mirror of
https://github.com/rust-lang/rust.git
synced 2025-04-28 19:17:43 +00:00
3972 lines
138 KiB
Rust
3972 lines
138 KiB
Rust
#![stable(feature = "rust1", since = "1.0.0")]
|
||
|
||
//! Thread-safe reference-counting pointers.
|
||
//!
|
||
//! See the [`Arc<T>`][Arc] documentation for more details.
|
||
//!
|
||
//! **Note**: This module is only available on platforms that support atomic
|
||
//! loads and stores of pointers. This may be detected at compile time using
|
||
//! `#[cfg(target_has_atomic = "ptr")]`.
|
||
|
||
use core::any::Any;
|
||
#[cfg(not(no_global_oom_handling))]
|
||
use core::clone::CloneToUninit;
|
||
use core::cmp::Ordering;
|
||
use core::hash::{Hash, Hasher};
|
||
use core::intrinsics::abort;
|
||
#[cfg(not(no_global_oom_handling))]
|
||
use core::iter;
|
||
use core::marker::{PhantomData, Unsize};
|
||
use core::mem::{self, ManuallyDrop, align_of_val_raw};
|
||
use core::ops::{CoerceUnsized, Deref, DerefPure, DispatchFromDyn, LegacyReceiver};
|
||
use core::panic::{RefUnwindSafe, UnwindSafe};
|
||
use core::pin::{Pin, PinCoerceUnsized};
|
||
use core::ptr::{self, NonNull};
|
||
#[cfg(not(no_global_oom_handling))]
|
||
use core::slice::from_raw_parts_mut;
|
||
use core::sync::atomic;
|
||
use core::sync::atomic::Ordering::{Acquire, Relaxed, Release};
|
||
use core::{borrow, fmt, hint};
|
||
|
||
#[cfg(not(no_global_oom_handling))]
|
||
use crate::alloc::handle_alloc_error;
|
||
use crate::alloc::{AllocError, Allocator, Global, Layout};
|
||
use crate::borrow::{Cow, ToOwned};
|
||
use crate::boxed::Box;
|
||
use crate::rc::is_dangling;
|
||
#[cfg(not(no_global_oom_handling))]
|
||
use crate::string::String;
|
||
#[cfg(not(no_global_oom_handling))]
|
||
use crate::vec::Vec;
|
||
|
||
#[cfg(test)]
|
||
mod tests;
|
||
|
||
/// A soft limit on the amount of references that may be made to an `Arc`.
|
||
///
|
||
/// Going above this limit will abort your program (although not
|
||
/// necessarily) at _exactly_ `MAX_REFCOUNT + 1` references.
|
||
/// Trying to go above it might call a `panic` (if not actually going above it).
|
||
///
|
||
/// This is a global invariant, and also applies when using a compare-exchange loop.
|
||
///
|
||
/// See comment in `Arc::clone`.
|
||
const MAX_REFCOUNT: usize = (isize::MAX) as usize;
|
||
|
||
/// The error in case either counter reaches above `MAX_REFCOUNT`, and we can `panic` safely.
|
||
const INTERNAL_OVERFLOW_ERROR: &str = "Arc counter overflow";
|
||
|
||
#[cfg(not(sanitize = "thread"))]
|
||
macro_rules! acquire {
|
||
($x:expr) => {
|
||
atomic::fence(Acquire)
|
||
};
|
||
}
|
||
|
||
// ThreadSanitizer does not support memory fences. To avoid false positive
|
||
// reports in Arc / Weak implementation use atomic loads for synchronization
|
||
// instead.
|
||
#[cfg(sanitize = "thread")]
|
||
macro_rules! acquire {
|
||
($x:expr) => {
|
||
$x.load(Acquire)
|
||
};
|
||
}
|
||
|
||
/// A thread-safe reference-counting pointer. 'Arc' stands for 'Atomically
|
||
/// Reference Counted'.
|
||
///
|
||
/// The type `Arc<T>` provides shared ownership of a value of type `T`,
|
||
/// allocated in the heap. Invoking [`clone`][clone] on `Arc` produces
|
||
/// a new `Arc` instance, which points to the same allocation on the heap as the
|
||
/// source `Arc`, while increasing a reference count. When the last `Arc`
|
||
/// pointer to a given allocation is destroyed, the value stored in that allocation (often
|
||
/// referred to as "inner value") is also dropped.
|
||
///
|
||
/// Shared references in Rust disallow mutation by default, and `Arc` is no
|
||
/// exception: you cannot generally obtain a mutable reference to something
|
||
/// inside an `Arc`. If you need to mutate through an `Arc`, use
|
||
/// [`Mutex`][mutex], [`RwLock`][rwlock], or one of the [`Atomic`][atomic]
|
||
/// types.
|
||
///
|
||
/// **Note**: This type is only available on platforms that support atomic
|
||
/// loads and stores of pointers, which includes all platforms that support
|
||
/// the `std` crate but not all those which only support [`alloc`](crate).
|
||
/// This may be detected at compile time using `#[cfg(target_has_atomic = "ptr")]`.
|
||
///
|
||
/// ## Thread Safety
|
||
///
|
||
/// Unlike [`Rc<T>`], `Arc<T>` uses atomic operations for its reference
|
||
/// counting. This means that it is thread-safe. The disadvantage is that
|
||
/// atomic operations are more expensive than ordinary memory accesses. If you
|
||
/// are not sharing reference-counted allocations between threads, consider using
|
||
/// [`Rc<T>`] for lower overhead. [`Rc<T>`] is a safe default, because the
|
||
/// compiler will catch any attempt to send an [`Rc<T>`] between threads.
|
||
/// However, a library might choose `Arc<T>` in order to give library consumers
|
||
/// more flexibility.
|
||
///
|
||
/// `Arc<T>` will implement [`Send`] and [`Sync`] as long as the `T` implements
|
||
/// [`Send`] and [`Sync`]. Why can't you put a non-thread-safe type `T` in an
|
||
/// `Arc<T>` to make it thread-safe? This may be a bit counter-intuitive at
|
||
/// first: after all, isn't the point of `Arc<T>` thread safety? The key is
|
||
/// this: `Arc<T>` makes it thread safe to have multiple ownership of the same
|
||
/// data, but it doesn't add thread safety to its data. Consider
|
||
/// <code>Arc<[RefCell\<T>]></code>. [`RefCell<T>`] isn't [`Sync`], and if `Arc<T>` was always
|
||
/// [`Send`], <code>Arc<[RefCell\<T>]></code> would be as well. But then we'd have a problem:
|
||
/// [`RefCell<T>`] is not thread safe; it keeps track of the borrowing count using
|
||
/// non-atomic operations.
|
||
///
|
||
/// In the end, this means that you may need to pair `Arc<T>` with some sort of
|
||
/// [`std::sync`] type, usually [`Mutex<T>`][mutex].
|
||
///
|
||
/// ## Breaking cycles with `Weak`
|
||
///
|
||
/// The [`downgrade`][downgrade] method can be used to create a non-owning
|
||
/// [`Weak`] pointer. A [`Weak`] pointer can be [`upgrade`][upgrade]d
|
||
/// to an `Arc`, but this will return [`None`] if the value stored in the allocation has
|
||
/// already been dropped. In other words, `Weak` pointers do not keep the value
|
||
/// inside the allocation alive; however, they *do* keep the allocation
|
||
/// (the backing store for the value) alive.
|
||
///
|
||
/// A cycle between `Arc` pointers will never be deallocated. For this reason,
|
||
/// [`Weak`] is used to break cycles. For example, a tree could have
|
||
/// strong `Arc` pointers from parent nodes to children, and [`Weak`]
|
||
/// pointers from children back to their parents.
|
||
///
|
||
/// # Cloning references
|
||
///
|
||
/// Creating a new reference from an existing reference-counted pointer is done using the
|
||
/// `Clone` trait implemented for [`Arc<T>`][Arc] and [`Weak<T>`][Weak].
|
||
///
|
||
/// ```
|
||
/// use std::sync::Arc;
|
||
/// let foo = Arc::new(vec![1.0, 2.0, 3.0]);
|
||
/// // The two syntaxes below are equivalent.
|
||
/// let a = foo.clone();
|
||
/// let b = Arc::clone(&foo);
|
||
/// // a, b, and foo are all Arcs that point to the same memory location
|
||
/// ```
|
||
///
|
||
/// ## `Deref` behavior
|
||
///
|
||
/// `Arc<T>` automatically dereferences to `T` (via the [`Deref`] trait),
|
||
/// so you can call `T`'s methods on a value of type `Arc<T>`. To avoid name
|
||
/// clashes with `T`'s methods, the methods of `Arc<T>` itself are associated
|
||
/// functions, called using [fully qualified syntax]:
|
||
///
|
||
/// ```
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let my_arc = Arc::new(());
|
||
/// let my_weak = Arc::downgrade(&my_arc);
|
||
/// ```
|
||
///
|
||
/// `Arc<T>`'s implementations of traits like `Clone` may also be called using
|
||
/// fully qualified syntax. Some people prefer to use fully qualified syntax,
|
||
/// while others prefer using method-call syntax.
|
||
///
|
||
/// ```
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let arc = Arc::new(());
|
||
/// // Method-call syntax
|
||
/// let arc2 = arc.clone();
|
||
/// // Fully qualified syntax
|
||
/// let arc3 = Arc::clone(&arc);
|
||
/// ```
|
||
///
|
||
/// [`Weak<T>`][Weak] does not auto-dereference to `T`, because the inner value may have
|
||
/// already been dropped.
|
||
///
|
||
/// [`Rc<T>`]: crate::rc::Rc
|
||
/// [clone]: Clone::clone
|
||
/// [mutex]: ../../std/sync/struct.Mutex.html
|
||
/// [rwlock]: ../../std/sync/struct.RwLock.html
|
||
/// [atomic]: core::sync::atomic
|
||
/// [downgrade]: Arc::downgrade
|
||
/// [upgrade]: Weak::upgrade
|
||
/// [RefCell\<T>]: core::cell::RefCell
|
||
/// [`RefCell<T>`]: core::cell::RefCell
|
||
/// [`std::sync`]: ../../std/sync/index.html
|
||
/// [`Arc::clone(&from)`]: Arc::clone
|
||
/// [fully qualified syntax]: https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#fully-qualified-syntax-for-disambiguation-calling-methods-with-the-same-name
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// Sharing some immutable data between threads:
|
||
///
|
||
/// ```
|
||
/// use std::sync::Arc;
|
||
/// use std::thread;
|
||
///
|
||
/// let five = Arc::new(5);
|
||
///
|
||
/// for _ in 0..10 {
|
||
/// let five = Arc::clone(&five);
|
||
///
|
||
/// thread::spawn(move || {
|
||
/// println!("{five:?}");
|
||
/// });
|
||
/// }
|
||
/// ```
|
||
///
|
||
/// Sharing a mutable [`AtomicUsize`]:
|
||
///
|
||
/// [`AtomicUsize`]: core::sync::atomic::AtomicUsize "sync::atomic::AtomicUsize"
|
||
///
|
||
/// ```
|
||
/// use std::sync::Arc;
|
||
/// use std::sync::atomic::{AtomicUsize, Ordering};
|
||
/// use std::thread;
|
||
///
|
||
/// let val = Arc::new(AtomicUsize::new(5));
|
||
///
|
||
/// for _ in 0..10 {
|
||
/// let val = Arc::clone(&val);
|
||
///
|
||
/// thread::spawn(move || {
|
||
/// let v = val.fetch_add(1, Ordering::Relaxed);
|
||
/// println!("{v:?}");
|
||
/// });
|
||
/// }
|
||
/// ```
|
||
///
|
||
/// See the [`rc` documentation][rc_examples] for more examples of reference
|
||
/// counting in general.
|
||
///
|
||
/// [rc_examples]: crate::rc#examples
|
||
#[cfg_attr(not(test), rustc_diagnostic_item = "Arc")]
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[rustc_insignificant_dtor]
|
||
pub struct Arc<
|
||
T: ?Sized,
|
||
#[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
|
||
> {
|
||
ptr: NonNull<ArcInner<T>>,
|
||
phantom: PhantomData<ArcInner<T>>,
|
||
alloc: A,
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Send> Send for Arc<T, A> {}
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Sync> Sync for Arc<T, A> {}
|
||
|
||
#[stable(feature = "catch_unwind", since = "1.9.0")]
|
||
impl<T: RefUnwindSafe + ?Sized, A: Allocator + UnwindSafe> UnwindSafe for Arc<T, A> {}
|
||
|
||
#[unstable(feature = "coerce_unsized", issue = "18598")]
|
||
impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Arc<U, A>> for Arc<T, A> {}
|
||
|
||
#[unstable(feature = "dispatch_from_dyn", issue = "none")]
|
||
impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Arc<U>> for Arc<T> {}
|
||
|
||
impl<T: ?Sized> Arc<T> {
|
||
unsafe fn from_inner(ptr: NonNull<ArcInner<T>>) -> Self {
|
||
unsafe { Self::from_inner_in(ptr, Global) }
|
||
}
|
||
|
||
unsafe fn from_ptr(ptr: *mut ArcInner<T>) -> Self {
|
||
unsafe { Self::from_ptr_in(ptr, Global) }
|
||
}
|
||
}
|
||
|
||
impl<T: ?Sized, A: Allocator> Arc<T, A> {
|
||
#[inline]
|
||
fn into_inner_with_allocator(this: Self) -> (NonNull<ArcInner<T>>, A) {
|
||
let this = mem::ManuallyDrop::new(this);
|
||
(this.ptr, unsafe { ptr::read(&this.alloc) })
|
||
}
|
||
|
||
#[inline]
|
||
unsafe fn from_inner_in(ptr: NonNull<ArcInner<T>>, alloc: A) -> Self {
|
||
Self { ptr, phantom: PhantomData, alloc }
|
||
}
|
||
|
||
#[inline]
|
||
unsafe fn from_ptr_in(ptr: *mut ArcInner<T>, alloc: A) -> Self {
|
||
unsafe { Self::from_inner_in(NonNull::new_unchecked(ptr), alloc) }
|
||
}
|
||
}
|
||
|
||
/// `Weak` is a version of [`Arc`] that holds a non-owning reference to the
|
||
/// managed allocation. The allocation is accessed by calling [`upgrade`] on the `Weak`
|
||
/// pointer, which returns an <code>[Option]<[Arc]\<T>></code>.
|
||
///
|
||
/// Since a `Weak` reference does not count towards ownership, it will not
|
||
/// prevent the value stored in the allocation from being dropped, and `Weak` itself makes no
|
||
/// guarantees about the value still being present. Thus it may return [`None`]
|
||
/// when [`upgrade`]d. Note however that a `Weak` reference *does* prevent the allocation
|
||
/// itself (the backing store) from being deallocated.
|
||
///
|
||
/// A `Weak` pointer is useful for keeping a temporary reference to the allocation
|
||
/// managed by [`Arc`] without preventing its inner value from being dropped. It is also used to
|
||
/// prevent circular references between [`Arc`] pointers, since mutual owning references
|
||
/// would never allow either [`Arc`] to be dropped. For example, a tree could
|
||
/// have strong [`Arc`] pointers from parent nodes to children, and `Weak`
|
||
/// pointers from children back to their parents.
|
||
///
|
||
/// The typical way to obtain a `Weak` pointer is to call [`Arc::downgrade`].
|
||
///
|
||
/// [`upgrade`]: Weak::upgrade
|
||
#[stable(feature = "arc_weak", since = "1.4.0")]
|
||
#[cfg_attr(not(test), rustc_diagnostic_item = "ArcWeak")]
|
||
pub struct Weak<
|
||
T: ?Sized,
|
||
#[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
|
||
> {
|
||
// This is a `NonNull` to allow optimizing the size of this type in enums,
|
||
// but it is not necessarily a valid pointer.
|
||
// `Weak::new` sets this to `usize::MAX` so that it doesn’t need
|
||
// to allocate space on the heap. That's not a value a real pointer
|
||
// will ever have because RcInner has alignment at least 2.
|
||
// This is only possible when `T: Sized`; unsized `T` never dangle.
|
||
ptr: NonNull<ArcInner<T>>,
|
||
alloc: A,
|
||
}
|
||
|
||
#[stable(feature = "arc_weak", since = "1.4.0")]
|
||
unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Send> Send for Weak<T, A> {}
|
||
#[stable(feature = "arc_weak", since = "1.4.0")]
|
||
unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Sync> Sync for Weak<T, A> {}
|
||
|
||
#[unstable(feature = "coerce_unsized", issue = "18598")]
|
||
impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Weak<U, A>> for Weak<T, A> {}
|
||
#[unstable(feature = "dispatch_from_dyn", issue = "none")]
|
||
impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Weak<U>> for Weak<T> {}
|
||
|
||
#[stable(feature = "arc_weak", since = "1.4.0")]
|
||
impl<T: ?Sized, A: Allocator> fmt::Debug for Weak<T, A> {
|
||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||
write!(f, "(Weak)")
|
||
}
|
||
}
|
||
|
||
// This is repr(C) to future-proof against possible field-reordering, which
|
||
// would interfere with otherwise safe [into|from]_raw() of transmutable
|
||
// inner types.
|
||
#[repr(C)]
|
||
struct ArcInner<T: ?Sized> {
|
||
strong: atomic::AtomicUsize,
|
||
|
||
// the value usize::MAX acts as a sentinel for temporarily "locking" the
|
||
// ability to upgrade weak pointers or downgrade strong ones; this is used
|
||
// to avoid races in `make_mut` and `get_mut`.
|
||
weak: atomic::AtomicUsize,
|
||
|
||
data: T,
|
||
}
|
||
|
||
/// Calculate layout for `ArcInner<T>` using the inner value's layout
|
||
fn arcinner_layout_for_value_layout(layout: Layout) -> Layout {
|
||
// Calculate layout using the given value layout.
|
||
// Previously, layout was calculated on the expression
|
||
// `&*(ptr as *const ArcInner<T>)`, but this created a misaligned
|
||
// reference (see #54908).
|
||
Layout::new::<ArcInner<()>>().extend(layout).unwrap().0.pad_to_align()
|
||
}
|
||
|
||
unsafe impl<T: ?Sized + Sync + Send> Send for ArcInner<T> {}
|
||
unsafe impl<T: ?Sized + Sync + Send> Sync for ArcInner<T> {}
|
||
|
||
impl<T> Arc<T> {
|
||
/// Constructs a new `Arc<T>`.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let five = Arc::new(5);
|
||
/// ```
|
||
#[cfg(not(no_global_oom_handling))]
|
||
#[inline]
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub fn new(data: T) -> Arc<T> {
|
||
// Start the weak pointer count as 1 which is the weak pointer that's
|
||
// held by all the strong pointers (kinda), see std/rc.rs for more info
|
||
let x: Box<_> = Box::new(ArcInner {
|
||
strong: atomic::AtomicUsize::new(1),
|
||
weak: atomic::AtomicUsize::new(1),
|
||
data,
|
||
});
|
||
unsafe { Self::from_inner(Box::leak(x).into()) }
|
||
}
|
||
|
||
/// Constructs a new `Arc<T>` while giving you a `Weak<T>` to the allocation,
|
||
/// to allow you to construct a `T` which holds a weak pointer to itself.
|
||
///
|
||
/// Generally, a structure circularly referencing itself, either directly or
|
||
/// indirectly, should not hold a strong reference to itself to prevent a memory leak.
|
||
/// Using this function, you get access to the weak pointer during the
|
||
/// initialization of `T`, before the `Arc<T>` is created, such that you can
|
||
/// clone and store it inside the `T`.
|
||
///
|
||
/// `new_cyclic` first allocates the managed allocation for the `Arc<T>`,
|
||
/// then calls your closure, giving it a `Weak<T>` to this allocation,
|
||
/// and only afterwards completes the construction of the `Arc<T>` by placing
|
||
/// the `T` returned from your closure into the allocation.
|
||
///
|
||
/// Since the new `Arc<T>` is not fully-constructed until `Arc<T>::new_cyclic`
|
||
/// returns, calling [`upgrade`] on the weak reference inside your closure will
|
||
/// fail and result in a `None` value.
|
||
///
|
||
/// # Panics
|
||
///
|
||
/// If `data_fn` panics, the panic is propagated to the caller, and the
|
||
/// temporary [`Weak<T>`] is dropped normally.
