolutionError::BindingShadowsSomethingUnacceptable(
pat_src.descr(),
ident.name,
binding.expect("no binding for a ctor or static"),
),
);
None
}
Res::Def(DefKind::Fn, _) | Res::Local(..) | Res::Err => {
// These entities are explicitly allowed to be shadowed by fresh bindings.
None
}
_ => span_bug!(
ident.span,
"unexpected resolution for an identifier in pattern: {:?}",
res,
),
}
}
// High-level and context dependent path resolution routine.
// Resolves the path and records the resolution into definition map.
// If resolution fails tries several techniques to find likely
// resolution candidates, suggest imports or other help, and report
// errors in user friendly way.
fn smart_resolve_path(
&mut self,
id: NodeId,
qself: Option<&QSelf>,
path: &Path,
source: PathSource<'ast>,
) {
self.smart_resolve_path_fragment(
id,
qself,
&Segment::from_path(path),
path.span,
source,
CrateLint::SimplePath(id),
);
}
fn smart_resolve_path_fragment(
&mut self,
id: NodeId,
qself: Option<&QSelf>,
path: &[Segment],
span: Span,
source: PathSource<'ast>,
crate_lint: CrateLint,
) -> PartialRes {
tracing::debug!(
"smart_resolve_path_fragment(id={:?},qself={:?},path={:?}",
id,
qself,
path
);
let ns = source.namespace();
let report_errors = |this: &mut Self, res: Option<Res>| {
if this.should_report_errs() {
let (err, candidates) = this.smart_resolve_report_errors(path, span, source, res);
let def_id = this.parent_scope.module.nearest_parent_mod;
let instead = res.is_some();
let suggestion =
if res.is_none() { this.report_missing_type_error(path) } else { None };
this.r.use_injections.push(UseError {
err,
candidates,
def_id,
instead,
suggestion,
});
}
PartialRes::new(Res::Err)
};
// For paths originating from calls (like in `HashMap::new()`), tries
// to enrich the plain `failed to resolve: ...` message with hints
// about possible missing imports.
//
// Similar thing, for types, happens in `report_errors` above.
let report_errors_for_call = |this: &mut Self, parent_err: Spanned<ResolutionError<'a>>| {
if !source.is_call() {
return Some(parent_err);
}
// Before we start looking for candidates, we have to get our hands
// on the type user is trying to perform invocation on; basically:
// we're transforming `HashMap::new` into just `HashMap`
let path = if let Some((_, path)) = path.split_last() {
path
} else {
return Some(parent_err);
};
let (mut err, candidates) =
this.smart_resolve_report_errors(path, span, PathSource::Type, None);
if candidates.is_empty() {
err.cancel();
return Some(parent_err);
}
// There are two different error messages user might receive at
// this point:
// - E0412 cannot find type `{}` in this scope
// - E0433 failed to resolve: use of undeclared type or module `{}`
//
// The first one is emitted for paths in type-position, and the
// latter one - for paths in expression-position.
//
// Thus (since we're in expression-position at this point), not to
// confuse the user, we want to keep the *message* from E0432 (so
// `parent_err`), but we want *hints* from E0412 (so `err`).
//
// And that's what happens below - we're just mixing both messages
// into a single one.
let mut parent_err = this.r.into_struct_error(parent_err.span, parent_err.node);
parent_err.cancel();
err.message = take(&mut parent_err.message);
err.code = take(&mut parent_err.code);
err.children = take(&mut parent_err.children);
drop(parent_err);
let def_id = this.parent_scope.module.nearest_parent_mod;
if this.should_report_errs() {
this.r.use_injections.push(UseError {
err,
candidates,
def_id,
instead: false,
suggestion: None,
});
} else {
err.cancel();
}
// We don't return `Some(parent_err)` here, because the error will
// be already printed as part of the `use` injections
None
};
let partial_res = match self.resolve_qpath_anywhere(
id,
qself,
path,
ns,
span,
source.defer_to_typeck(),
crate_lint,
) {
Ok(Some(partial_res)) if partial_res.unresolved_segments() == 0 => {
if source.is_expected(partial_res.base_res()) || partial_res.base_res() == Res::Err
{
partial_res
} else {
report_errors(self, Some(partial_res.base_res()))
}
}
Ok(Some(partial_res)) if source.defer_to_typeck() => {
// Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
// or `<T>::A::B`. If `B` should be resolved in value namespace then
// it needs to be added to the trait map.
