rust/tests/ui/target-feature/no-llvm-leaks.rs
Ralf Jung a0215d8e46 Re-do recursive const stability checks
Fundamentally, we have *three* disjoint categories of functions:
1. const-stable functions
2. private/unstable functions that are meant to be callable from const-stable functions
3. functions that can make use of unstable const features

This PR implements the following system:
- `#[rustc_const_stable]` puts functions in the first category. It may only be applied to `#[stable]` functions.
- `#[rustc_const_unstable]` by default puts functions in the third category. The new attribute `#[rustc_const_stable_indirect]` can be added to such a function to move it into the second category.
- `const fn` without a const stability marker are in the second category if they are still unstable. They automatically inherit the feature gate for regular calls, it can now also be used for const-calls.

Also, several holes in recursive const stability checking are being closed.
There's still one potential hole that is hard to avoid, which is when MIR
building automatically inserts calls to a particular function in stable
functions -- which happens in the panic machinery. Those need to *not* be
`rustc_const_unstable` (or manually get a `rustc_const_stable_indirect`) to be
sure they follow recursive const stability. But that's a fairly rare and special
case so IMO it's fine.

The net effect of this is that a `#[unstable]` or unmarked function can be
constified simply by marking it as `const fn`, and it will then be
const-callable from stable `const fn` and subject to recursive const stability
requirements. If it is publicly reachable (which implies it cannot be unmarked),
it will be const-unstable under the same feature gate. Only if the function ever
becomes `#[stable]` does it need a `#[rustc_const_unstable]` or
`#[rustc_const_stable]` marker to decide if this should also imply
const-stability.

Adding `#[rustc_const_unstable]` is only needed for (a) functions that need to
use unstable const lang features (including intrinsics), or (b) `#[stable]`
functions that are not yet intended to be const-stable. Adding
`#[rustc_const_stable]` is only needed for functions that are actually meant to
be directly callable from stable const code. `#[rustc_const_stable_indirect]` is
used to mark intrinsics as const-callable and for `#[rustc_const_unstable]`
functions that are actually called from other, exposed-on-stable `const fn`. No
other attributes are required.
2024-10-25 20:31:40 +02:00

74 lines
2.1 KiB
Rust

//@ revisions: aarch64 x86-64
//@ [aarch64] compile-flags: -Ctarget-feature=+neon,+fp16,+fhm --target=aarch64-unknown-linux-gnu
//@ [aarch64] needs-llvm-components: aarch64
//@ [x86-64] compile-flags: -Ctarget-feature=+sse4.2,+rdrand --target=x86_64-unknown-linux-gnu
//@ [x86-64] needs-llvm-components: x86
//@ build-pass
#![no_core]
#![crate_type = "rlib"]
#![feature(intrinsics, rustc_attrs, no_core, lang_items, staged_api)]
#![stable(feature = "test", since = "1.0.0")]
// Supporting minimal rust core code
#[lang = "sized"]
trait Sized {}
#[lang = "copy"]
trait Copy {}
impl Copy for bool {}
extern "rust-intrinsic" {
#[stable(feature = "test", since = "1.0.0")]
#[rustc_const_stable(feature = "test", since = "1.0.0")]
fn unreachable() -> !;
}
#[rustc_builtin_macro]
macro_rules! cfg {
($($cfg:tt)*) => {};
}
// Test code
const fn do_or_die(cond: bool) {
if cond {
} else {
unsafe { unreachable() }
}
}
macro_rules! assert {
($x:expr $(,)?) => {
const _: () = do_or_die($x);
};
}
#[cfg(target_arch = "aarch64")]
fn check_aarch64() {
// These checks that the rustc feature name is used, not the LLVM feature.
assert!(cfg!(target_feature = "neon"));
// #[expect(unexpected_cfgs)] except that 32-bit arm actually use fp-armv8
{ assert!(cfg!(not(target_feature = "fp-armv8"))); }
assert!(cfg!(target_feature = "fhm"));
#[expect(unexpected_cfgs)]
{ assert!(cfg!(not(target_feature = "fp16fml"))); }
assert!(cfg!(target_feature = "fp16"));
#[expect(unexpected_cfgs)]
{ assert!(cfg!(not(target_feature = "fullfp16"))); }
}
#[cfg(target_arch = "x86_64")]
fn check_x86_64() {
// This checks that the rustc feature name is used, not the LLVM feature.
assert!(cfg!(target_feature = "rdrand"));
#[expect(unexpected_cfgs)]
{ assert!(cfg!(not(target_feature = "rdrnd"))); }
// Likewise: We enable LLVM's crc32 feature with SSE4.2, but Rust says it's just SSE4.2
assert!(cfg!(target_feature = "sse4.2"));
#[expect(unexpected_cfgs)]
{ assert!(cfg!(not(target_feature = "crc32"))); }
}