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```
|
||
/// # #![allow(dead_code)]
|
||
/// use std::sync::{Arc, Weak};
|
||
///
|
||
/// struct Gadget {
|
||
/// me: Weak<Gadget>,
|
||
/// }
|
||
///
|
||
/// impl Gadget {
|
||
/// /// Constructs a reference counted Gadget.
|
||
/// fn new() -> Arc<Self> {
|
||
/// // `me` is a `Weak<Gadget>` pointing at the new allocation of the
|
||
/// // `Arc` we're constructing.
|
||
/// Arc::new_cyclic(|me| {
|
||
/// // Create the actual struct here.
|
||
/// Gadget { me: me.clone() }
|
||
/// })
|
||
/// }
|
||
///
|
||
/// /// Returns a reference counted pointer to Self.
|
||
/// fn me(&self) -> Arc<Self> {
|
||
/// self.me.upgrade().unwrap()
|
||
/// }
|
||
/// }
|
||
/// ```
|
||
/// [`upgrade`]: Weak::upgrade
|
||
#[cfg(not(no_global_oom_handling))]
|
||
#[inline]
|
||
#[stable(feature = "arc_new_cyclic", since = "1.60.0")]
|
||
pub fn new_cyclic<F>(data_fn: F) -> Arc<T>
|
||
where
|
||
F: FnOnce(&Weak<T>) -> T,
|
||
{
|
||
Self::new_cyclic_in(data_fn, Global)
|
||
}
|
||
|
||
/// Constructs a new `Arc` with uninitialized contents.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(get_mut_unchecked)]
|
||
///
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let mut five = Arc::<u32>::new_uninit();
|
||
///
|
||
/// // Deferred initialization:
|
||
/// Arc::get_mut(&mut five).unwrap().write(5);
|
||
///
|
||
/// let five = unsafe { five.assume_init() };
|
||
///
|
||
/// assert_eq!(*five, 5)
|
||
/// ```
|
||
#[cfg(not(no_global_oom_handling))]
|
||
#[inline]
|
||
#[stable(feature = "new_uninit", since = "1.82.0")]
|
||
#[must_use]
|
||
pub fn new_uninit() -> Arc<mem::MaybeUninit<T>> {
|
||
unsafe {
|
||
Arc::from_ptr(Arc::allocate_for_layout(
|
||
Layout::new::<T>(),
|
||
|layout| Global.allocate(layout),
|
||
<*mut u8>::cast,
|
||
))
|
||
}
|
||
}
|
||
|
||
/// Constructs a new `Arc` with uninitialized contents, with the memory
|
||
/// being filled with `0` bytes.
|
||
///
|
||
/// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
|
||
/// of this method.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(new_zeroed_alloc)]
|
||
///
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let zero = Arc::<u32>::new_zeroed();
|
||
/// let zero = unsafe { zero.assume_init() };
|
||
///
|
||
/// assert_eq!(*zero, 0)
|
||
/// ```
|
||
///
|
||
/// [zeroed]: mem::MaybeUninit::zeroed
|
||
#[cfg(not(no_global_oom_handling))]
|
||
#[inline]
|
||
#[unstable(feature = "new_zeroed_alloc", issue = "129396")]
|
||
#[must_use]
|
||
pub fn new_zeroed() -> Arc<mem::MaybeUninit<T>> {
|
||
unsafe {
|
||
Arc::from_ptr(Arc::allocate_for_layout(
|
||
Layout::new::<T>(),
|
||
|layout| Global.allocate_zeroed(layout),
|
||
<*mut u8>::cast,
|
||
))
|
||
}
|
||
}
|
||
|
||
/// Constructs a new `Pin<Arc<T>>`. If `T` does not implement `Unpin`, then
|
||
/// `data` will be pinned in memory and unable to be moved.
|
||
#[cfg(not(no_global_oom_handling))]
|
||
#[stable(feature = "pin", since = "1.33.0")]
|
||
#[must_use]
|
||
pub fn pin(data: T) -> Pin<Arc<T>> {
|
||
unsafe { Pin::new_unchecked(Arc::new(data)) }
|
||
}
|
||
|
||
/// Constructs a new `Pin<Arc<T>>`, return an error if allocation fails.
|
||
#[unstable(feature = "allocator_api", issue = "32838")]
|
||
#[inline]
|
||
pub fn try_pin(data: T) -> Result<Pin<Arc<T>>, AllocError> {
|
||
unsafe { Ok(Pin::new_unchecked(Arc::try_new(data)?)) }
|
||
}
|
||
|
||
/// Constructs a new `Arc<T>`, returning an error if allocation fails.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(allocator_api)]
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let five = Arc::try_new(5)?;
|
||
/// # Ok::<(), std::alloc::AllocError>(())
|
||
/// ```
|
||
#[unstable(feature = "allocator_api", issue = "32838")]
|
||
#[inline]
|
||
pub fn try_new(data: T) -> Result<Arc<T>, AllocError> {
|
||
// Start the weak pointer count as 1 which is the weak pointer that's
|
||
// held by all the strong pointers (kinda), see std/rc.rs for more info
|
||
let x: Box<_> = Box::try_new(ArcInner {
|
||
strong: atomic::AtomicUsize::new(1),
|
||
weak: atomic::AtomicUsize::new(1),
|
||
data,
|
||
})?;
|
||
unsafe { Ok(Self::from_inner(Box::leak(x).into())) }
|
||
}
|
||
|
||
/// Constructs a new `Arc` with uninitialized contents, returning an error
|
||
/// if allocation fails.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(allocator_api)]
|
||
/// #![feature(get_mut_unchecked)]
|
||
///
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let mut five = Arc::<u32>::try_new_uninit()?;
|
||
///
|
||
/// // Deferred initialization:
|
||
/// Arc::get_mut(&mut five).unwrap().write(5);
|
||
///
|
||
/// let five = unsafe { five.assume_init() };
|
||
///
|
||
/// assert_eq!(*five, 5);
|
||
/// # Ok::<(), std::alloc::AllocError>(())
|
||
/// ```
|
||
#[unstable(feature = "allocator_api", issue = "32838")]
|
||
// #[unstable(feature = "new_uninit", issue = "63291")]
|
||
pub fn try_new_uninit() -> Result<Arc<mem::MaybeUninit<T>>, AllocError> {
|
||
unsafe {
|
||
Ok(Arc::from_ptr(Arc::try_allocate_for_layout(
|
||
Layout::new::<T>(),
|
||
|layout| Global.allocate(layout),
|
||
<*mut u8>::cast,
|
||
)?))
|
||
}
|
||
}
|
||
|
||
/// Constructs a new `Arc` with uninitialized contents, with the memory
|
||
/// being filled with `0` bytes, returning an error if allocation fails.
|
||
///
|
||
/// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
|
||
/// of this method.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature( allocator_api)]
|
||
///
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let zero = Arc::<u32>::try_new_zeroed()?;
|
||
/// let zero = unsafe { zero.assume_init() };
|
||
///
|
||
/// assert_eq!(*zero, 0);
|
||
/// # Ok::<(), std::alloc::AllocError>(())
|
||
/// ```
|
||
///
|
||
/// [zeroed]: mem::MaybeUninit::zeroed
|
||
#[unstable(feature = "allocator_api", issue = "32838")]
|
||
// #[unstable(feature = "new_uninit", issue = "63291")]
|
||
pub fn try_new_zeroed() -> Result<Arc<mem::MaybeUninit<T>>, AllocError> {
|
||
unsafe {
|
||
Ok(Arc::from_ptr(Arc::try_allocate_for_layout(
|
||
Layout::new::<T>(),
|
||
|layout| Global.allocate_zeroed(layout),
|
||
<*mut u8>::cast,
|
||
)?))
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<T, A: Allocator> Arc<T, A> {
|
||
/// Constructs a new `Arc<T>` in the provided allocator.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(allocator_api)]
|
||
///
|
||
/// use std::sync::Arc;
|
||
/// use std::alloc::System;
|
||
///
|
||
/// let five = Arc::new_in(5, System);
|
||
/// ```
|
||
#[inline]
|
||
#[cfg(not(no_global_oom_handling))]
|
||
#[unstable(feature = "allocator_api", issue = "32838")]
|
||
pub fn new_in(data: T, alloc: A) -> Arc<T, A> {
|
||
// Start the weak pointer count as 1 which is the weak pointer that's
|
||
// held by all the strong pointers (kinda), see std/rc.rs for more info
|
||
let x = Box::new_in(
|
||
ArcInner {
|
||
strong: atomic::AtomicUsize::new(1),
|
||
weak: atomic::AtomicUsize::new(1),
|
||
data,
|
||
},
|
||
alloc,
|
||
);
|
||
let (ptr, alloc) = Box::into_unique(x);
|
||
unsafe { Self::from_inner_in(ptr.into(), alloc) }
|
||
}
|
||
|
||
/// Constructs a new `Arc` with uninitialized contents in the provided allocator.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(get_mut_unchecked)]
|
||
/// #![feature(allocator_api)]
|
||
///
|
||
/// use std::sync::Arc;
|
||
/// use std::alloc::System;
|
||
///
|
||
/// let mut five = Arc::<u32, _>::new_uninit_in(System);
|
||
///
|
||
/// let five = unsafe {
|
||
/// // Deferred initialization:
|
||
/// Arc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
|
||
///
|
||
/// five.assume_init()
|
||
/// };
|
||
///
|
||
/// assert_eq!(*five, 5)
|
||
/// ```
|
||
#[cfg(not(no_global_oom_handling))]
|
||
#[unstable(feature = "allocator_api", issue = "32838")]
|
||
// #[unstable(feature = "new_uninit", issue = "63291")]
|
||
#[inline]
|
||
pub fn new_uninit_in(alloc: A) -> Arc<mem::MaybeUninit<T>, A> {
|
||
unsafe {
|
||
Arc::from_ptr_in(
|
||
Arc::allocate_for_layout(
|
||
Layout::new::<T>(),
|
||
|layout| alloc.allocate(layout),
|
||
<*mut u8>::cast,
|
||
),
|
||
alloc,
|
||
)
|
||
}
|
||
}
|
||
|
||
/// Constructs a new `Arc` with uninitialized contents, with the memory
|
||
/// being filled with `0` bytes, in the provided allocator.
|
||
///
|
||
/// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
|
||
/// of this method.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(allocator_api)]
|
||
///
|
||
/// use std::sync::Arc;
|
||
/// use std::alloc::System;
|
||
///
|
||
/// let zero = Arc::<u32, _>::new_zeroed_in(System);
|
||
/// let zero = unsafe { zero.assume_init() };
|
||
///
|
||
/// assert_eq!(*zero, 0)
|
||
/// ```
|
||
///
|
||
/// [zeroed]: mem::MaybeUninit::zeroed
|
||
#[cfg(not(no_global_oom_handling))]
|
||
#[unstable(feature = "allocator_api", issue = "32838")]
|
||
// #[unstable(feature = "new_uninit", issue = "63291")]
|
||
#[inline]
|
||
pub fn new_zeroed_in(alloc: A) -> Arc<mem::MaybeUninit<T>, A> {
|
||
unsafe {
|
||
Arc::from_ptr_in(
|
||
Arc::allocate_for_layout(
|
||
Layout::new::<T>(),
|
||
|layout| alloc.allocate_zeroed(layout),
|
||
<*mut u8>::cast,
|
||
),
|
||
alloc,
|
||
)
|
||
}
|
||
}
|
||
|
||
/// Constructs a new `Arc<T, A>` in the given allocator while giving you a `Weak<T, A>` to the allocation,
|
||
/// to allow you to construct a `T` which holds a weak pointer to itself.
|
||
///
|
||
/// Generally, a structure circularly referencing itself, either directly or
|
||
/// indirectly, should not hold a strong reference to itself to prevent a memory leak.
|
||
/// Using this function, you get access to the weak pointer during the
|
||
/// initialization of `T`, before the `Arc<T, A>` is created, such that you can
|
||
/// clone and store it inside the `T`.
|
||
///
|
||
/// `new_cyclic_in` first allocates the managed allocation for the `Arc<T, A>`,
|
||
/// then calls your closure, giving it a `Weak<T, A>` to this allocation,
|
||
/// and only afterwards completes the construction of the `Arc<T, A>` by placing
|
||
/// the `T` returned from your closure into the allocation.
|
||
///
|
||
/// Since the new `Arc<T, A>` is not fully-constructed until `Arc<T, A>::new_cyclic_in`
|
||
/// returns, calling [`upgrade`] on the weak reference inside your closure will
|
||
/// fail and result in a `None` value.
|
||
///
|
||
/// # Panics
|
||
///
|
||
/// If `data_fn` panics, the panic is propagated to the caller, and the
|
||
/// temporary [`Weak<T>`] is dropped normally.
|
||
///
|
||
/// # Example
|
||
///
|
||
/// See [`new_cyclic`]
|
||
///
|
||
/// [`new_cyclic`]: Arc::new_cyclic
|
||
/// [`upgrade`]: Weak::upgrade
|
||
#[cfg(not(no_global_oom_handling))]
|
||
#[inline]
|
||
#[unstable(feature = "allocator_api", issue = "32838")]
|
||
pub fn new_cyclic_in<F>(data_fn: F, alloc: A) -> Arc<T, A>
|
||
where
|
||
F: FnOnce(&Weak<T, A>) -> T,
|
||
{
|
||
// Construct the inner in the "uninitialized" state with a single
|
||
// weak reference.
|
||
let (uninit_raw_ptr, alloc) = Box::into_raw_with_allocator(Box::new_in(
|
||
ArcInner {
|
||
strong: atomic::AtomicUsize::new(0),
|
||
weak: atomic::AtomicUsize::new(1),
|
||
data: mem::MaybeUninit::<T>::uninit(),
|
||
},
|
||
alloc,
|
||
));
|
||
let uninit_ptr: NonNull<_> = (unsafe { &mut *uninit_raw_ptr }).into();
|
||
let init_ptr: NonNull<ArcInner<T>> = uninit_ptr.cast();
|
||
|
||
let weak = Weak { ptr: init_ptr, alloc: alloc };
|
||
|
||
// It's important we don't give up ownership of the weak pointer, or
|
||
// else the memory might be freed by the time `data_fn` returns. If
|
||
// we really wanted to pass ownership, we could create an additional
|
||
// weak pointer for ourselves, but this would result in additional
|
||
// updates to the weak reference count which might not be necessary
|
||
// otherwise.
|
||
let data = data_fn(&weak);
|
||
|
||
// Now we can properly initialize the inner value and turn our weak
|
||
// reference into a strong reference.
|
||
let strong = unsafe {
|
||
let inner = init_ptr.as_ptr();
|
||
ptr::write(&raw mut (*inner).data, data);
|
||
|
||
// The above write to the data field must be visible to any threads which
|
||
// observe a non-zero strong count. Therefore we need at least "Release" ordering
|
||
// in order to synchronize with the `compare_exchange_weak` in `Weak::upgrade`.
|
||
//
|
||
// "Acquire" ordering is not required. When considering the possible behaviors
|
||
// of `data_fn` we only need to look at what it could do with a reference to a
|
||
// non-upgradeable `Weak`:
|
||
// - It can *clone* the `Weak`, increasing the weak reference count.
|
||
// - It can drop those clones, decreasing the weak reference count (but never to zero).
|
||
//
|
||
// These side effects do not impact us in any way, and no other side effects are
|
||
// possible with safe code alone.
|
||
let prev_value = (*inner).strong.fetch_add(1, Release);
|
||
debug_assert_eq!(prev_value, 0, "No prior strong references should exist");
|
||
|
||
// Strong references should collectively own a shared weak reference,
|
||
// so don't run the destructor for our old weak reference.
|
||
// Calling into_raw_with_allocator has the double effect of giving us back the allocator,
|
||
// and forgetting the weak reference.
|
||
let alloc = weak.into_raw_with_allocator().1;
|
||
|
||
Arc::from_inner_in(init_ptr, alloc)
|
||
};
|
||
|
||
strong
|
||
}
|
||
|
||
/// Constructs a new `Pin<Arc<T, A>>` in the provided allocator. If `T` does not implement `Unpin`,
|
||
/// then `data` will be pinned in memory and unable to be moved.
|
||
#[cfg(not(no_global_oom_handling))]
|
||
#[unstable(feature = "allocator_api", issue = "32838")]
|
||
#[inline]
|
||
pub fn pin_in(data: T, alloc: A) -> Pin<Arc<T, A>>
|
||
where
|
||
A: 'static,
|
||
{
|
||
unsafe { Pin::new_unchecked(Arc::new_in(data, alloc)) }
|
||
}
|
||
|
||
/// Constructs a new `Pin<Arc<T, A>>` in the provided allocator, return an error if allocation
|
||
/// fails.