if ns == ValueNS {
let item_name = path.last().unwrap().ident;
let traits = self.traits_in_scope(item_name, ns);
self.r.trait_map.insert(id, traits);
}
if self.r.primitive_type_table.primitive_types.contains_key(&path[0].ident.name) {
let mut std_path = Vec::with_capacity(1 + path.len());
std_path.push(Segment::from_ident(Ident::with_dummy_span(sym::std)));
std_path.extend(path);
if let PathResult::Module(_) | PathResult::NonModule(_) =
self.resolve_path(&std_path, Some(ns), false, span, CrateLint::No)
{
// Check if we wrote `str::from_utf8` instead of `std::str::from_utf8`
let item_span =
path.iter().last().map_or(span, |segment| segment.ident.span);
let mut hm = self.r.session.confused_type_with_std_module.borrow_mut();
hm.insert(item_span, span);
hm.insert(span, span);
}
}
partial_res
}
Err(err) => {
if let Some(err) = report_errors_for_call(self, err) {
self.report_error(err.span, err.node);
}
PartialRes::new(Res::Err)
}
_ => report_errors(self, None),
};
if !matches!(source, PathSource::TraitItem(..)) {
// Avoid recording definition of `A::B` in `<T as A>::B::C`.
self.r.record_partial_res(id, partial_res);
}
partial_res
}
fn self_type_is_available(&mut self, span: Span) -> bool {
let binding = self.resolve_ident_in_lexical_scope(
Ident::with_dummy_span(kw::SelfUpper),
TypeNS,
None,
span,
);
if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false }
}
fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
let ident = Ident::new(kw::SelfLower, self_span);
let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span);
if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false }
}
/// A wrapper around [`Resolver::report_error`].
///
/// This doesn't emit errors for function bodies if this is rustdoc.
fn report_error(&self, span: Span, resolution_error: ResolutionError<'_>) {
if self.should_report_errs() {
self.r.report_error(span, resolution_error);
}
}
#[inline]
/// If we're actually rustdoc then avoid giving a name resolution error for `cfg()` items.
fn should_report_errs(&self) -> bool {
!(self.r.session.opts.actually_rustdoc && self.in_func_body)
}
// Resolve in alternative namespaces if resolution in the primary namespace fails.
fn resolve_qpath_anywhere(
&mut self,
id: NodeId,
qself: Option<&QSelf>,
path: &[Segment],
primary_ns: Namespace,
span: Span,
defer_to_typeck: bool,
crate_lint: CrateLint,
) -> Result<Option<PartialRes>, Spanned<ResolutionError<'a>>> {
let mut fin_res = None;
for (i, &ns) in [primary_ns, TypeNS, ValueNS].iter().enumerate() {
if i == 0 || ns != primary_ns {
match self.resolve_qpath(id, qself, path, ns, span, crate_lint)? {
Some(partial_res)
if partial_res.unresolved_segments() == 0 || defer_to_typeck =>
{
return Ok(Some(partial_res));
}
partial_res => {
if fin_res.is_none() {
fin_res = partial_res;
}
}
}
}
}
assert!(primary_ns != MacroNS);
if qself.is_none() {
let path_seg = |seg: &Segment| PathSegment::from_ident(seg.ident);
let path = Path { segments: path.iter().map(path_seg).collect(), span, tokens: None };
if let Ok((_, res)) =
self.r.resolve_macro_path(&path, None, &self.parent_scope, false, false)
{
return Ok(Some(PartialRes::new(res)));
}
}
Ok(fin_res)
}
/// Handles paths that may refer to associated items.