|
||
#[inline]
|
||
#[unstable(feature = "allocator_api", issue = "32838")]
|
||
pub fn try_pin_in(data: T, alloc: A) -> Result<Pin<Arc<T, A>>, AllocError>
|
||
where
|
||
A: 'static,
|
||
{
|
||
unsafe { Ok(Pin::new_unchecked(Arc::try_new_in(data, alloc)?)) }
|
||
}
|
||
|
||
/// Constructs a new `Arc<T, A>` in the provided allocator, returning an error if allocation fails.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(allocator_api)]
|
||
///
|
||
/// use std::sync::Arc;
|
||
/// use std::alloc::System;
|
||
///
|
||
/// let five = Arc::try_new_in(5, System)?;
|
||
/// # Ok::<(), std::alloc::AllocError>(())
|
||
/// ```
|
||
#[inline]
|
||
#[unstable(feature = "allocator_api", issue = "32838")]
|
||
#[inline]
|
||
pub fn try_new_in(data: T, alloc: A) -> Result<Arc<T, A>, AllocError> {
|
||
// Start the weak pointer count as 1 which is the weak pointer that's
|
||
// held by all the strong pointers (kinda), see std/rc.rs for more info
|
||
let x = Box::try_new_in(
|
||
ArcInner {
|
||
strong: atomic::AtomicUsize::new(1),
|
||
weak: atomic::AtomicUsize::new(1),
|
||
data,
|
||
},
|
||
alloc,
|
||
)?;
|
||
let (ptr, alloc) = Box::into_unique(x);
|
||
Ok(unsafe { Self::from_inner_in(ptr.into(), alloc) })
|
||
}
|
||
|
||
/// Constructs a new `Arc` with uninitialized contents, in the provided allocator, returning an
|
||
/// error if allocation fails.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(allocator_api)]
|
||
/// #![feature(get_mut_unchecked)]
|
||
///
|
||
/// use std::sync::Arc;
|
||
/// use std::alloc::System;
|
||
///
|
||
/// let mut five = Arc::<u32, _>::try_new_uninit_in(System)?;
|
||
///
|
||
/// let five = unsafe {
|
||
/// // Deferred initialization:
|
||
/// Arc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
|
||
///
|
||
/// five.assume_init()
|
||
/// };
|
||
///
|
||
/// assert_eq!(*five, 5);
|
||
/// # Ok::<(), std::alloc::AllocError>(())
|
||
/// ```
|
||
#[unstable(feature = "allocator_api", issue = "32838")]
|
||
// #[unstable(feature = "new_uninit", issue = "63291")]
|
||
#[inline]
|
||
pub fn try_new_uninit_in(alloc: A) -> Result<Arc<mem::MaybeUninit<T>, A>, AllocError> {
|
||
unsafe {
|
||
Ok(Arc::from_ptr_in(
|
||
Arc::try_allocate_for_layout(
|
||
Layout::new::<T>(),
|
||
|layout| alloc.allocate(layout),
|
||
<*mut u8>::cast,
|
||
)?,
|
||
alloc,
|
||
))
|
||
}
|
||
}
|
||
|
||
/// Constructs a new `Arc` with uninitialized contents, with the memory
|
||
/// being filled with `0` bytes, in the provided allocator, returning an error if allocation
|
||
/// fails.
|
||
///
|
||
/// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
|
||
/// of this method.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(allocator_api)]
|
||
///
|
||
/// use std::sync::Arc;
|
||
/// use std::alloc::System;
|
||
///
|
||
/// let zero = Arc::<u32, _>::try_new_zeroed_in(System)?;
|
||
/// let zero = unsafe { zero.assume_init() };
|
||
///
|
||
/// assert_eq!(*zero, 0);
|
||
/// # Ok::<(), std::alloc::AllocError>(())
|
||
/// ```
|
||
///
|
||
/// [zeroed]: mem::MaybeUninit::zeroed
|
||
#[unstable(feature = "allocator_api", issue = "32838")]
|
||
// #[unstable(feature = "new_uninit", issue = "63291")]
|
||
#[inline]
|
||
pub fn try_new_zeroed_in(alloc: A) -> Result<Arc<mem::MaybeUninit<T>, A>, AllocError> {
|
||
unsafe {
|
||
Ok(Arc::from_ptr_in(
|
||
Arc::try_allocate_for_layout(
|
||
Layout::new::<T>(),
|
||
|layout| alloc.allocate_zeroed(layout),
|
||
<*mut u8>::cast,
|
||
)?,
|
||
alloc,
|
||
))
|
||
}
|
||
}
|
||
/// Returns the inner value, if the `Arc` has exactly one strong reference.
|
||
///
|
||
/// Otherwise, an [`Err`] is returned with the same `Arc` that was
|
||
/// passed in.
|
||
///
|
||
/// This will succeed even if there are outstanding weak references.
|
||
///
|
||
/// It is strongly recommended to use [`Arc::into_inner`] instead if you don't
|
||
/// keep the `Arc` in the [`Err`] case.
|
||
/// Immediately dropping the [`Err`]-value, as the expression
|
||
/// `Arc::try_unwrap(this).ok()` does, can cause the strong count to
|
||
/// drop to zero and the inner value of the `Arc` to be dropped.
|
||
/// For instance, if two threads execute such an expression in parallel,
|
||
/// there is a race condition without the possibility of unsafety:
|
||
/// The threads could first both check whether they own the last instance
|
||
/// in `Arc::try_unwrap`, determine that they both do not, and then both
|
||
/// discard and drop their instance in the call to [`ok`][`Result::ok`].
|
||
/// In this scenario, the value inside the `Arc` is safely destroyed
|
||
/// by exactly one of the threads, but neither thread will ever be able
|
||
/// to use the value.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let x = Arc::new(3);
|
||
/// assert_eq!(Arc::try_unwrap(x), Ok(3));
|
||
///
|
||
/// let x = Arc::new(4);
|
||
/// let _y = Arc::clone(&x);
|
||
/// assert_eq!(*Arc::try_unwrap(x).unwrap_err(), 4);
|
||
/// ```
|
||
#[inline]
|
||
#[stable(feature = "arc_unique", since = "1.4.0")]
|
||
pub fn try_unwrap(this: Self) -> Result<T, Self> {
|
||
if this.inner().strong.compare_exchange(1, 0, Relaxed, Relaxed).is_err() {
|
||
return Err(this);
|
||
}
|
||
|
||
acquire!(this.inner().strong);
|
||
|
||
let this = ManuallyDrop::new(this);
|
||
let elem: T = unsafe { ptr::read(&this.ptr.as_ref().data) };
|
||
let alloc: A = unsafe { ptr::read(&this.alloc) }; // copy the allocator
|
||
|
||
// Make a weak pointer to clean up the implicit strong-weak reference
|
||
let _weak = Weak { ptr: this.ptr, alloc };
|
||
|
||
Ok(elem)
|
||
}
|
||
|
||
/// Returns the inner value, if the `Arc` has exactly one strong reference.
|
||
///
|
||
/// Otherwise, [`None`] is returned and the `Arc` is dropped.
|
||
///
|
||
/// This will succeed even if there are outstanding weak references.
|
||
///
|
||
/// If `Arc::into_inner` is called on every clone of this `Arc`,
|
||
/// it is guaranteed that exactly one of the calls returns the inner value.
|
||
/// This means in particular that the inner value is not dropped.
|
||
///
|
||
/// [`Arc::try_unwrap`] is conceptually similar to `Arc::into_inner`, but it
|
||
/// is meant for different use-cases. If used as a direct replacement
|
||
/// for `Arc::into_inner` anyway, such as with the expression
|
||
/// <code>[Arc::try_unwrap]\(this).[ok][Result::ok]()</code>, then it does
|
||
/// **not** give the same guarantee as described in the previous paragraph.
|
||
/// For more information, see the examples below and read the documentation
|
||
/// of [`Arc::try_unwrap`].
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// Minimal example demonstrating the guarantee that `Arc::into_inner` gives.
|
||
/// ```
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let x = Arc::new(3);
|
||
/// let y = Arc::clone(&x);
|
||
///
|
||
/// // Two threads calling `Arc::into_inner` on both clones of an `Arc`:
|
||
/// let x_thread = std::thread::spawn(|| Arc::into_inner(x));
|
||
/// let y_thread = std::thread::spawn(|| Arc::into_inner(y));
|
||
///
|
||
/// let x_inner_value = x_thread.join().unwrap();
|
||
/// let y_inner_value = y_thread.join().unwrap();
|
||
///
|
||
/// // One of the threads is guaranteed to receive the inner value:
|
||
/// assert!(matches!(
|
||
/// (x_inner_value, y_inner_value),
|
||
/// (None, Some(3)) | (Some(3), None)
|
||
/// ));
|
||
/// // The result could also be `(None, None)` if the threads called
|
||
/// // `Arc::try_unwrap(x).ok()` and `Arc::try_unwrap(y).ok()` instead.
|
||
/// ```
|
||
///
|
||
/// A more practical example demonstrating the need for `Arc::into_inner`:
|
||
/// ```
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// // Definition of a simple singly linked list using `Arc`:
|
||
/// #[derive(Clone)]
|
||
/// struct LinkedList<T>(Option<Arc<Node<T>>>);
|
||
/// struct Node<T>(T, Option<Arc<Node<T>>>);
|
||
///
|
||
/// // Dropping a long `LinkedList<T>` relying on the destructor of `Arc`
|
||
/// // can cause a stack overflow. To prevent this, we can provide a
|
||
/// // manual `Drop` implementation that does the destruction in a loop:
|
||
/// impl<T> Drop for LinkedList<T> {
|
||
/// fn drop(&mut self) {
|
||
/// let mut link = self.0.take();
|
||
/// while let Some(arc_node) = link.take() {
|
||
/// if let Some(Node(_value, next)) = Arc::into_inner(arc_node) {
|
||
/// link = next;
|
||
/// }
|
||
/// }
|
||
/// }
|
||
/// }
|
||
///
|
||
/// // Implementation of `new` and `push` omitted
|
||
/// impl<T> LinkedList<T> {
|
||
/// /* ... */
|
||
/// # fn new() -> Self {
|
||
/// # LinkedList(None)
|
||
/// # }
|
||
/// # fn push(&mut self, x: T) {
|
||
/// # self.0 = Some(Arc::new(Node(x, self.0.take())));
|
||
/// # }
|
||
/// }
|
||
///
|
||
/// // The following code could have still caused a stack overflow
|
||
/// // despite the manual `Drop` impl if that `Drop` impl had used
|
||
/// // `Arc::try_unwrap(arc).ok()` instead of `Arc::into_inner(arc)`.
|
||
///
|
||
/// // Create a long list and clone it
|
||
/// let mut x = LinkedList::new();
|
||
/// let size = 100000;
|
||
/// # let size = if cfg!(miri) { 100 } else { size };
|
||
/// for i in 0..size {
|
||
/// x.push(i); // Adds i to the front of x
|
||
/// }
|
||
/// let y = x.clone();
|
||
///
|
||
/// // Drop the clones in parallel
|
||
/// let x_thread = std::thread::spawn(|| drop(x));
|
||
/// let y_thread = std::thread::spawn(|| drop(y));
|
||
/// x_thread.join().unwrap();
|
||
/// y_thread.join().unwrap();
|
||
/// ```
|
||
#[inline]
|
||
#[stable(feature = "arc_into_inner", since = "1.70.0")]
|
||
pub fn into_inner(this: Self) -> Option<T> {
|
||
// Make sure that the ordinary `Drop` implementation isn’t called as well
|
||
let mut this = mem::ManuallyDrop::new(this);
|
||
|
||
// Following the implementation of `drop` and `drop_slow`
|
||
if this.inner().strong.fetch_sub(1, Release) != 1 {
|
||
return None;
|
||
}
|
||
|
||
acquire!(this.inner().strong);
|
||
|
||
// SAFETY: This mirrors the line
|
||
//
|
||
// unsafe { ptr::drop_in_place(Self::get_mut_unchecked(self)) };
|
||
//
|
||
// in `drop_slow`. Instead of dropping the value behind the pointer,
|
||
// it is read and eventually returned; `ptr::read` has the same
|
||
// safety conditions as `ptr::drop_in_place`.
|
||
|
||
let inner = unsafe { ptr::read(Self::get_mut_unchecked(&mut this)) };
|
||
let alloc = unsafe { ptr::read(&this.alloc) };
|
||
|
||
drop(Weak { ptr: this.ptr, alloc });
|
||
|
||
Some(inner)
|
||
}
|
||
}
|
||
|
||
impl<T> Arc<[T]> {
|
||
/// Constructs a new atomically reference-counted slice with uninitialized contents.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(get_mut_unchecked)]
|
||
///
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let mut values = Arc::<[u32]>::new_uninit_slice(3);
|
||
///
|
||
/// // Deferred initialization:
|
||
/// let data = Arc::get_mut(&mut values).unwrap();
|
||
/// data[0].write(1);
|
||
/// data[1].write(2);
|
||
/// data[2].write(3);
|
||
///
|
||
/// let values = unsafe { values.assume_init() };
|
||
///
|
||
/// assert_eq!(*values, [1, 2, 3])
|
||
/// ```
|
||
#[cfg(not(no_global_oom_handling))]
|
||
#[inline]
|
||
#[stable(feature = "new_uninit", since = "1.82.0")]
|
||
#[must_use]
|
||
pub fn new_uninit_slice(len: usize) -> Arc<[mem::MaybeUninit<T>]> {
|
||
unsafe { Arc::from_ptr(Arc::allocate_for_slice(len)) }
|
||
}
|
||
|
||
/// Constructs a new atomically reference-counted slice with uninitialized contents, with the memory being
|
||
/// filled with `0` bytes.
|
||
///
|
||
/// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
|
||
/// incorrect usage of this method.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(new_zeroed_alloc)]
|
||
///
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let values = Arc::<[u32]>::new_zeroed_slice(3);
|
||
/// let values = unsafe { values.assume_init() };
|
||
///
|
||
/// assert_eq!(*values, [0, 0, 0])
|
||
/// ```
|
||
///
|
||
/// [zeroed]: mem::MaybeUninit::zeroed
|
||
#[cfg(not(no_global_oom_handling))]
|
||
#[inline]
|
||
#[unstable(feature = "new_zeroed_alloc", issue = "129396")]
|
||
#[must_use]
|
||
pub fn new_zeroed_slice(len: usize) -> Arc<[mem::MaybeUninit<T>]> {
|
||
unsafe {
|
||
Arc::from_ptr(Arc::allocate_for_layout(
|
||
Layout::array::<T>(len).unwrap(),
|
||
|layout| Global.allocate_zeroed(layout),
|
||
|mem| {
|
||
ptr::slice_from_raw_parts_mut(mem as *mut T, len)
|
||
as *mut ArcInner<[mem::MaybeUninit<T>]>
|
||
},
|
||
))
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<T, A: Allocator> Arc<[T], A> {
|
||
/// Constructs a new atomically reference-counted slice with uninitialized contents in the
|
||
/// provided allocator.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(get_mut_unchecked)]
|
||
/// #![feature(allocator_api)]
|
||
///
|
||
/// use std::sync::Arc;
|
||
/// use std::alloc::System;
|
||
///
|
||
/// let mut values = Arc::<[u32], _>::new_uninit_slice_in(3, System);
|
||
///
|
||
/// let values = unsafe {
|
||
/// // Deferred initialization:
|
||
/// Arc::get_mut_unchecked(&mut values)[0].as_mut_ptr().write(1);
|
||
/// Arc::get_mut_unchecked(&mut values)[1].as_mut_ptr().write(2);
|
||
/// Arc::get_mut_unchecked(&mut values)[2].as_mut_ptr().write(3);
|
||
///
|
||
/// values.assume_init()
|
||
/// };
|
||
///
|
||
/// assert_eq!(*values, [1, 2, 3])
|
||
/// ```
|
||
#[cfg(not(no_global_oom_handling))]
|
||
#[unstable(feature = "allocator_api", issue = "32838")]
|
||
#[inline]
|
||
pub fn new_uninit_slice_in(len: usize, alloc: A) -> Arc<[mem::MaybeUninit<T>], A> {
|
||
unsafe { Arc::from_ptr_in(Arc::allocate_for_slice_in(len, &alloc), alloc) }
|
||
}
|
||
|
||
/// Constructs a new atomically reference-counted slice with uninitialized contents, with the memory being
|
||
/// filled with `0` bytes, in the provided allocator.
|
||
///
|
||
/// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
|
||
/// incorrect usage of this method.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(allocator_api)]
|
||
///
|
||
/// use std::sync::Arc;
|
||
/// use std::alloc::System;
|
||
///
|
||
/// let values = Arc::<[u32], _>::new_zeroed_slice_in(3, System);
|
||
/// let values = unsafe { values.assume_init() };
|
||
///
|
||
/// assert_eq!(*values, [0, 0, 0])
|
||
/// ```
|
||
///
|
||
/// [zeroed]: mem::MaybeUninit::zeroed
|
||
#[cfg(not(no_global_oom_handling))]
|
||
#[unstable(feature = "allocator_api", issue = "32838")]
|
||
#[inline]
|
||
pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Arc<[mem::MaybeUninit<T>], A> {
|
||
unsafe {
|
||
Arc::from_ptr_in(
|
||
Arc::allocate_for_layout(
|
||
Layout::array::<T>(len).unwrap(),
|
||
|layout| alloc.allocate_zeroed(layout),
|
||
|mem| {
|
||
ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len)
|
||
as *mut ArcInner<[mem::MaybeUninit<T>]>
|
||
},
|
||
),
|
||
alloc,
|
||
)
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<T, A: Allocator> Arc<mem::MaybeUninit<T>, A> {
|
||
/// Converts to `Arc<T>`.
|
||
///
|
||
/// # Safety
|
||
///
|
||
/// As with [`MaybeUninit::assume_init`],
|
||
/// it is up to the caller to guarantee that the inner value
|
||
/// really is in an initialized state.
|
||
/// Calling this when the content is not yet fully initialized
|
||
/// causes immediate undefined behavior.
|
||
///
|
||
/// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(get_mut_unchecked)]
|
||
///
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let mut five = Arc::<u32>::new_uninit();
|
||
///
|
||
/// // Deferred initialization:
|
||
/// Arc::get_mut(&mut five).unwrap().write(5);
|
||
///
|
||
/// let five = unsafe { five.assume_init() };
|
||
///
|
||
/// assert_eq!(*five, 5)
|
||
/// ```
|
||
#[stable(feature = "new_uninit", since = "1.82.0")]
|
||
#[must_use = "`self` will be dropped if the result is not used"]
|
||
#[inline]
|
||
pub unsafe fn assume_init(self) -> Arc<T, A> {
|
||
let (ptr, alloc) = Arc::into_inner_with_allocator(self);
|
||
unsafe { Arc::from_inner_in(ptr.cast(), alloc) }
|
||
}
|
||
}
|
||
|
||
impl<T, A: Allocator> Arc<[mem::MaybeUninit<T>], A> {
|
||
/// Converts to `Arc<[T]>`.
|
||
///
|
||
/// # Safety
|
||
///
|
||
/// As with [`MaybeUninit::assume_init`],
|
||
/// it is up to the caller to guarantee that the inner value
|
||
/// really is in an initialized state.
|
||
/// Calling this when the content is not yet fully initialized
|
||
/// causes immediate undefined behavior.
|
||
///
|
||
/// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(get_mut_unchecked)]
|
||
///
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let mut values = Arc::<[u32]>::new_uninit_slice(3);
|
||
///
|
||
/// // Deferred initialization:
|
||
/// let data = Arc::get_mut(&mut values).unwrap();
|
||
/// data[0].write(1);
|
||
/// data[1].write(2);
|
||
/// data[2].write(3);
|
||
///
|
||
/// let values = unsafe { values.assume_init() };
|
||
///
|
||
/// assert_eq!(*values, [1, 2, 3])
|
||
/// ```
|
||
#[stable(feature = "new_uninit", since = "1.82.0")]
|
||
#[must_use = "`self` will be dropped if the result is not used"]
|
||
#[inline]
|
||
pub unsafe fn assume_init(self) -> Arc<[T], A> {
|
||
let (ptr, alloc) = Arc::into_inner_with_allocator(self);
|
||
unsafe { Arc::from_ptr_in(ptr.as_ptr() as _, alloc) }
|
||
}
|
||
}
|
||
|
||
impl<T: ?Sized> Arc<T> {
|
||
/// Constructs an `Arc<T>` from a raw pointer.
|
||
///
|
||
/// The raw pointer must have been previously returned by a call to
|
||
/// [`Arc<U>::into_raw`][into_raw] with the following requirements:
|
||
///
|
||
/// * If `U` is sized, it must have the same size and alignment as `T`. This
|
||
/// is trivially true if `U` is `T`.
|
||
/// * If `U` is unsized, its data pointer must have the same size and
|
||
/// alignment as `T`. This is trivially true if `Arc<U>` was constructed
|
||
/// through `Arc<T>` and then converted to `Arc<U>` through an [unsized
|
||
/// coercion].
|
||
///
|
||
/// Note that if `U` or `U`'s data pointer is not `T` but has the same size
|
||
/// and alignment, this is basically like transmuting references of
|
||
/// different types. See [`mem::transmute`][transmute] for more information
|
||
/// on what restrictions apply in this case.
|
||
///
|
||
/// The user of `from_raw` has to make sure a specific value of `T` is only
|
||
/// dropped once.
|
||
///
|
||
/// This function is unsafe because improper use may lead to memory unsafety,
|
||
/// even if the returned `Arc<T>` is never accessed.
|
||
///
|
||
/// [into_raw]: Arc::into_raw
|
||
/// [transmute]: core::mem::transmute
|
||
/// [unsized coercion]: https://doc.rust-lang.org/reference/type-coercions.html#unsized-coercions
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let x = Arc::new("hello".to_owned());
|
||
/// let x_ptr = Arc::into_raw(x);
|
||
///
|
||
/// unsafe {
|
||
/// // Convert back to an `Arc` to prevent leak.
|
||
/// let x = Arc::from_raw(x_ptr);
|
||
/// assert_eq!(&*x, "hello");
|
||
///
|
||
/// // Further calls to `Arc::from_raw(x_ptr)` would be memory-unsafe.
|
||
/// }
|
||
///
|
||
/// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!
|
||
/// ```
|
||
///
|
||
/// Convert a slice back into its original array:
|
||
///
|
||
/// ```
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let x: Arc<[u32]> = Arc::new([1, 2, 3]);
|
||
/// let x_ptr: *const [u32] = Arc::into_raw(x);
|
||
///
|
||
/// unsafe {
|
||
/// let x: Arc<[u32; 3]> = Arc::from_raw(x_ptr.cast::<[u32; 3]>());
|
||
/// assert_eq!(&*x, &[1, 2, 3]);
|
||
/// }
|
||
/// ```
|
||
#[inline]
|
||
#[stable(feature = "rc_raw", since = "1.17.0")]
|
||
pub unsafe fn from_raw(ptr: *const T) -> Self {
|
||
unsafe { Arc::from_raw_in(ptr, Global) }
|
||
}
|
||
|
||
/// Increments the strong reference count on the `Arc<T>` associated with the
|
||
/// provided pointer by one.
|
||
///
|
||
/// # Safety
|
||
///
|
||
/// The pointer must have been obtained through `Arc::into_raw`, and the
|
||
/// associated `Arc` instance must be valid (i.e. the strong count must be at
|
||
/// least 1) for the duration of this method.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let five = Arc::new(5);
|
||
///
|
||
/// unsafe {
|
||
/// let ptr = Arc::into_raw(five);
|
||
/// Arc::increment_strong_count(ptr);
|
||
///
|
||
/// // This assertion is deterministic because we haven't shared
|
||
/// // the `Arc` between threads.
|
||
/// let five = Arc::from_raw(ptr);
|
||
/// assert_eq!(2, Arc::strong_count(&five));
|
||
/// # // Prevent leaks for Miri.
|
||
/// # Arc::decrement_strong_count(ptr);
|
||
/// }
|
||
/// ```
|
||
#[inline]
|
||
#[stable(feature = "arc_mutate_strong_count", since = "1.51.0")]
|
||
pub unsafe fn increment_strong_count(ptr: *const T) {
|
||
unsafe { Arc::increment_strong_count_in(ptr, Global) }
|
||
}
|
||
|
||
/// Decrements the strong reference count on the `Arc<T>` associated with the
|
||
/// provided pointer by one.
|
||
///
|
||
/// # Safety
|
||
///
|
||
/// The pointer must have been obtained through `Arc::into_raw`, and the
|
||
/// associated `Arc` instance must be valid (i.e. the strong count must be at
|
||
/// least 1) when invoking this method. This method can be used to release the final
|
||
/// `Arc` and backing storage, but **should not** be called after the final `Arc` has been
|
||
/// released.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let five = Arc::new(5);
|
||
///
|
||
/// unsafe {
|
||
/// let ptr = Arc::into_raw(five);
|
||
/// Arc::increment_strong_count(ptr);
|
||
///
|
||
/// // Those assertions are deterministic because we haven't shared
|
||
/// // the `Arc` between threads.
|
||
/// let five = Arc::from_raw(ptr);
|
||
/// assert_eq!(2, Arc::strong_count(&five));
|
||
/// Arc::decrement_strong_count(ptr);
|
||
/// assert_eq!(1, Arc::strong_count(&five));
|
||
/// }
|
||
/// ```
|
||
#[inline]
|
||
#[stable(feature = "arc_mutate_strong_count", since = "1.51.0")]
|
||
pub unsafe fn decrement_strong_count(ptr: *const T) {
|
||
unsafe { Arc::decrement_strong_count_in(ptr, Global) }
|
||
}
|
||
}
|
||
|
||
impl<T: ?Sized, A: Allocator> Arc<T, A> {
|
||
/// Returns a reference to the underlying allocator.
|
||
///
|
||
/// Note: this is an associated function, which means that you have
|
||
/// to call it as `Arc::allocator(&a)` instead of `a.allocator()`. This
|
||
/// is so that there is no conflict with a method on the inner type.
|
||
#[inline]
|
||
#[unstable(feature = "allocator_api", issue = "32838")]
|
||
pub fn allocator(this: &Self) -> &A {
|
||
&this.alloc
|
||
}
|
||
|
||
/// Consumes the `Arc`, returning the wrapped pointer.
|
||
///
|
||
/// To avoid a memory leak the pointer must be converted back to an `Arc` using
|
||
/// [`Arc::from_raw`].
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let x = Arc::new("hello".to_owned());
|
||
/// let x_ptr = Arc::into_raw(x);
|
||
/// assert_eq!(unsafe { &*x_ptr }, "hello");
|
||
/// # // Prevent leaks for Miri.
|
||
/// # drop(unsafe { Arc::from_raw(x_ptr) });
|
||
/// ```
|
||
#[must_use = "losing the pointer will leak memory"]
|
||
#[stable(feature = "rc_raw", since = "1.17.0")]
|
||
#[rustc_never_returns_null_ptr]
|
||
pub fn into_raw(this: Self) -> *const T {
|
||
let this = ManuallyDrop::new(this);
|
||
Self::as_ptr(&*this)
|
||
}
|
||
|
||
/// Consumes the `Arc`, returning the wrapped pointer and allocator.
|
||
///
|
||
/// To avoid a memory leak the pointer must be converted back to an `Arc` using
|
||
/// [`Arc::from_raw_in`].
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(allocator_api)]
|
||
/// use std::sync::Arc;
|
||
/// use std::alloc::System;
|
||
///
|
||
/// let x = Arc::new_in("hello".to_owned(), System);
|
||
/// let (ptr, alloc) = Arc::into_raw_with_allocator(x);
|
||
/// assert_eq!(unsafe { &*ptr }, "hello");
|
||
/// let x = unsafe { Arc::from_raw_in(ptr, alloc) };
|
||
/// assert_eq!(&*x, "hello");
|
||
/// ```
|
||
#[must_use = "losing the pointer will leak memory"]
|
||
#[unstable(feature = "allocator_api", issue = "32838")]
|
||
pub fn into_raw_with_allocator(this: Self) -> (*const T, A) {
|
||
let this = mem::ManuallyDrop::new(this);
|
||
let ptr = Self::as_ptr(&this);
|
||
// Safety: `this` is ManuallyDrop so the allocator will not be double-dropped
|
||
let alloc = unsafe { ptr::read(&this.alloc) };
|
||
(ptr, alloc)
|
||
}
|
||
|
||
/// Provides a raw pointer to the data.
|
||
///
|
||
/// The counts are not affected in any way and the `Arc` is not consumed. The pointer is valid for
|
||
/// as long as there are strong counts in the `Arc`.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let x = Arc::new("hello".to_owned());
|
||
/// let y = Arc::clone(&x);
|
||
/// let x_ptr = Arc::as_ptr(&x);
|
||
/// assert_eq!(x_ptr, Arc::as_ptr(&y));
|
||
/// assert_eq!(unsafe { &*x_ptr }, "hello");
|
||
/// ```
|
||
#[must_use]
|
||
#[stable(feature = "rc_as_ptr", since = "1.45.0")]
|
||
#[rustc_never_returns_null_ptr]
|
||
pub fn as_ptr(this: &Self) -> *const T {
|
||
let ptr: *mut ArcInner<T> = NonNull::as_ptr(this.ptr);
|
||
|
||
// SAFETY: This cannot go through Deref::deref or RcInnerPtr::inner because
|
||
// this is required to retain raw/mut provenance such that e.g. `get_mut` can
|
||
// write through the pointer after the Rc is recovered through `from_raw`.
|
||
unsafe { &raw mut (*ptr).data }
|
||
}
|
||
|
||
/// Constructs an `Arc<T, A>` from a raw pointer.
|
||
///
|
||
/// The raw pointer must have been previously returned by a call to [`Arc<U,
|
||
/// A>::into_raw`][into_raw] with the following requirements:
|
||
///
|
||
/// * If `U` is sized, it must have the same size and alignment as `T`. This
|
||
/// is trivially true if `U` is `T`.
|
||
/// * If `U` is unsized, its data pointer must have the same size and
|
||
/// alignment as `T`. This is trivially true if `Arc<U>` was constructed
|
||
/// through `Arc<T>` and then converted to `Arc<U>` through an [unsized
|
||
/// coercion].
|
||
///
|
||
/// Note that if `U` or `U`'s data pointer is not `T` but has the same size
|
||
/// and alignment, this is basically like transmuting references of
|
||
/// different types. See [`mem::transmute`][transmute] for more information
|
||
/// on what restrictions apply in this case.
|
||
///
|
||
/// The raw pointer must point to a block of memory allocated by `alloc`
|
||
///
|
||
/// The user of `from_raw` has to make sure a specific value of `T` is only
|
||
/// dropped once.
|
||
///
|
||
/// This function is unsafe because improper use may lead to memory unsafety,
|
||
/// even if the returned `Arc<T>` is never accessed.
|
||
///
|
||
/// [into_raw]: Arc::into_raw
|
||
/// [transmute]: core::mem::transmute
|
||
/// [unsized coercion]: https://doc.rust-lang.org/reference/type-coercions.html#unsized-coercions
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(allocator_api)]
|
||
///
|
||
/// use std::sync::Arc;
|
||
/// use std::alloc::System;
|
||
///
|
||
/// let x = Arc::new_in("hello".to_owned(), System);
|
||
/// let x_ptr = Arc::into_raw(x);
|
||
///
|
||
/// unsafe {
|
||
/// // Convert back to an `Arc` to prevent leak.
|
||
/// let x = Arc::from_raw_in(x_ptr, System);
|
||
/// assert_eq!(&*x, "hello");
|
||
///
|
||
/// // Further calls to `Arc::from_raw(x_ptr)` would be memory-unsafe.
|
||
/// }
|
||
///
|
||
/// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!
|
||
/// ```
|
||
///
|
||
/// Convert a slice back into its original array:
|
||
///
|
||
/// ```
|
||
/// #![feature(allocator_api)]
|
||
///
|
||
/// use std::sync::Arc;
|
||
/// use std::alloc::System;
|
||
///
|
||
/// let x: Arc<[u32], _> = Arc::new_in([1, 2, 3], System);
|
||
/// let x_ptr: *const [u32] = Arc::into_raw(x);
|
||
///
|
||
/// unsafe {
|
||
/// let x: Arc<[u32; 3], _> = Arc::from_raw_in(x_ptr.cast::<[u32; 3]>(), System);
|
||
/// assert_eq!(&*x, &[1, 2, 3]);
|
||
/// }
|
||
/// ```
|
||
#[inline]
|
||
#[unstable(feature = "allocator_api", issue = "32838")]
|
||
pub unsafe fn from_raw_in(ptr: *const T, alloc: A) -> Self {
|
||
unsafe {
|
||
let offset = data_offset(ptr);
|
||
|
||
// Reverse the offset to find the original ArcInner.
|
||
let arc_ptr = ptr.byte_sub(offset) as *mut ArcInner<T>;
|
||
|
||
Self::from_ptr_in(arc_ptr, alloc)
|
||
}
|
||
}
|
||
|
||
/// Creates a new [`Weak`] pointer to this allocation.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let five = Arc::new(5);
|
||
///
|
||
/// let weak_five = Arc::downgrade(&five);
|
||
/// ```
|
||
#[must_use = "this returns a new `Weak` pointer, \
|
||
without modifying the original `Arc`"]
|
||
#[stable(feature = "arc_weak", since = "1.4.0")]
|
||
pub fn downgrade(this: &Self) -> Weak<T, A>
|
||
where
|
||
A: Clone,
|
||
{
|
||
// This Relaxed is OK because we're checking the value in the CAS
|
||
// below.
|
||
let mut cur = this.inner().weak.load(Relaxed);
|
||
|
||
loop {
|
||
// check if the weak counter is currently "locked"; if so, spin.
|
||
if cur == usize::MAX {
|
||
hint::spin_loop();
|
||
cur = this.inner().weak.load(Relaxed);
|
||
continue;
|
||
}
|
||
|
||
// We can't allow the refcount to increase much past `MAX_REFCOUNT`.
|
||
assert!(cur <= MAX_REFCOUNT, "{}", INTERNAL_OVERFLOW_ERROR);
|
||
|
||
// NOTE: this code currently ignores the possibility of overflow
|
||
// into usize::MAX; in general both Rc and Arc need to be adjusted
|
||
// to deal with overflow.
|
||
|
||
// Unlike with Clone(), we need this to be an Acquire read to
|
||
// synchronize with the write coming from `is_unique`, so that the
|
||
// events prior to that write happen before this read.
|
||
match this.inner().weak.compare_exchange_weak(cur, cur + 1, Acquire, Relaxed) {
|
||
Ok(_) => {
|
||
// Make sure we do not create a dangling Weak
|
||
debug_assert!(!is_dangling(this.ptr.as_ptr()));
|
||
return Weak { ptr: this.ptr, alloc: this.alloc.clone() };
|
||
}
|
||
Err(old) => cur = old,
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Gets the number of [`Weak`] pointers to this allocation.
|
||
///
|
||
/// # Safety
|
||
///
|
||
/// This method by itself is safe, but using it correctly requires extra care.
|
||
/// Another thread can change the weak count at any time,
|
||
/// including potentially between calling this method and acting on the result.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let five = Arc::new(5);
|
||
/// let _weak_five = Arc::downgrade(&five);
|
||
///
|
||
/// // This assertion is deterministic because we haven't shared
|
||
/// // the `Arc` or `Weak` between threads.
|
||
/// assert_eq!(1, Arc::weak_count(&five));
|
||
/// ```
|
||
#[inline]
|
||
#[must_use]
|
||
#[stable(feature = "arc_counts", since = "1.15.0")]
|
||
pub fn weak_count(this: &Self) -> usize {
|
||
let cnt = this.inner().weak.load(Relaxed);
|
||
// If the weak count is currently locked, the value of the
|
||
// count was 0 just before taking the lock.
|
||
if cnt == usize::MAX { 0 } else { cnt - 1 }
|
||
}
|
||
|
||
/// Gets the number of strong (`Arc`) pointers to this allocation.
|
||
///
|
||
/// # Safety
|
||
///
|
||
/// This method by itself is safe, but using it correctly requires extra care.
|
||
/// Another thread can change the strong count at any time,
|
||
/// including potentially between calling this method and acting on the result.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let five = Arc::new(5);
|
||
/// let _also_five = Arc::clone(&five);
|
||
///
|
||
/// // This assertion is deterministic because we haven't shared
|
||
/// // the `Arc` between threads.