fn resolve_qpath(
&mut self,
id: NodeId,
qself: Option<&QSelf>,
path: &[Segment],
ns: Namespace,
span: Span,
crate_lint: CrateLint,
) -> Result<Option<PartialRes>, Spanned<ResolutionError<'a>>> {
debug!(
"resolve_qpath(id={:?}, qself={:?}, path={:?}, ns={:?}, span={:?})",
id, qself, path, ns, span,
);
if let Some(qself) = qself {
if qself.position == 0 {
// This is a case like `<T>::B`, where there is no
// trait to resolve. In that case, we leave the `B`
// segment to be resolved by type-check.
return Ok(Some(PartialRes::with_unresolved_segments(
Res::Def(DefKind::Mod, DefId::local(CRATE_DEF_INDEX)),
path.len(),
)));
}
// Make sure `A::B` in `<T as A::B>::C` is a trait item.
//
// Currently, `path` names the full item (`A::B::C`, in
// our example). so we extract the prefix of that that is
// the trait (the slice upto and including
// `qself.position`). And then we recursively resolve that,
// but with `qself` set to `None`.
//
// However, setting `qself` to none (but not changing the
// span) loses the information about where this path
// *actually* appears, so for the purposes of the crate
// lint we pass along information that this is the trait
// name from a fully qualified path, and this also
// contains the full span (the `CrateLint::QPathTrait`).
let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
let partial_res = self.smart_resolve_path_fragment(
id,
None,
&path[..=qself.position],
span,
PathSource::TraitItem(ns),
CrateLint::QPathTrait { qpath_id: id, qpath_span: qself.path_span },
);
// The remaining segments (the `C` in our example) will
// have to be resolved by type-check, since that requires doing
// trait resolution.
return Ok(Some(PartialRes::with_unresolved_segments(
partial_res.base_res(),
partial_res.unresolved_segments() + path.len() - qself.position - 1,
)));
}
let result = match self.resolve_path(&path, Some(ns), true, span, crate_lint) {
PathResult::NonModule(path_res) => path_res,
PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
PartialRes::new(module.res().unwrap())
}
// In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
// don't report an error right away, but try to fallback to a primitive type.
// So, we are still able to successfully resolve something like
//
// use std::u8; // bring module u8 in scope
// fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
// u8::max_value() // OK, resolves to associated function <u8>::max_value,
// // not to non-existent std::u8::max_value
// }
//
// Such behavior is required for backward compatibility.
// The same fallback is used when `a` resolves to nothing.
PathResult::Module(ModuleOrUniformRoot::Module(_)) | PathResult::Failed { .. }
if (ns == TypeNS || path.len() > 1)
&& self
.r
.primitive_type_table
.primitive_types
.contains_key(&path[0].ident.name) =>
{
let prim = self.r.primitive_type_table.primitive_types[&path[0].ident.name];
PartialRes::with_unresolved_segments(Res::PrimTy(prim), path.len() - 1)
}
PathResult::Module(ModuleOrUniformRoot::Module(module)) => {
PartialRes::new(module.res().unwrap())
}
PathResult::Failed { is_error_from_last_segment: false, span, label, suggestion } => {
return Err(respan(span, ResolutionError::FailedToResolve { label, suggestion }));
}
PathResult::Module(..) | PathResult::Failed { .. } => return Ok(None),
PathResult::Indeterminate => bug!("indeterminate path result in resolve_qpath"),
};
if path.len() > 1
&& result.base_res() != Res::Err
&& path[0].ident.name != kw::PathRoot
&& path[0].ident.name != kw::DollarCrate
{
let unqualified_result = {
match self.resolve_path(
&[*path.last().unwrap()],
Some(ns),
false,
span,
CrateLint::No,
) {
PathResult::NonModule(path_res) => path_res.base_res(),
PathResult::Module(ModuleOrUniformRoot::Module(module)) => {
module.res().unwrap()
}
_ => return Ok(Some(result)),
}
};
if result.base_res() == unqualified_result {
let lint = lint::builtin::UNUSED_QUALIFICATIONS;
self.r.lint_buffer.buffer_lint(lint, id, span, "unnecessary qualification")
}
}
Ok(Some(result))
}
fn with_resolved_label(&mut self, label: Option<Label>, id: NodeId, f: impl FnOnce(&mut Self)) {
if let Some(label) = label {
if label.ident.as_str().as_bytes()[1] != b'_' {
self.diagnostic_metadata.unused_labels.insert(id, label.ident.span);
}
self.with_label_rib(NormalRibKind, |this| {
let ident = label.ident.normalize_to_macro_rules();
this.label_ribs.last_mut().unwrap().bindings.insert(ident, id);
f(this);
});
} else {
f(self);
}
}
fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &'ast Block) {
self.with_resolved_label(label, id, |this| this.visit_block(block));
}
fn resolve_block(&mut self, block: &'ast Block) {
debug!("(resolving block) entering block");
// Move down in the graph, if there's an anonymous module rooted here.