|
||
/// assert_eq!(2, Arc::strong_count(&five));
|
||
/// ```
|
||
#[inline]
|
||
#[must_use]
|
||
#[stable(feature = "arc_counts", since = "1.15.0")]
|
||
pub fn strong_count(this: &Self) -> usize {
|
||
this.inner().strong.load(Relaxed)
|
||
}
|
||
|
||
/// Increments the strong reference count on the `Arc<T>` associated with the
|
||
/// provided pointer by one.
|
||
///
|
||
/// # Safety
|
||
///
|
||
/// The pointer must have been obtained through `Arc::into_raw`, and the
|
||
/// associated `Arc` instance must be valid (i.e. the strong count must be at
|
||
/// least 1) for the duration of this method,, and `ptr` must point to a block of memory
|
||
/// allocated by `alloc`.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(allocator_api)]
|
||
///
|
||
/// use std::sync::Arc;
|
||
/// use std::alloc::System;
|
||
///
|
||
/// let five = Arc::new_in(5, System);
|
||
///
|
||
/// unsafe {
|
||
/// let ptr = Arc::into_raw(five);
|
||
/// Arc::increment_strong_count_in(ptr, System);
|
||
///
|
||
/// // This assertion is deterministic because we haven't shared
|
||
/// // the `Arc` between threads.
|
||
/// let five = Arc::from_raw_in(ptr, System);
|
||
/// assert_eq!(2, Arc::strong_count(&five));
|
||
/// # // Prevent leaks for Miri.
|
||
/// # Arc::decrement_strong_count_in(ptr, System);
|
||
/// }
|
||
/// ```
|
||
#[inline]
|
||
#[unstable(feature = "allocator_api", issue = "32838")]
|
||
pub unsafe fn increment_strong_count_in(ptr: *const T, alloc: A)
|
||
where
|
||
A: Clone,
|
||
{
|
||
// Retain Arc, but don't touch refcount by wrapping in ManuallyDrop
|
||
let arc = unsafe { mem::ManuallyDrop::new(Arc::from_raw_in(ptr, alloc)) };
|
||
// Now increase refcount, but don't drop new refcount either
|
||
let _arc_clone: mem::ManuallyDrop<_> = arc.clone();
|
||
}
|
||
|
||
/// Decrements the strong reference count on the `Arc<T>` associated with the
|
||
/// provided pointer by one.
|
||
///
|
||
/// # Safety
|
||
///
|
||
/// The pointer must have been obtained through `Arc::into_raw`, the
|
||
/// associated `Arc` instance must be valid (i.e. the strong count must be at
|
||
/// least 1) when invoking this method, and `ptr` must point to a block of memory
|
||
/// allocated by `alloc`. This method can be used to release the final
|
||
/// `Arc` and backing storage, but **should not** be called after the final `Arc` has been
|
||
/// released.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(allocator_api)]
|
||
///
|
||
/// use std::sync::Arc;
|
||
/// use std::alloc::System;
|
||
///
|
||
/// let five = Arc::new_in(5, System);
|
||
///
|
||
/// unsafe {
|
||
/// let ptr = Arc::into_raw(five);
|
||
/// Arc::increment_strong_count_in(ptr, System);
|
||
///
|
||
/// // Those assertions are deterministic because we haven't shared
|
||
/// // the `Arc` between threads.
|
||
/// let five = Arc::from_raw_in(ptr, System);
|
||
/// assert_eq!(2, Arc::strong_count(&five));
|
||
/// Arc::decrement_strong_count_in(ptr, System);
|
||
/// assert_eq!(1, Arc::strong_count(&five));
|
||
/// }
|
||
/// ```
|
||
#[inline]
|
||
#[unstable(feature = "allocator_api", issue = "32838")]
|
||
pub unsafe fn decrement_strong_count_in(ptr: *const T, alloc: A) {
|
||
unsafe { drop(Arc::from_raw_in(ptr, alloc)) };
|
||
}
|
||
|
||
#[inline]
|
||
fn inner(&self) -> &ArcInner<T> {
|
||
// This unsafety is ok because while this arc is alive we're guaranteed
|
||
// that the inner pointer is valid. Furthermore, we know that the
|
||
// `ArcInner` structure itself is `Sync` because the inner data is
|
||
// `Sync` as well, so we're ok loaning out an immutable pointer to these
|
||
// contents.
|
||
unsafe { self.ptr.as_ref() }
|
||
}
|
||
|
||
// Non-inlined part of `drop`.
|
||
#[inline(never)]
|
||
unsafe fn drop_slow(&mut self) {
|
||
// Drop the weak ref collectively held by all strong references when this
|
||
// variable goes out of scope. This ensures that the memory is deallocated
|
||
// even if the destructor of `T` panics.
|
||
// Take a reference to `self.alloc` instead of cloning because 1. it'll last long
|
||
// enough, and 2. you should be able to drop `Arc`s with unclonable allocators
|
||
let _weak = Weak { ptr: self.ptr, alloc: &self.alloc };
|
||
|
||
// Destroy the data at this time, even though we must not free the box
|
||
// allocation itself (there might still be weak pointers lying around).
|
||
// We cannot use `get_mut_unchecked` here, because `self.alloc` is borrowed.
|
||
unsafe { ptr::drop_in_place(&mut (*self.ptr.as_ptr()).data) };
|
||
}
|
||
|
||
/// Returns `true` if the two `Arc`s point to the same allocation in a vein similar to
|
||
/// [`ptr::eq`]. This function ignores the metadata of `dyn Trait` pointers.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let five = Arc::new(5);
|
||
/// let same_five = Arc::clone(&five);
|
||
/// let other_five = Arc::new(5);
|
||
///
|
||
/// assert!(Arc::ptr_eq(&five, &same_five));
|
||
/// assert!(!Arc::ptr_eq(&five, &other_five));
|
||
/// ```
|
||
///
|
||
/// [`ptr::eq`]: core::ptr::eq "ptr::eq"
|
||
#[inline]
|
||
#[must_use]
|
||
#[stable(feature = "ptr_eq", since = "1.17.0")]
|
||
pub fn ptr_eq(this: &Self, other: &Self) -> bool {
|
||
ptr::addr_eq(this.ptr.as_ptr(), other.ptr.as_ptr())
|
||
}
|
||
}
|
||
|
||
impl<T: ?Sized> Arc<T> {
|
||
/// Allocates an `ArcInner<T>` with sufficient space for
|
||
/// a possibly-unsized inner value where the value has the layout provided.
|
||
///
|
||
/// The function `mem_to_arcinner` is called with the data pointer
|
||
/// and must return back a (potentially fat)-pointer for the `ArcInner<T>`.
|
||
#[cfg(not(no_global_oom_handling))]
|
||
unsafe fn allocate_for_layout(
|
||
value_layout: Layout,
|
||
allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>,
|
||
mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>,
|
||
) -> *mut ArcInner<T> {
|
||
let layout = arcinner_layout_for_value_layout(value_layout);
|
||
|
||
let ptr = allocate(layout).unwrap_or_else(|_| handle_alloc_error(layout));
|
||
|
||
unsafe { Self::initialize_arcinner(ptr, layout, mem_to_arcinner) }
|
||
}
|
||
|
||
/// Allocates an `ArcInner<T>` with sufficient space for
|
||
/// a possibly-unsized inner value where the value has the layout provided,
|
||
/// returning an error if allocation fails.
|
||
///
|
||
/// The function `mem_to_arcinner` is called with the data pointer
|
||
/// and must return back a (potentially fat)-pointer for the `ArcInner<T>`.
|
||
unsafe fn try_allocate_for_layout(
|
||
value_layout: Layout,
|
||
allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>,
|
||
mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>,
|
||
) -> Result<*mut ArcInner<T>, AllocError> {
|
||
let layout = arcinner_layout_for_value_layout(value_layout);
|
||
|
||
let ptr = allocate(layout)?;
|
||
|
||
let inner = unsafe { Self::initialize_arcinner(ptr, layout, mem_to_arcinner) };
|
||
|
||
Ok(inner)
|
||
}
|
||
|
||
unsafe fn initialize_arcinner(
|
||
ptr: NonNull<[u8]>,
|
||
layout: Layout,
|
||
mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>,
|
||
) -> *mut ArcInner<T> {
|
||
let inner = mem_to_arcinner(ptr.as_non_null_ptr().as_ptr());
|
||
debug_assert_eq!(unsafe { Layout::for_value_raw(inner) }, layout);
|
||
|
||
unsafe {
|
||
(&raw mut (*inner).strong).write(atomic::AtomicUsize::new(1));
|
||
(&raw mut (*inner).weak).write(atomic::AtomicUsize::new(1));
|
||
}
|
||
|
||
inner
|
||
}
|
||
}
|
||
|
||
impl<T: ?Sized, A: Allocator> Arc<T, A> {
|
||
/// Allocates an `ArcInner<T>` with sufficient space for an unsized inner value.
|
||
#[inline]
|
||
#[cfg(not(no_global_oom_handling))]
|
||
unsafe fn allocate_for_ptr_in(ptr: *const T, alloc: &A) -> *mut ArcInner<T> {
|
||
// Allocate for the `ArcInner<T>` using the given value.
|
||
unsafe {
|
||
Arc::allocate_for_layout(
|
||
Layout::for_value_raw(ptr),
|
||
|layout| alloc.allocate(layout),
|
||
|mem| mem.with_metadata_of(ptr as *const ArcInner<T>),
|
||
)
|
||
}
|
||
}
|
||
|
||
#[cfg(not(no_global_oom_handling))]
|
||
fn from_box_in(src: Box<T, A>) -> Arc<T, A> {
|
||
unsafe {
|
||
let value_size = size_of_val(&*src);
|
||
let ptr = Self::allocate_for_ptr_in(&*src, Box::allocator(&src));
|
||
|
||
// Copy value as bytes
|
||
ptr::copy_nonoverlapping(
|
||
(&raw const *src) as *const u8,
|
||
(&raw mut (*ptr).data) as *mut u8,
|
||
value_size,
|
||
);
|
||
|
||
// Free the allocation without dropping its contents
|
||
let (bptr, alloc) = Box::into_raw_with_allocator(src);
|
||
let src = Box::from_raw_in(bptr as *mut mem::ManuallyDrop<T>, alloc.by_ref());
|
||
drop(src);
|
||
|
||
Self::from_ptr_in(ptr, alloc)
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<T> Arc<[T]> {
|
||
/// Allocates an `ArcInner<[T]>` with the given length.
|
||
#[cfg(not(no_global_oom_handling))]
|
||
unsafe fn allocate_for_slice(len: usize) -> *mut ArcInner<[T]> {
|
||
unsafe {
|
||
Self::allocate_for_layout(
|
||
Layout::array::<T>(len).unwrap(),
|
||
|layout| Global.allocate(layout),
|
||
|mem| ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len) as *mut ArcInner<[T]>,
|
||
)
|
||
}
|
||
}
|
||
|
||
/// Copy elements from slice into newly allocated `Arc<[T]>`
|
||
///
|
||
/// Unsafe because the caller must either take ownership or bind `T: Copy`.
|
||
#[cfg(not(no_global_oom_handling))]
|
||
unsafe fn copy_from_slice(v: &[T]) -> Arc<[T]> {
|
||
unsafe {
|
||
let ptr = Self::allocate_for_slice(v.len());
|
||
|
||
ptr::copy_nonoverlapping(v.as_ptr(), (&raw mut (*ptr).data) as *mut T, v.len());
|
||
|
||
Self::from_ptr(ptr)
|
||
}
|
||
}
|
||
|
||
/// Constructs an `Arc<[T]>` from an iterator known to be of a certain size.
|
||
///
|
||
/// Behavior is undefined should the size be wrong.
|
||
#[cfg(not(no_global_oom_handling))]
|
||
unsafe fn from_iter_exact(iter: impl Iterator<Item = T>, len: usize) -> Arc<[T]> {
|
||
// Panic guard while cloning T elements.
|
||
// In the event of a panic, elements that have been written
|
||
// into the new ArcInner will be dropped, then the memory freed.
|
||
struct Guard<T> {
|
||
mem: NonNull<u8>,
|
||
elems: *mut T,
|
||
layout: Layout,
|
||
n_elems: usize,
|
||
}
|
||
|
||
impl<T> Drop for Guard<T> {
|
||
fn drop(&mut self) {
|
||
unsafe {
|
||
let slice = from_raw_parts_mut(self.elems, self.n_elems);
|
||
ptr::drop_in_place(slice);
|
||
|
||
Global.deallocate(self.mem, self.layout);
|
||
}
|
||
}
|
||
}
|
||
|
||
unsafe {
|
||
let ptr = Self::allocate_for_slice(len);
|
||
|
||
let mem = ptr as *mut _ as *mut u8;
|
||
let layout = Layout::for_value_raw(ptr);
|
||
|
||
// Pointer to first element
|
||
let elems = (&raw mut (*ptr).data) as *mut T;
|
||
|
||
let mut guard = Guard { mem: NonNull::new_unchecked(mem), elems, layout, n_elems: 0 };
|
||
|
||
for (i, item) in iter.enumerate() {
|
||
ptr::write(elems.add(i), item);
|
||
guard.n_elems += 1;
|
||
}
|
||
|
||
// All clear. Forget the guard so it doesn't free the new ArcInner.
|
||
mem::forget(guard);
|
||
|
||
Self::from_ptr(ptr)
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<T, A: Allocator> Arc<[T], A> {
|
||
/// Allocates an `ArcInner<[T]>` with the given length.
|
||
#[inline]
|
||
#[cfg(not(no_global_oom_handling))]
|
||
unsafe fn allocate_for_slice_in(len: usize, alloc: &A) -> *mut ArcInner<[T]> {
|
||
unsafe {
|
||
Arc::allocate_for_layout(
|
||
Layout::array::<T>(len).unwrap(),
|
||
|layout| alloc.allocate(layout),
|
||
|mem| ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len) as *mut ArcInner<[T]>,
|
||
)
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Specialization trait used for `From<&[T]>`.
|
||
#[cfg(not(no_global_oom_handling))]
|
||
trait ArcFromSlice<T> {
|
||
fn from_slice(slice: &[T]) -> Self;
|
||
}
|
||
|
||
#[cfg(not(no_global_oom_handling))]
|
||
impl<T: Clone> ArcFromSlice<T> for Arc<[T]> {
|
||
#[inline]
|
||
default fn from_slice(v: &[T]) -> Self {
|
||
unsafe { Self::from_iter_exact(v.iter().cloned(), v.len()) }
|
||
}
|
||
}
|
||
|
||
#[cfg(not(no_global_oom_handling))]
|
||
impl<T: Copy> ArcFromSlice<T> for Arc<[T]> {
|
||
#[inline]
|
||
fn from_slice(v: &[T]) -> Self {
|
||
unsafe { Arc::copy_from_slice(v) }
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T: ?Sized, A: Allocator + Clone> Clone for Arc<T, A> {
|
||
/// Makes a clone of the `Arc` pointer.
|
||
///
|
||
/// This creates another pointer to the same allocation, increasing the
|
||
/// strong reference count.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let five = Arc::new(5);
|
||
///
|
||
/// let _ = Arc::clone(&five);
|
||
/// ```
|
||
#[inline]
|
||
fn clone(&self) -> Arc<T, A> {
|
||
// Using a relaxed ordering is alright here, as knowledge of the
|
||
// original reference prevents other threads from erroneously deleting
|
||
// the object.
|
||
//
|
||
// As explained in the [Boost documentation][1], Increasing the
|
||
// reference counter can always be done with memory_order_relaxed: New
|
||
// references to an object can only be formed from an existing
|
||
// reference, and passing an existing reference from one thread to
|
||
// another must already provide any required synchronization.
|
||
//
|
||
// [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
|
||
let old_size = self.inner().strong.fetch_add(1, Relaxed);
|
||
|
||
// However we need to guard against massive refcounts in case someone is `mem::forget`ing
|
||
// Arcs. If we don't do this the count can overflow and users will use-after free. This
|
||
// branch will never be taken in any realistic program. We abort because such a program is
|
||
// incredibly degenerate, and we don't care to support it.
|
||
//
|
||
// This check is not 100% water-proof: we error when the refcount grows beyond `isize::MAX`.
|
||
// But we do that check *after* having done the increment, so there is a chance here that
|
||
// the worst already happened and we actually do overflow the `usize` counter. However, that
|
||
// requires the counter to grow from `isize::MAX` to `usize::MAX` between the increment
|
||
// above and the `abort` below, which seems exceedingly unlikely.
|
||
//
|
||
// This is a global invariant, and also applies when using a compare-exchange loop to increment
|
||
// counters in other methods.
|
||
// Otherwise, the counter could be brought to an almost-overflow using a compare-exchange loop,
|
||
// and then overflow using a few `fetch_add`s.
|
||
if old_size > MAX_REFCOUNT {
|
||
abort();
|
||
}
|
||
|
||
unsafe { Self::from_inner_in(self.ptr, self.alloc.clone()) }
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T: ?Sized, A: Allocator> Deref for Arc<T, A> {
|
||
type Target = T;
|
||
|
||
#[inline]
|
||
fn deref(&self) -> &T {
|
||
&self.inner().data
|
||
}
|
||
}
|
||
|
||
#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
|
||
unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for Arc<T, A> {}
|
||
|
||
#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
|
||
unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for Weak<T, A> {}
|
||
|
||
#[unstable(feature = "deref_pure_trait", issue = "87121")]
|
||
unsafe impl<T: ?Sized, A: Allocator> DerefPure for Arc<T, A> {}
|
||
|
||
#[unstable(feature = "legacy_receiver_trait", issue = "none")]
|
||
impl<T: ?Sized> LegacyReceiver for Arc<T> {}
|
||
|
||
#[cfg(not(no_global_oom_handling))]
|
||
impl<T: ?Sized + CloneToUninit, A: Allocator + Clone> Arc<T, A> {
|
||
/// Makes a mutable reference into the given `Arc`.
|
||
///
|
||
/// If there are other `Arc` pointers to the same allocation, then `make_mut` will
|
||
/// [`clone`] the inner value to a new allocation to ensure unique ownership. This is also
|
||
/// referred to as clone-on-write.
|
||
///
|
||
/// However, if there are no other `Arc` pointers to this allocation, but some [`Weak`]
|
||
/// pointers, then the [`Weak`] pointers will be dissociated and the inner value will not
|
||
/// be cloned.
|
||
///
|
||
/// See also [`get_mut`], which will fail rather than cloning the inner value
|
||
/// or dissociating [`Weak`] pointers.
|
||
///
|
||
/// [`clone`]: Clone::clone
|
||
/// [`get_mut`]: Arc::get_mut
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let mut data = Arc::new(5);
|
||
///
|
||
/// *Arc::make_mut(&mut data) += 1; // Won't clone anything
|
||
/// let mut other_data = Arc::clone(&data); // Won't clone inner data
|
||
/// *Arc::make_mut(&mut data) += 1; // Clones inner data
|
||
/// *Arc::make_mut(&mut data) += 1; // Won't clone anything
|
||
/// *Arc::make_mut(&mut other_data) *= 2; // Won't clone anything
|
||
///
|
||
/// // Now `data` and `other_data` point to different allocations.
|
||
/// assert_eq!(*data, 8);
|
||
/// assert_eq!(*other_data, 12);
|
||
/// ```
|
||
///
|
||
/// [`Weak`] pointers will be dissociated:
|
||
///
|
||
/// ```
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let mut data = Arc::new(75);
|
||
/// let weak = Arc::downgrade(&data);
|
||
///
|
||
/// assert!(75 == *data);
|
||
/// assert!(75 == *weak.upgrade().unwrap());
|
||
///
|
||
/// *Arc::make_mut(&mut data) += 1;
|
||
///
|
||
/// assert!(76 == *data);
|
||
/// assert!(weak.upgrade().is_none());
|
||
/// ```
|
||
#[inline]
|
||
#[stable(feature = "arc_unique", since = "1.4.0")]
|
||
pub fn make_mut(this: &mut Self) -> &mut T {
|
||
let size_of_val = mem::size_of_val::<T>(&**this);
|
||
|
||
// Note that we hold both a strong reference and a weak reference.
|
||
// Thus, releasing our strong reference only will not, by itself, cause
|
||
// the memory to be deallocated.
|
||
//
|
||
// Use Acquire to ensure that we see any writes to `weak` that happen
|
||
// before release writes (i.e., decrements) to `strong`. Since we hold a
|
||
// weak count, there's no chance the ArcInner itself could be
|
||
// deallocated.
|
||
if this.inner().strong.compare_exchange(1, 0, Acquire, Relaxed).is_err() {
|
||
// Another strong pointer exists, so we must clone.
|
||
|
||
let this_data_ref: &T = &**this;
|
||
// `in_progress` drops the allocation if we panic before finishing initializing it.
|
||
let mut in_progress: UniqueArcUninit<T, A> =
|
||
UniqueArcUninit::new(this_data_ref, this.alloc.clone());
|
||
|
||
let initialized_clone = unsafe {
|
||
// Clone. If the clone panics, `in_progress` will be dropped and clean up.
|
||
this_data_ref.clone_to_uninit(in_progress.data_ptr());
|
||
// Cast type of pointer, now that it is initialized.
|
||
in_progress.into_arc()
|
||
};
|
||
*this = initialized_clone;
|
||
} else if this.inner().weak.load(Relaxed) != 1 {
|
||
// Relaxed suffices in the above because this is fundamentally an
|
||
// optimization: we are always racing with weak pointers being
|
||
// dropped. Worst case, we end up allocated a new Arc unnecessarily.
|
||
|
||
// We removed the last strong ref, but there are additional weak
|
||
// refs remaining. We'll move the contents to a new Arc, and
|
||
// invalidate the other weak refs.
|
||
|
||
// Note that it is not possible for the read of `weak` to yield
|
||
// usize::MAX (i.e., locked), since the weak count can only be
|
||
// locked by a thread with a strong reference.
|
||
|
||
// Materialize our own implicit weak pointer, so that it can clean
|
||
// up the ArcInner as needed.
|
||
let _weak = Weak { ptr: this.ptr, alloc: this.alloc.clone() };
|
||
|
||
// Can just steal the data, all that's left is Weaks
|
||
//
|
||
// We don't need panic-protection like the above branch does, but we might as well
|
||
// use the same mechanism.
|
||
let mut in_progress: UniqueArcUninit<T, A> =
|
||
UniqueArcUninit::new(&**this, this.alloc.clone());
|
||
unsafe {
|
||
// Initialize `in_progress` with move of **this.
|
||
// We have to express this in terms of bytes because `T: ?Sized`; there is no
|
||
// operation that just copies a value based on its `size_of_val()`.
|
||
ptr::copy_nonoverlapping(
|
||
ptr::from_ref(&**this).cast::<u8>(),
|
||
in_progress.data_ptr().cast::<u8>(),
|
||
size_of_val,
|
||
);
|
||
|
||
ptr::write(this, in_progress.into_arc());
|
||
}
|
||
} else {
|
||
// We were the sole reference of either kind; bump back up the
|
||
// strong ref count.
|
||
this.inner().strong.store(1, Release);
|
||
}
|
||
|
||
// As with `get_mut()`, the unsafety is ok because our reference was
|
||
// either unique to begin with, or became one upon cloning the contents.
|
||
unsafe { Self::get_mut_unchecked(this) }
|
||
}
|
||
}
|
||
|
||
impl<T: Clone, A: Allocator> Arc<T, A> {
|
||
/// If we have the only reference to `T` then unwrap it. Otherwise, clone `T` and return the
|
||
/// clone.
|
||
///
|
||
/// Assuming `arc_t` is of type `Arc<T>`, this function is functionally equivalent to
|
||
/// `(*arc_t).clone()`, but will avoid cloning the inner value where possible.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use std::{ptr, sync::Arc};
|
||
/// let inner = String::from("test");
|
||
/// let ptr = inner.as_ptr();
|
||
///
|
||
/// let arc = Arc::new(inner);
|
||
/// let inner = Arc::unwrap_or_clone(arc);
|
||
/// // The inner value was not cloned
|
||
/// assert!(ptr::eq(ptr, inner.as_ptr()));
|
||
///
|
||
/// let arc = Arc::new(inner);
|
||
/// let arc2 = arc.clone();
|
||
/// let inner = Arc::unwrap_or_clone(arc);
|
||
/// // Because there were 2 references, we had to clone the inner value.
|
||
/// assert!(!ptr::eq(ptr, inner.as_ptr()));
|
||
/// // `arc2` is the last reference, so when we unwrap it we get back
|
||
/// // the original `String`.
|
||
/// let inner = Arc::unwrap_or_clone(arc2);
|
||
/// assert!(ptr::eq(ptr, inner.as_ptr()));
|
||
/// ```
|
||
#[inline]
|
||
#[stable(feature = "arc_unwrap_or_clone", since = "1.76.0")]
|
||
pub fn unwrap_or_clone(this: Self) -> T {
|
||
Arc::try_unwrap(this).unwrap_or_else(|arc| (*arc).clone())
|
||
}
|
||
}
|
||
|
||
impl<T: ?Sized, A: Allocator> Arc<T, A> {
|
||
/// Returns a mutable reference into the given `Arc`, if there are
|
||
/// no other `Arc` or [`Weak`] pointers to the same allocation.
|
||
///
|
||
/// Returns [`None`] otherwise, because it is not safe to
|
||
/// mutate a shared value.
|
||
///
|
||
/// See also [`make_mut`][make_mut], which will [`clone`][clone]
|
||
/// the inner value when there are other `Arc` pointers.
|
||
///
|
||
/// [make_mut]: Arc::make_mut
|
||
/// [clone]: Clone::clone
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let mut x = Arc::new(3);
|
||
/// *Arc::get_mut(&mut x).unwrap() = 4;
|
||
/// assert_eq!(*x, 4);
|
||
///
|
||
/// let _y = Arc::clone(&x);
|
||
/// assert!(Arc::get_mut(&mut x).is_none());
|
||
/// ```
|
||
#[inline]
|
||
#[stable(feature = "arc_unique", since = "1.4.0")]
|
||
pub fn get_mut(this: &mut Self) -> Option<&mut T> {
|
||
if this.is_unique() {
|
||
// This unsafety is ok because we're guaranteed that the pointer
|
||
// returned is the *only* pointer that will ever be returned to T. Our
|
||
// reference count is guaranteed to be 1 at this point, and we required
|
||
// the Arc itself to be `mut`, so we're returning the only possible
|
||
// reference to the inner data.
|
||
unsafe { Some(Arc::get_mut_unchecked(this)) }
|
||
} else {
|
||
None
|
||
}
|
||
}
|
||
|
||
/// Returns a mutable reference into the given `Arc`,
|
||
/// without any check.
|
||
///
|
||
/// See also [`get_mut`], which is safe and does appropriate checks.
|
||
///
|
||
/// [`get_mut`]: Arc::get_mut
|
||
///
|
||
/// # Safety
|
||
///
|
||
/// If any other `Arc` or [`Weak`] pointers to the same allocation exist, then
|
||
/// they must not be dereferenced or have active borrows for the duration
|
||
/// of the returned borrow, and their inner type must be exactly the same as the
|
||
/// inner type of this Rc (including lifetimes). This is trivially the case if no
|
||
/// such pointers exist, for example immediately after `Arc::new`.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(get_mut_unchecked)]
|
||
///
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let mut x = Arc::new(String::new());
|
||
/// unsafe {
|
||
/// Arc::get_mut_unchecked(&mut x).push_str("foo")
|
||
/// }
|
||
/// assert_eq!(*x, "foo");
|
||
/// ```
|
||
/// Other `Arc` pointers to the same allocation must be to the same type.
|
||
/// ```no_run
|
||
/// #![feature(get_mut_unchecked)]
|
||
///
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let x: Arc<str> = Arc::from("Hello, world!");
|
||
/// let mut y: Arc<[u8]> = x.clone().into();
|
||
/// unsafe {
|
||
/// // this is Undefined Behavior, because x's inner type is str, not [u8]
|
||
/// Arc::get_mut_unchecked(&mut y).fill(0xff); // 0xff is invalid in UTF-8
|
||
/// }
|
||
/// println!("{}", &*x); // Invalid UTF-8 in a str
|
||
/// ```
|
||
/// Other `Arc` pointers to the same allocation must be to the exact same type, including lifetimes.
|
||
/// ```no_run
|
||
/// #![feature(get_mut_unchecked)]
|
||
///
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let x: Arc<&str> = Arc::new("Hello, world!");
|
||
/// {
|
||
/// let s = String::from("Oh, no!");
|
||
/// let mut y: Arc<&str> = x.clone().into();
|
||
/// unsafe {
|
||
/// // this is Undefined Behavior, because x's inner type
|
||
/// // is &'long str, not &'short str
|
||
/// *Arc::get_mut_unchecked(&mut y) = &s;
|
||
/// }
|
||
/// }
|
||
/// println!("{}", &*x); // Use-after-free
|
||
/// ```
|
||
#[inline]
|
||
#[unstable(feature = "get_mut_unchecked", issue = "63292")]
|
||
pub unsafe fn get_mut_unchecked(this: &mut Self) -> &mut T {
|
||
// We are careful to *not* create a reference covering the "count" fields, as
|
||
// this would alias with concurrent access to the reference counts (e.g. by `Weak`).
|
||
unsafe { &mut (*this.ptr.as_ptr()).data }
|
||
}
|
||
|
||
/// Determine whether this is the unique reference (including weak refs) to
|
||
/// the underlying data.
|
||
///
|
||
/// Note that this requires locking the weak ref count.
|
||
fn is_unique(&mut self) -> bool {
|
||
// lock the weak pointer count if we appear to be the sole weak pointer
|
||
// holder.
|
||
//
|
||
// The acquire label here ensures a happens-before relationship with any
|
||
// writes to `strong` (in particular in `Weak::upgrade`) prior to decrements
|
||
// of the `weak` count (via `Weak::drop`, which uses release). If the upgraded
|
||
// weak ref was never dropped, the CAS here will fail so we do not care to synchronize.
|
||
if self.inner().weak.compare_exchange(1, usize::MAX, Acquire, Relaxed).is_ok() {
|
||
// This needs to be an `Acquire` to synchronize with the decrement of the `strong`
|
||
// counter in `drop` -- the only access that happens when any but the last reference
|
||
// is being dropped.
|
||
let unique = self.inner().strong.load(Acquire) == 1;
|
||
|
||
// The release write here synchronizes with a read in `downgrade`,
|
||
// effectively preventing the above read of `strong` from happening
|
||
// after the write.
|
||
self.inner().weak.store(1, Release); // release the lock
|
||
unique
|
||
} else {
|
||
false
|
||
}
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Arc<T, A> {
|
||
/// Drops the `Arc`.
|
||
///
|
||
/// This will decrement the strong reference count. If the strong reference
|
||
/// count reaches zero then the only other references (if any) are
|
||
/// [`Weak`], so we `drop` the inner value.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// struct Foo;
|
||
///
|
||
/// impl Drop for Foo {
|
||
/// fn drop(&mut self) {
|
||
/// println!("dropped!");
|
||
/// }
|
||
/// }
|
||
///
|
||
/// let foo = Arc::new(Foo);
|
||
/// let foo2 = Arc::clone(&foo);
|
||
///
|
||
/// drop(foo); // Doesn't print anything
|
||
/// drop(foo2); // Prints "dropped!"
|
||
/// ```
|
||
#[inline]
|
||
fn drop(&mut self) {
|
||
// Because `fetch_sub` is already atomic, we do not need to synchronize
|
||
// with other threads unless we are going to delete the object. This
|
||
// same logic applies to the below `fetch_sub` to the `weak` count.
|
||
if self.inner().strong.fetch_sub(1, Release) != 1 {
|
||
return;
|
||
}
|
||
|
||
// This fence is needed to prevent reordering of use of the data and
|
||
// deletion of the data. Because it is marked `Release`, the decreasing
|
||
// of the reference count synchronizes with this `Acquire` fence. This
|
||
// means that use of the data happens before decreasing the reference
|
||
// count, which happens before this fence, which happens before the
|
||
// deletion of the data.
|
||
//
|
||
// As explained in the [Boost documentation][1],
|
||
//
|
||
// > It is important to enforce any possible access to the object in one
|
||
// > thread (through an existing reference) to *happen before* deleting
|
||
// > the object in a different thread. This is achieved by a "release"
|
||
// > operation after dropping a reference (any access to the object
|
||
// > through this reference must obviously happened before), and an
|
||
// > "acquire" operation before deleting the object.
|
||
//
|
||
// In particular, while the contents of an Arc are usually immutable, it's
|
||
// possible to have interior writes to something like a Mutex<T>. Since a
|
||
// Mutex is not acquired when it is deleted, we can't rely on its
|
||
// synchronization logic to make writes in thread A visible to a destructor
|
||
// running in thread B.
|
||
//
|
||
// Also note that the Acquire fence here could probably be replaced with an
|
||
// Acquire load, which could improve performance in highly-contended
|
||
// situations. See [2].
|
||
//
|
||
// [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
|
||
// [2]: (https://github.com/rust-lang/rust/pull/41714)
|
||
acquire!(self.inner().strong);
|
||
|
||
// Make sure we aren't trying to "drop" the shared static for empty slices
|
||
// used by Default::default.
|
||
debug_assert!(
|
||
!ptr::addr_eq(self.ptr.as_ptr(), &STATIC_INNER_SLICE.inner),
|
||
"Arcs backed by a static should never reach a strong count of 0. \
|
||
Likely decrement_strong_count or from_raw were called too many times.",
|
||
);
|
||
|
||
unsafe {
|
||
self.drop_slow();
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<A: Allocator> Arc<dyn Any + Send + Sync, A> {
|
||
/// Attempts to downcast the `Arc<dyn Any + Send + Sync>` to a concrete type.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::any::Any;
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// fn print_if_string(value: Arc<dyn Any + Send + Sync>) {
|
||
/// if let Ok(string) = value.downcast::<String>() {
|
||
/// println!("String ({}): {}", string.len(), string);
|
||
/// }
|
||
/// }
|
||
///
|
||
/// let my_string = "Hello World".to_string();
|
||
/// print_if_string(Arc::new(my_string));
|
||
/// print_if_string(Arc::new(0i8));
|
||
/// ```
|
||
#[inline]
|
||
#[stable(feature = "rc_downcast", since = "1.29.0")]
|
||
pub fn downcast<T>(self) -> Result<Arc<T, A>, Self>
|
||
where
|
||
T: Any + Send + Sync,
|
||
{
|
||
if (*self).is::<T>() {
|
||
unsafe {
|
||
let (ptr, alloc) = Arc::into_inner_with_allocator(self);
|
||
Ok(Arc::from_inner_in(ptr.cast(), alloc))
|
||
}
|
||
} else {
|
||
Err(self)
|
||
}
|
||
}
|
||
|
||
/// Downcasts the `Arc<dyn Any + Send + Sync>` to a concrete type.
|
||
///
|
||
/// For a safe alternative see [`downcast`].