let orig_module = self.parent_scope.module;
let anonymous_module = self.r.block_map.get(&block.id).cloned(); // clones a reference
let mut num_macro_definition_ribs = 0;
if let Some(anonymous_module) = anonymous_module {
debug!("(resolving block) found anonymous module, moving down");
self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
self.parent_scope.module = anonymous_module;
} else {
self.ribs[ValueNS].push(Rib::new(NormalRibKind));
}
// Descend into the block.
for stmt in &block.stmts {
if let StmtKind::Item(ref item) = stmt.kind {
if let ItemKind::MacroDef(..) = item.kind {
num_macro_definition_ribs += 1;
let res = self.r.local_def_id(item.id).to_def_id();
self.ribs[ValueNS].push(Rib::new(MacroDefinition(res)));
self.label_ribs.push(Rib::new(MacroDefinition(res)));
}
}
self.visit_stmt(stmt);
}
// Move back up.
self.parent_scope.module = orig_module;
for _ in 0..num_macro_definition_ribs {
self.ribs[ValueNS].pop();
self.label_ribs.pop();
}
self.ribs[ValueNS].pop();
if anonymous_module.is_some() {
self.ribs[TypeNS].pop();
}
debug!("(resolving block) leaving block");
}
fn resolve_anon_const(&mut self, constant: &'ast AnonConst, is_repeat: IsRepeatExpr) {
debug!("resolve_anon_const {:?} is_repeat: {:?}", constant, is_repeat);
self.with_constant_rib(
is_repeat,
constant.value.is_potential_trivial_const_param(),
None,
|this| {
visit::walk_anon_const(this, constant);
},
);
}
fn resolve_expr(&mut self, expr: &'ast Expr, parent: Option<&'ast Expr>) {
// First, record candidate traits for this expression if it could
// result in the invocation of a method call.
self.record_candidate_traits_for_expr_if_necessary(expr);
// Next, resolve the node.
match expr.kind {
ExprKind::Path(ref qself, ref path) => {
self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
visit::walk_expr(self, expr);
}
ExprKind::Struct(ref path, ..) => {
self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
visit::walk_expr(self, expr);
}
ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
if let Some(node_id) = self.resolve_label(label.ident) {
// Since this res is a label, it is never read.
self.r.label_res_map.insert(expr.id, node_id);
self.diagnostic_metadata.unused_labels.remove(&node_id);
}
// visit `break` argument if any
visit::walk_expr(self, expr);
}
ExprKind::Let(ref pat, ref scrutinee) => {
self.visit_expr(scrutinee);
self.resolve_pattern_top(pat, PatternSource::Let);
}
ExprKind::If(ref cond, ref then, ref opt_else) => {
self.with_rib(ValueNS, NormalRibKind, |this| {
let old = this.diagnostic_metadata.in_if_condition.replace(cond);
this.visit_expr(cond);
this.diagnostic_metadata.in_if_condition = old;
this.visit_block(then);
});
if let Some(expr) = opt_else {
self.visit_expr(expr);
}
}
ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
ExprKind::While(ref cond, ref block, label) => {
self.with_resolved_label(label, expr.id, |this| {
this.with_rib(ValueNS, NormalRibKind, |this| {
this.visit_expr(cond);
this.visit_block(block);
})
});
}
ExprKind::ForLoop(ref pat, ref iter_expr, ref block, label) => {
self.visit_expr(iter_expr);
self.with_rib(ValueNS, NormalRibKind, |this| {
this.resolve_pattern_top(pat, PatternSource::For);
this.resolve_labeled_block(label, expr.id, block);
});
}
ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
// Equivalent to `visit::walk_expr` + passing some context to children.
ExprKind::Field(ref subexpression, _) => {
self.resolve_expr(subexpression, Some(expr));
}
ExprKind::MethodCall(ref segment, ref arguments, _) => {
let mut arguments = arguments.iter();
self.resolve_expr(arguments.next().unwrap(), Some(expr));
for argument in arguments {
self.resolve_expr(argument, None);
}
self.visit_path_segment(expr.span, segment);
}
ExprKind::Call(ref callee, ref arguments) => {
self.resolve_expr(callee, Some(expr));
for argument in arguments {
self.resolve_expr(argument, None);
}
}
ExprKind::Type(ref type_expr, ref ty) => {
// `ParseSess::type_ascription_path_suggestions` keeps spans of colon tokens in
// type ascription. Here we are trying to retrieve the span of the colon token as
// well, but only if it's written without spaces `expr:Ty` and therefore confusable
// with `expr::Ty`, only in this case it will match the span from
// `type_ascription_path_suggestions`.
self.diagnostic_metadata
.current_type_ascription
.push(type_expr.span.between(ty.span));
visit::walk_expr(self, expr);
self.diagnostic_metadata.current_type_ascription.pop();
}
// `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
// resolve the arguments within the proper scopes so that usages of them inside the
// closure are detected as upvars rather than normal closure arg usages.
ExprKind::Closure(_, Async::Yes { .. }, _, ref fn_decl, ref body, _span) => {
self.with_rib(ValueNS, NormalRibKind, |this| {
this.with_label_rib(ClosureOrAsyncRibKind, |this| {
// Resolve arguments:
this.resolve_params(&fn_decl.inputs);
// No need to resolve return type --
// the outer closure return type is `FnRetTy::Default`.
// Now resolve the inner closure
{
// No need to resolve arguments: the inner closure has none.
// Resolve the return type:
visit::walk_fn_ret_ty(this, &fn_decl.output);
// Resolve the body
this.visit_expr(body);
}
})
});
}
ExprKind::Async(..) | ExprKind::Closure(..) => {
self.with_label_rib(ClosureOrAsyncRibKind, |this| visit::walk_expr(this, expr));
}
ExprKind::Repeat(ref elem, ref ct) => {
self.visit_expr(elem);
self.resolve_anon_const(ct, IsRepeatExpr::Yes);
}
_ => {
visit::walk_expr(self, expr);
}
}
}
fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &'ast Expr) {
match expr.kind {
ExprKind::Field(_, ident) => {
// FIXME(#6890): Even though you can't treat a method like a
// field, we need to add any trait methods we find that match
// the field name so that we can do some nice error reporting
// later on in typeck.
let traits = self.traits_in_scope(ident, ValueNS);
self.r.trait_map.insert(expr.id, traits);
}
ExprKind::MethodCall(ref segment, ..) => {
debug!("(recording candidate traits for expr) recording traits for {}", expr.id);
let traits = self.traits_in_scope(segment.ident, ValueNS);
self.r.trait_map.insert(expr.id, traits);
}
_ => {
// Nothing to do.
}
}
}
fn traits_in_scope(&mut self, ident: Ident, ns: Namespace) -> Vec<TraitCandidate> {
self.r.traits_in_scope(
self.current_trait_ref.as_ref().map(|(module, _)| *module),
&self.parent_scope,
ident.span.ctxt(),
Some((ident.name, ns)),
)
}
}
impl<'a> Resolver<'a> {
pub(crate) fn late_resolve_crate(&mut self, krate: &Crate) {
let mut late_resolution_visitor = LateResolutionVisitor::new(self);
visit::walk_crate(&mut late_resolution_visitor, krate);
for (id, span) in late_resolution_visitor.diagnostic_metadata.unused_labels.iter() {
self.lint_buffer.buffer_lint(lint::builtin::UNUSED_LABELS, *id, *span, "unused label");
}
}
}