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(downcast_unchecked)]
|
||
///
|
||
/// use std::any::Any;
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let x: Arc<dyn Any + Send + Sync> = Arc::new(1_usize);
|
||
///
|
||
/// unsafe {
|
||
/// assert_eq!(*x.downcast_unchecked::<usize>(), 1);
|
||
/// }
|
||
/// ```
|
||
///
|
||
/// # Safety
|
||
///
|
||
/// The contained value must be of type `T`. Calling this method
|
||
/// with the incorrect type is *undefined behavior*.
|
||
///
|
||
///
|
||
/// [`downcast`]: Self::downcast
|
||
#[inline]
|
||
#[unstable(feature = "downcast_unchecked", issue = "90850")]
|
||
pub unsafe fn downcast_unchecked<T>(self) -> Arc<T, A>
|
||
where
|
||
T: Any + Send + Sync,
|
||
{
|
||
unsafe {
|
||
let (ptr, alloc) = Arc::into_inner_with_allocator(self);
|
||
Arc::from_inner_in(ptr.cast(), alloc)
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<T> Weak<T> {
|
||
/// Constructs a new `Weak<T>`, without allocating any memory.
|
||
/// Calling [`upgrade`] on the return value always gives [`None`].
|
||
///
|
||
/// [`upgrade`]: Weak::upgrade
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::sync::Weak;
|
||
///
|
||
/// let empty: Weak<i64> = Weak::new();
|
||
/// assert!(empty.upgrade().is_none());
|
||
/// ```
|
||
#[inline]
|
||
#[stable(feature = "downgraded_weak", since = "1.10.0")]
|
||
#[rustc_const_stable(feature = "const_weak_new", since = "1.73.0")]
|
||
#[must_use]
|
||
pub const fn new() -> Weak<T> {
|
||
Weak {
|
||
ptr: unsafe {
|
||
NonNull::new_unchecked(ptr::without_provenance_mut::<ArcInner<T>>(usize::MAX))
|
||
},
|
||
alloc: Global,
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<T, A: Allocator> Weak<T, A> {
|
||
/// Constructs a new `Weak<T, A>`, without allocating any memory, technically in the provided
|
||
/// allocator.
|
||
/// Calling [`upgrade`] on the return value always gives [`None`].
|
||
///
|
||
/// [`upgrade`]: Weak::upgrade
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(allocator_api)]
|
||
///
|
||
/// use std::sync::Weak;
|
||
/// use std::alloc::System;
|
||
///
|
||
/// let empty: Weak<i64, _> = Weak::new_in(System);
|
||
/// assert!(empty.upgrade().is_none());
|
||
/// ```
|
||
#[inline]
|
||
#[unstable(feature = "allocator_api", issue = "32838")]
|
||
pub fn new_in(alloc: A) -> Weak<T, A> {
|
||
Weak {
|
||
ptr: unsafe {
|
||
NonNull::new_unchecked(ptr::without_provenance_mut::<ArcInner<T>>(usize::MAX))
|
||
},
|
||
alloc,
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Helper type to allow accessing the reference counts without
|
||
/// making any assertions about the data field.
|
||
struct WeakInner<'a> {
|
||
weak: &'a atomic::AtomicUsize,
|
||
strong: &'a atomic::AtomicUsize,
|
||
}
|
||
|
||
impl<T: ?Sized> Weak<T> {
|
||
/// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>`.
|
||
///
|
||
/// This can be used to safely get a strong reference (by calling [`upgrade`]
|
||
/// later) or to deallocate the weak count by dropping the `Weak<T>`.
|
||
///
|
||
/// It takes ownership of one weak reference (with the exception of pointers created by [`new`],
|
||
/// as these don't own anything; the method still works on them).
|
||
///
|
||
/// # Safety
|
||
///
|
||
/// The pointer must have originated from the [`into_raw`] and must still own its potential
|
||
/// weak reference.
|
||
///
|
||
/// It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this
|
||
/// takes ownership of one weak reference currently represented as a raw pointer (the weak
|
||
/// count is not modified by this operation) and therefore it must be paired with a previous
|
||
/// call to [`into_raw`].
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::sync::{Arc, Weak};
|
||
///
|
||
/// let strong = Arc::new("hello".to_owned());
|
||
///
|
||
/// let raw_1 = Arc::downgrade(&strong).into_raw();
|
||
/// let raw_2 = Arc::downgrade(&strong).into_raw();
|
||
///
|
||
/// assert_eq!(2, Arc::weak_count(&strong));
|
||
///
|
||
/// assert_eq!("hello", &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap());
|
||
/// assert_eq!(1, Arc::weak_count(&strong));
|
||
///
|
||
/// drop(strong);
|
||
///
|
||
/// // Decrement the last weak count.
|
||
/// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none());
|
||
/// ```
|
||
///
|
||
/// [`new`]: Weak::new
|
||
/// [`into_raw`]: Weak::into_raw
|
||
/// [`upgrade`]: Weak::upgrade
|
||
#[inline]
|
||
#[stable(feature = "weak_into_raw", since = "1.45.0")]
|
||
pub unsafe fn from_raw(ptr: *const T) -> Self {
|
||
unsafe { Weak::from_raw_in(ptr, Global) }
|
||
}
|
||
}
|
||
|
||
impl<T: ?Sized, A: Allocator> Weak<T, A> {
|
||
/// Returns a reference to the underlying allocator.
|
||
#[inline]
|
||
#[unstable(feature = "allocator_api", issue = "32838")]
|
||
pub fn allocator(&self) -> &A {
|
||
&self.alloc
|
||
}
|
||
|
||
/// Returns a raw pointer to the object `T` pointed to by this `Weak<T>`.
|
||
///
|
||
/// The pointer is valid only if there are some strong references. The pointer may be dangling,
|
||
/// unaligned or even [`null`] otherwise.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::sync::Arc;
|
||
/// use std::ptr;
|
||
///
|
||
/// let strong = Arc::new("hello".to_owned());
|
||
/// let weak = Arc::downgrade(&strong);
|
||
/// // Both point to the same object
|
||
/// assert!(ptr::eq(&*strong, weak.as_ptr()));
|
||
/// // The strong here keeps it alive, so we can still access the object.
|
||
/// assert_eq!("hello", unsafe { &*weak.as_ptr() });
|
||
///
|
||
/// drop(strong);
|
||
/// // But not any more. We can do weak.as_ptr(), but accessing the pointer would lead to
|
||
/// // undefined behavior.
|
||
/// // assert_eq!("hello", unsafe { &*weak.as_ptr() });
|
||
/// ```
|
||
///
|
||
/// [`null`]: core::ptr::null "ptr::null"
|
||
#[must_use]
|
||
#[stable(feature = "weak_into_raw", since = "1.45.0")]
|
||
pub fn as_ptr(&self) -> *const T {
|
||
let ptr: *mut ArcInner<T> = NonNull::as_ptr(self.ptr);
|
||
|
||
if is_dangling(ptr) {
|
||
// If the pointer is dangling, we return the sentinel directly. This cannot be
|
||
// a valid payload address, as the payload is at least as aligned as ArcInner (usize).
|
||
ptr as *const T
|
||
} else {
|
||
// SAFETY: if is_dangling returns false, then the pointer is dereferenceable.
|
||
// The payload may be dropped at this point, and we have to maintain provenance,
|
||
// so use raw pointer manipulation.
|
||
unsafe { &raw mut (*ptr).data }
|
||
}
|
||
}
|
||
|
||
/// Consumes the `Weak<T>` and turns it into a raw pointer.
|
||
///
|
||
/// This converts the weak pointer into a raw pointer, while still preserving the ownership of
|
||
/// one weak reference (the weak count is not modified by this operation). It can be turned
|
||
/// back into the `Weak<T>` with [`from_raw`].
|
||
///
|
||
/// The same restrictions of accessing the target of the pointer as with
|
||
/// [`as_ptr`] apply.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::sync::{Arc, Weak};
|
||
///
|
||
/// let strong = Arc::new("hello".to_owned());
|
||
/// let weak = Arc::downgrade(&strong);
|
||
/// let raw = weak.into_raw();
|
||
///
|
||
/// assert_eq!(1, Arc::weak_count(&strong));
|
||
/// assert_eq!("hello", unsafe { &*raw });
|
||
///
|
||
/// drop(unsafe { Weak::from_raw(raw) });
|
||
/// assert_eq!(0, Arc::weak_count(&strong));
|
||
/// ```
|
||
///
|
||
/// [`from_raw`]: Weak::from_raw
|
||
/// [`as_ptr`]: Weak::as_ptr
|
||
#[must_use = "losing the pointer will leak memory"]
|
||
#[stable(feature = "weak_into_raw", since = "1.45.0")]
|
||
pub fn into_raw(self) -> *const T {
|
||
ManuallyDrop::new(self).as_ptr()
|
||
}
|
||
|
||
/// Consumes the `Weak<T>`, returning the wrapped pointer and allocator.
|
||
///
|
||
/// This converts the weak pointer into a raw pointer, while still preserving the ownership of
|
||
/// one weak reference (the weak count is not modified by this operation). It can be turned
|
||
/// back into the `Weak<T>` with [`from_raw_in`].
|
||
///
|
||
/// The same restrictions of accessing the target of the pointer as with
|
||
/// [`as_ptr`] apply.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(allocator_api)]
|
||
/// use std::sync::{Arc, Weak};
|
||
/// use std::alloc::System;
|
||
///
|
||
/// let strong = Arc::new_in("hello".to_owned(), System);
|
||
/// let weak = Arc::downgrade(&strong);
|
||
/// let (raw, alloc) = weak.into_raw_with_allocator();
|
||
///
|
||
/// assert_eq!(1, Arc::weak_count(&strong));
|
||
/// assert_eq!("hello", unsafe { &*raw });
|
||
///
|
||
/// drop(unsafe { Weak::from_raw_in(raw, alloc) });
|
||
/// assert_eq!(0, Arc::weak_count(&strong));
|
||
/// ```
|
||
///
|
||
/// [`from_raw_in`]: Weak::from_raw_in
|
||
/// [`as_ptr`]: Weak::as_ptr
|
||
#[must_use = "losing the pointer will leak memory"]
|
||
#[unstable(feature = "allocator_api", issue = "32838")]
|
||
pub fn into_raw_with_allocator(self) -> (*const T, A) {
|
||
let this = mem::ManuallyDrop::new(self);
|
||
let result = this.as_ptr();
|
||
// Safety: `this` is ManuallyDrop so the allocator will not be double-dropped
|
||
let alloc = unsafe { ptr::read(&this.alloc) };
|
||
(result, alloc)
|
||
}
|
||
|
||
/// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>` in the provided
|
||
/// allocator.
|
||
///
|
||
/// This can be used to safely get a strong reference (by calling [`upgrade`]
|
||
/// later) or to deallocate the weak count by dropping the `Weak<T>`.
|
||
///
|
||
/// It takes ownership of one weak reference (with the exception of pointers created by [`new`],
|
||
/// as these don't own anything; the method still works on them).
|
||
///
|
||
/// # Safety
|
||
///
|
||
/// The pointer must have originated from the [`into_raw`] and must still own its potential
|
||
/// weak reference, and must point to a block of memory allocated by `alloc`.
|
||
///
|
||
/// It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this
|
||
/// takes ownership of one weak reference currently represented as a raw pointer (the weak
|
||
/// count is not modified by this operation) and therefore it must be paired with a previous
|
||
/// call to [`into_raw`].
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::sync::{Arc, Weak};
|
||
///
|
||
/// let strong = Arc::new("hello".to_owned());
|
||
///
|
||
/// let raw_1 = Arc::downgrade(&strong).into_raw();
|
||
/// let raw_2 = Arc::downgrade(&strong).into_raw();
|
||
///
|
||
/// assert_eq!(2, Arc::weak_count(&strong));
|
||
///
|
||
/// assert_eq!("hello", &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap());
|
||
/// assert_eq!(1, Arc::weak_count(&strong));
|
||
///
|
||
/// drop(strong);
|
||
///
|
||
/// // Decrement the last weak count.
|
||
/// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none());
|
||
/// ```
|
||
///
|
||
/// [`new`]: Weak::new
|
||
/// [`into_raw`]: Weak::into_raw
|
||
/// [`upgrade`]: Weak::upgrade
|
||
#[inline]
|
||
#[unstable(feature = "allocator_api", issue = "32838")]
|
||
pub unsafe fn from_raw_in(ptr: *const T, alloc: A) -> Self {
|
||
// See Weak::as_ptr for context on how the input pointer is derived.
|
||
|
||
let ptr = if is_dangling(ptr) {
|
||
// This is a dangling Weak.
|
||
ptr as *mut ArcInner<T>
|
||
} else {
|
||
// Otherwise, we're guaranteed the pointer came from a nondangling Weak.
|
||
// SAFETY: data_offset is safe to call, as ptr references a real (potentially dropped) T.
|
||
let offset = unsafe { data_offset(ptr) };
|
||
// Thus, we reverse the offset to get the whole RcInner.
|
||
// SAFETY: the pointer originated from a Weak, so this offset is safe.
|
||
unsafe { ptr.byte_sub(offset) as *mut ArcInner<T> }
|
||
};
|
||
|
||
// SAFETY: we now have recovered the original Weak pointer, so can create the Weak.
|
||
Weak { ptr: unsafe { NonNull::new_unchecked(ptr) }, alloc }
|
||
}
|
||
}
|
||
|
||
impl<T: ?Sized, A: Allocator> Weak<T, A> {
|
||
/// Attempts to upgrade the `Weak` pointer to an [`Arc`], delaying
|
||
/// dropping of the inner value if successful.
|
||
///
|
||
/// Returns [`None`] if the inner value has since been dropped.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let five = Arc::new(5);
|
||
///
|
||
/// let weak_five = Arc::downgrade(&five);
|
||
///
|
||
/// let strong_five: Option<Arc<_>> = weak_five.upgrade();
|
||
/// assert!(strong_five.is_some());
|
||
///
|
||
/// // Destroy all strong pointers.
|
||
/// drop(strong_five);
|
||
/// drop(five);
|
||
///
|
||
/// assert!(weak_five.upgrade().is_none());
|
||
/// ```
|
||
#[must_use = "this returns a new `Arc`, \
|
||
without modifying the original weak pointer"]
|
||
#[stable(feature = "arc_weak", since = "1.4.0")]
|
||
pub fn upgrade(&self) -> Option<Arc<T, A>>
|
||
where
|
||
A: Clone,
|
||
{
|
||
#[inline]
|
||
fn checked_increment(n: usize) -> Option<usize> {
|
||
// Any write of 0 we can observe leaves the field in permanently zero state.
|
||
if n == 0 {
|
||
return None;
|
||
}
|
||
// See comments in `Arc::clone` for why we do this (for `mem::forget`).
|
||
assert!(n <= MAX_REFCOUNT, "{}", INTERNAL_OVERFLOW_ERROR);
|
||
Some(n + 1)
|
||
}
|
||
|
||
// We use a CAS loop to increment the strong count instead of a
|
||
// fetch_add as this function should never take the reference count
|
||
// from zero to one.
|
||
//
|
||
// Relaxed is fine for the failure case because we don't have any expectations about the new state.
|
||
// Acquire is necessary for the success case to synchronise with `Arc::new_cyclic`, when the inner
|
||
// value can be initialized after `Weak` references have already been created. In that case, we
|
||
// expect to observe the fully initialized value.
|
||
if self.inner()?.strong.fetch_update(Acquire, Relaxed, checked_increment).is_ok() {
|
||
// SAFETY: pointer is not null, verified in checked_increment
|
||
unsafe { Some(Arc::from_inner_in(self.ptr, self.alloc.clone())) }
|
||
} else {
|
||
None
|
||
}
|
||
}
|
||
|
||
/// Gets the number of strong (`Arc`) pointers pointing to this allocation.
|
||
///
|
||
/// If `self` was created using [`Weak::new`], this will return 0.
|
||
#[must_use]
|
||
#[stable(feature = "weak_counts", since = "1.41.0")]
|
||
pub fn strong_count(&self) -> usize {
|
||
if let Some(inner) = self.inner() { inner.strong.load(Relaxed) } else { 0 }
|
||
}
|
||
|
||
/// Gets an approximation of the number of `Weak` pointers pointing to this
|
||
/// allocation.
|
||
///
|
||
/// If `self` was created using [`Weak::new`], or if there are no remaining
|
||
/// strong pointers, this will return 0.
|
||
///
|
||
/// # Accuracy
|
||
///
|
||
/// Due to implementation details, the returned value can be off by 1 in
|
||
/// either direction when other threads are manipulating any `Arc`s or
|
||
/// `Weak`s pointing to the same allocation.
|
||
#[must_use]
|
||
#[stable(feature = "weak_counts", since = "1.41.0")]
|
||
pub fn weak_count(&self) -> usize {
|
||
if let Some(inner) = self.inner() {
|
||
let weak = inner.weak.load(Acquire);
|
||
let strong = inner.strong.load(Relaxed);
|
||
if strong == 0 {
|
||
0
|
||
} else {
|
||
// Since we observed that there was at least one strong pointer
|
||
// after reading the weak count, we know that the implicit weak
|
||
// reference (present whenever any strong references are alive)
|
||
// was still around when we observed the weak count, and can
|
||
// therefore safely subtract it.
|
||
weak - 1
|
||
}
|
||
} else {
|
||
0
|
||
}
|
||
}
|
||
|
||
/// Returns `None` when the pointer is dangling and there is no allocated `ArcInner`,
|
||
/// (i.e., when this `Weak` was created by `Weak::new`).
|
||
#[inline]
|
||
fn inner(&self) -> Option<WeakInner<'_>> {
|
||
let ptr = self.ptr.as_ptr();
|
||
if is_dangling(ptr) {
|
||
None
|
||
} else {
|
||
// We are careful to *not* create a reference covering the "data" field, as
|
||
// the field may be mutated concurrently (for example, if the last `Arc`
|
||
// is dropped, the data field will be dropped in-place).
|
||
Some(unsafe { WeakInner { strong: &(*ptr).strong, weak: &(*ptr).weak } })
|
||
}
|
||
}
|
||
|
||
/// Returns `true` if the two `Weak`s point to the same allocation similar to [`ptr::eq`], or if
|
||
/// both don't point to any allocation (because they were created with `Weak::new()`). However,
|
||
/// this function ignores the metadata of `dyn Trait` pointers.
|
||
///
|
||
/// # Notes
|
||
///
|
||
/// Since this compares pointers it means that `Weak::new()` will equal each
|
||
/// other, even though they don't point to any allocation.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let first_rc = Arc::new(5);
|
||
/// let first = Arc::downgrade(&first_rc);
|
||
/// let second = Arc::downgrade(&first_rc);
|
||
///
|
||
/// assert!(first.ptr_eq(&second));
|
||
///
|
||
/// let third_rc = Arc::new(5);
|
||
/// let third = Arc::downgrade(&third_rc);
|
||
///
|
||
/// assert!(!first.ptr_eq(&third));
|
||
/// ```
|
||
///
|
||
/// Comparing `Weak::new`.
|
||
///
|
||
/// ```
|
||
/// use std::sync::{Arc, Weak};
|
||
///
|
||
/// let first = Weak::new();
|
||
/// let second = Weak::new();
|
||
/// assert!(first.ptr_eq(&second));
|
||
///
|
||
/// let third_rc = Arc::new(());
|
||
/// let third = Arc::downgrade(&third_rc);
|
||
/// assert!(!first.ptr_eq(&third));
|
||
/// ```
|
||
///
|
||
/// [`ptr::eq`]: core::ptr::eq "ptr::eq"
|
||
#[inline]
|
||
#[must_use]
|
||
#[stable(feature = "weak_ptr_eq", since = "1.39.0")]
|
||
pub fn ptr_eq(&self, other: &Self) -> bool {
|
||
ptr::addr_eq(self.ptr.as_ptr(), other.ptr.as_ptr())
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "arc_weak", since = "1.4.0")]
|
||
impl<T: ?Sized, A: Allocator + Clone> Clone for Weak<T, A> {
|
||
/// Makes a clone of the `Weak` pointer that points to the same allocation.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::sync::{Arc, Weak};
|
||
///
|
||
/// let weak_five = Arc::downgrade(&Arc::new(5));
|
||
///
|
||
/// let _ = Weak::clone(&weak_five);
|
||
/// ```
|
||
#[inline]
|
||
fn clone(&self) -> Weak<T, A> {
|
||
if let Some(inner) = self.inner() {
|
||
// See comments in Arc::clone() for why this is relaxed. This can use a
|
||
// fetch_add (ignoring the lock) because the weak count is only locked
|
||
// where are *no other* weak pointers in existence. (So we can't be
|
||
// running this code in that case).
|
||
let old_size = inner.weak.fetch_add(1, Relaxed);
|
||
|
||
// See comments in Arc::clone() for why we do this (for mem::forget).
|
||
if old_size > MAX_REFCOUNT {
|
||
abort();
|
||
}
|
||
}
|
||
|
||
Weak { ptr: self.ptr, alloc: self.alloc.clone() }
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "downgraded_weak", since = "1.10.0")]
|
||
impl<T> Default for Weak<T> {
|
||
/// Constructs a new `Weak<T>`, without allocating memory.
|
||
/// Calling [`upgrade`] on the return value always
|
||
/// gives [`None`].
|
||
///
|
||
/// [`upgrade`]: Weak::upgrade
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::sync::Weak;
|
||
///
|
||
/// let empty: Weak<i64> = Default::default();
|
||
/// assert!(empty.upgrade().is_none());
|
||
/// ```
|
||
fn default() -> Weak<T> {
|
||
Weak::new()
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "arc_weak", since = "1.4.0")]
|
||
unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Weak<T, A> {
|
||
/// Drops the `Weak` pointer.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::sync::{Arc, Weak};
|
||
///
|
||
/// struct Foo;
|
||
///
|
||
/// impl Drop for Foo {
|
||
/// fn drop(&mut self) {
|
||
/// println!("dropped!");
|
||
/// }
|
||
/// }
|
||
///
|
||
/// let foo = Arc::new(Foo);
|
||
/// let weak_foo = Arc::downgrade(&foo);
|
||
/// let other_weak_foo = Weak::clone(&weak_foo);
|
||
///
|
||
/// drop(weak_foo); // Doesn't print anything
|
||
/// drop(foo); // Prints "dropped!"
|
||
///
|
||
/// assert!(other_weak_foo.upgrade().is_none());
|
||
/// ```
|
||
fn drop(&mut self) {
|
||
// If we find out that we were the last weak pointer, then its time to
|
||
// deallocate the data entirely. See the discussion in Arc::drop() about
|
||
// the memory orderings
|
||
//
|
||
// It's not necessary to check for the locked state here, because the
|
||
// weak count can only be locked if there was precisely one weak ref,
|
||
// meaning that drop could only subsequently run ON that remaining weak
|
||
// ref, which can only happen after the lock is released.
|
||
let inner = if let Some(inner) = self.inner() { inner } else { return };
|
||
|
||
if inner.weak.fetch_sub(1, Release) == 1 {
|
||
acquire!(inner.weak);
|
||
|
||
// Make sure we aren't trying to "deallocate" the shared static for empty slices
|
||
// used by Default::default.
|
||
debug_assert!(
|
||
!ptr::addr_eq(self.ptr.as_ptr(), &STATIC_INNER_SLICE.inner),
|
||
"Arc/Weaks backed by a static should never be deallocated. \
|
||
Likely decrement_strong_count or from_raw were called too many times.",
|
||
);
|
||
|
||
unsafe {
|
||
self.alloc.deallocate(self.ptr.cast(), Layout::for_value_raw(self.ptr.as_ptr()))
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
trait ArcEqIdent<T: ?Sized + PartialEq, A: Allocator> {
|
||
fn eq(&self, other: &Arc<T, A>) -> bool;
|
||
fn ne(&self, other: &Arc<T, A>) -> bool;
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T: ?Sized + PartialEq, A: Allocator> ArcEqIdent<T, A> for Arc<T, A> {
|
||
#[inline]
|
||
default fn eq(&self, other: &Arc<T, A>) -> bool {
|
||
**self == **other
|
||
}
|
||
#[inline]
|
||
default fn ne(&self, other: &Arc<T, A>) -> bool {
|
||
**self != **other
|
||
}
|
||
}
|
||
|
||
/// We're doing this specialization here, and not as a more general optimization on `&T`, because it
|
||
/// would otherwise add a cost to all equality checks on refs. We assume that `Arc`s are used to
|
||
/// store large values, that are slow to clone, but also heavy to check for equality, causing this
|
||
/// cost to pay off more easily. It's also more likely to have two `Arc` clones, that point to
|
||
/// the same value, than two `&T`s.
|
||
///
|
||
/// We can only do this when `T: Eq` as a `PartialEq` might be deliberately irreflexive.
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T: ?Sized + crate::rc::MarkerEq, A: Allocator> ArcEqIdent<T, A> for Arc<T, A> {
|
||
#[inline]
|
||
fn eq(&self, other: &Arc<T, A>) -> bool {
|
||
Arc::ptr_eq(self, other) || **self == **other
|
||
}
|
||
|
||
#[inline]
|
||
fn ne(&self, other: &Arc<T, A>) -> bool {
|
||
!Arc::ptr_eq(self, other) && **self != **other
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Arc<T, A> {
|
||
/// Equality for two `Arc`s.
|
||
///
|
||
/// Two `Arc`s are equal if their inner values are equal, even if they are
|
||
/// stored in different allocation.
|
||
///
|
||
/// If `T` also implements `Eq` (implying reflexivity of equality),
|
||
/// two `Arc`s that point to the same allocation are always equal.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let five = Arc::new(5);
|
||
///
|
||
/// assert!(five == Arc::new(5));
|
||
/// ```
|
||
#[inline]
|
||
fn eq(&self, other: &Arc<T, A>) -> bool {
|
||
ArcEqIdent::eq(self, other)
|
||
}
|
||
|
||
/// Inequality for two `Arc`s.
|
||
///
|
||
/// Two `Arc`s are not equal if their inner values are not equal.
|
||
///
|
||
/// If `T` also implements `Eq` (implying reflexivity of equality),
|
||
/// two `Arc`s that point to the same value are always equal.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let five = Arc::new(5);
|
||
///
|
||
/// assert!(five != Arc::new(6));
|
||
/// ```
|
||
#[inline]
|
||
fn ne(&self, other: &Arc<T, A>) -> bool {
|
||
ArcEqIdent::ne(self, other)
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Arc<T, A> {
|
||
/// Partial comparison for two `Arc`s.
|
||
///
|
||
/// The two are compared by calling `partial_cmp()` on their inner values.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::sync::Arc;
|
||
/// use std::cmp::Ordering;
|
||
///
|
||
/// let five = Arc::new(5);
|
||
///
|
||
/// assert_eq!(Some(Ordering::Less), five.partial_cmp(&Arc::new(6)));
|
||
/// ```
|
||
fn partial_cmp(&self, other: &Arc<T, A>) -> Option<Ordering> {
|
||
(**self).partial_cmp(&**other)
|
||
}
|
||
|
||
/// Less-than comparison for two `Arc`s.
|
||
///
|
||
/// The two are compared by calling `<` on their inner values.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let five = Arc::new(5);
|
||
///
|
||
/// assert!(five < Arc::new(6));
|
||
/// ```
|
||
fn lt(&self, other: &Arc<T, A>) -> bool {
|
||
*(*self) < *(*other)
|
||
}
|
||
|
||
/// 'Less than or equal to' comparison for two `Arc`s.
|
||
///
|
||
/// The two are compared by calling `<=` on their inner values.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let five = Arc::new(5);
|
||
///
|
||
/// assert!(five <= Arc::new(5));
|
||
/// ```
|
||
fn le(&self, other: &Arc<T, A>) -> bool {
|
||
*(*self) <= *(*other)
|
||
}
|
||
|
||
/// Greater-than comparison for two `Arc`s.
|
||
///
|
||
/// The two are compared by calling `>` on their inner values.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let five = Arc::new(5);
|
||
///
|
||
/// assert!(five > Arc::new(4));
|
||
/// ```
|
||
fn gt(&self, other: &Arc<T, A>) -> bool {
|
||
*(*self) > *(*other)
|
||
}
|
||
|
||
/// 'Greater than or equal to' comparison for two `Arc`s.
|
||
///
|
||
/// The two are compared by calling `>=` on their inner values.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let five = Arc::new(5);
|
||
///
|
||
/// assert!(five >= Arc::new(5));
|
||
/// ```
|
||
fn ge(&self, other: &Arc<T, A>) -> bool {
|
||
*(*self) >= *(*other)
|
||
}
|
||
}
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T: ?Sized + Ord, A: Allocator> Ord for Arc<T, A> {
|
||
/// Comparison for two `Arc`s.
|
||
///
|
||
/// The two are compared by calling `cmp()` on their inner values.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::sync::Arc;
|
||
/// use std::cmp::Ordering;
|
||
///
|
||
/// let five = Arc::new(5);
|
||
///
|
||
/// assert_eq!(Ordering::Less, five.cmp(&Arc::new(6)));
|
||
/// ```
|
||
fn cmp(&self, other: &Arc<T, A>) -> Ordering {
|
||
(**self).cmp(&**other)
|
||
}
|
||
}
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T: ?Sized + Eq, A: Allocator> Eq for Arc<T, A> {}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T: ?Sized + fmt::Display, A: Allocator> fmt::Display for Arc<T, A> {
|
||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||
fmt::Display::fmt(&**self, f)
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T: ?Sized + fmt::Debug, A: Allocator> fmt::Debug for Arc<T, A> {
|
||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||
fmt::Debug::fmt(&**self, f)
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T: ?Sized, A: Allocator> fmt::Pointer for Arc<T, A> {
|
||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||
fmt::Pointer::fmt(&(&raw const **self), f)
|
||
}
|
||
}
|
||
|
||
#[cfg(not(no_global_oom_handling))]
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T: Default> Default for Arc<T> {
|
||
/// Creates a new `Arc<T>`, with the `Default` value for `T`.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::sync::Arc;
|
||
///
|
||
/// let x: Arc<i32> = Default::default();
|
||
/// assert_eq!(*x, 0);
|
||
/// ```
|
||
fn default() -> Arc<T> {
|
||
unsafe {
|
||
Self::from_inner(
|
||
Box::leak(Box::write(Box::new_uninit(), ArcInner {
|
||
strong: atomic::AtomicUsize::new(1),
|
||
weak: atomic::AtomicUsize::new(1),
|
||
data: T::default(),
|
||
}))
|
||
.into(),
|
||
)
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Struct to hold the static `ArcInner` used for empty `Arc<str/CStr/[T]>` as
|
||
/// returned by `Default::default`.
|
||
///
|
||
/// Layout notes:
|
||
/// * `repr(align(16))` so we can use it for `[T]` with `align_of::<T>() <= 16`.
|
||
/// * `repr(C)` so `inner` is at offset 0 (and thus guaranteed to actually be aligned to 16).
|
||
/// * `[u8; 1]` (to be initialized with 0) so it can be used for `Arc<CStr>`.
|
||
#[repr(C, align(16))]
|
||
struct SliceArcInnerForStatic {
|
||
inner: ArcInner<[u8; 1]>,
|
||
}
|
||
#[cfg(not(no_global_oom_handling))]
|
||
const MAX_STATIC_INNER_SLICE_ALIGNMENT: usize = 16;
|
||
|
||
static STATIC_INNER_SLICE: SliceArcInnerForStatic = SliceArcInnerForStatic {
|
||
inner: ArcInner {
|
||
strong: atomic::AtomicUsize::new(1),
|
||
weak: atomic::AtomicUsize::new(1),
|
||
data: [0],
|
||
},
|
||
};
|
||
|
||
#[cfg(not(no_global_oom_handling))]
|
||
#[stable(feature = "more_rc_default_impls", since = "1.80.0")]
|
||
impl Default for Arc<str> {
|
||
/// Creates an empty str inside an Arc
|
||
///
|
||
/// This may or may not share an allocation with other Arcs.
|
||
#[inline]
|
||
fn default() -> Self {
|
||
let arc: Arc<[u8]> = Default::default();
|
||
debug_assert!(core::str::from_utf8(&*arc).is_ok());
|
||
let (ptr, alloc) = Arc::into_inner_with_allocator(arc);
|
||
unsafe { Arc::from_ptr_in(ptr.as_ptr() as *mut ArcInner<str>, alloc) }
|
||
}
|
||
}
|
||
|
||
#[cfg(not(no_global_oom_handling))]
|
||
#[stable(feature = "more_rc_default_impls", since = "1.80.0")]
|
||
impl Default for Arc<core::ffi::CStr> {
|
||
/// Creates an empty CStr inside an Arc
|
||
///
|
||
/// This may or may not share an allocation with other Arcs.
|
||
#[inline]
|
||
fn default() -> Self {
|
||
use core::ffi::CStr;
|
||
let inner: NonNull<ArcInner<[u8]>> = NonNull::from(&STATIC_INNER_SLICE.inner);
|
||
let inner: NonNull<ArcInner<CStr>> =
|
||
NonNull::new(inner.as_ptr() as *mut ArcInner<CStr>).unwrap();
|
||
// `this` semantically is the Arc "owned" by the static, so make sure not to drop it.
|
||
let this: mem::ManuallyDrop<Arc<CStr>> =
|
||
unsafe { mem::ManuallyDrop::new(Arc::from_inner(inner)) };
|
||
(*this).clone()
|
||
}
|
||
}
|
||
|
||
#[cfg(not(no_global_oom_handling))]
|
||
#[stable(feature = "more_rc_default_impls", since = "1.80.0")]
|
||
impl<T> Default for Arc<[T]> {
|
||
/// Creates an empty `[T]` inside an Arc
|
||
///
|
||
/// This may or may not share an allocation with other Arcs.
|
||
#[inline]
|
||
fn default() -> Self {
|
||
if mem::align_of::<T>() <= MAX_STATIC_INNER_SLICE_ALIGNMENT {
|
||
// We take a reference to the whole struct instead of the ArcInner<[u8; 1]> inside it so
|
||
// we don't shrink the range of bytes the ptr is allowed to access under Stacked Borrows.
|
||
// (Miri complains on 32-bit targets with Arc<[Align16]> otherwise.)
|
||
// (Note that NonNull::from(&STATIC_INNER_SLICE.inner) is fine under Tree Borrows.)
|
||
let inner: NonNull<SliceArcInnerForStatic> = NonNull::from(&STATIC_INNER_SLICE);
|
||
let inner: NonNull<ArcInner<[T; 0]>> = inner.cast();
|
||
// `this` semantically is the Arc "owned" by the static, so make sure not to drop it.
|
||
let this: mem::ManuallyDrop<Arc<[T; 0]>> =
|
||
unsafe { mem::ManuallyDrop::new(Arc::from_inner(inner)) };
|
||
return (*this).clone();
|
||
}
|
||
|
||
// If T's alignment is too large for the static, make a new unique allocation.
|
||
let arr: [T; 0] = [];
|
||
Arc::from(arr)
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T: ?Sized + Hash, A: Allocator> Hash for Arc<T, A> {
|
||
fn hash<H: Hasher>(&self, state: &mut H) {
|
||
(**self).hash(state)
|
||
}
|
||
}
|
||
|
||
#[cfg(not(no_global_oom_handling))]
|
||
#[stable(feature = "from_for_ptrs", since = "1.6.0")]
|
||
impl<T> From<T> for Arc<T> {
|
||
/// Converts a `T` into an `Arc<T>`
|
||
///
|
||
/// The conversion moves the value into a
|
||
/// newly allocated `Arc`. It is equivalent to
|
||
/// calling `Arc::new(t)`.
|
||
///
|
||
/// # Example
|
||
/// ```rust
|
||
/// # use std::sync::Arc;
|
||
/// let x = 5;
|
||
/// let arc = Arc::new(5);
|
||
///
|
||
/// assert_eq!(Arc::from(x), arc);
|
||
/// ```
|
||
fn from(t: T) -> Self {
|
||
Arc::new(t)
|
||
}
|
||
}
|
||
|
||
#[cfg(not(no_global_oom_handling))]
|
||
#[stable(feature = "shared_from_array", since = "1.74.0")]
|
||
impl<T, const N: usize> From<[T; N]> for Arc<[T]> {
|
||
/// Converts a [`[T; N]`](prim@array) into an `Arc<[T]>`.
|
||
///
|
||
/// The conversion moves the array into a newly allocated `Arc`.
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```
|
||
/// # use std::sync::Arc;
|
||
/// let original: [i32; 3] = [1, 2, 3];
|
||
/// let shared: Arc<[i32]> = Arc::from(original);
|
||
/// assert_eq!(&[1, 2, 3], &shared[..]);
|
||
/// ```
|
||
#[inline]
|
||
fn from(v: [T; N]) -> Arc<[T]> {
|
||
Arc::<[T; N]>::from(v)
|
||
}
|
||
}
|
||
|
||
#[cfg(not(no_global_oom_handling))]
|
||
#[stable(feature = "shared_from_slice", since = "1.21.0")]
|
||
impl<T: Clone> From<&[T]> for Arc<[T]> {
|
||
/// Allocates a reference-counted slice and fills it by cloning `v`'s items.
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```
|
||
/// # use std::sync::Arc;
|
||
/// let original: &[i32] = &[1, 2, 3];
|
||
/// let shared: Arc<[i32]> = Arc::from(original);
|
||
/// assert_eq!(&[1, 2, 3], &shared[..]);
|
||
/// ```
|
||
#[inline]
|
||
fn from(v: &[T]) -> Arc<[T]> {
|
||
<Self as ArcFromSlice<T>>::from_slice(v)
|
||
}
|
||
}
|
||
|
||
#[cfg(not(no_global_oom_handling))]
|
||
#[stable(feature = "shared_from_slice", since = "1.21.0")]
|
||
impl From<&str> for Arc<str> {
|
||
/// Allocates a reference-counted `str` and copies `v` into it.
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```
|
||
/// # use std::sync::Arc;
|
||
/// let shared: Arc<str> = Arc::from("eggplant");
|
||
/// assert_eq!("eggplant", &shared[..]);
|
||
/// ```
|
||
#[inline]
|
||
fn from(v: &str) -> Arc<str> {
|
||
let arc = Arc::<[u8]>::from(v.as_bytes());
|
||
unsafe { Arc::from_raw(Arc::into_raw(arc) as *const str) }
|
||
}
|
||
}
|
||
|
||
#[cfg(not(no_global_oom_handling))]
|
||
#[stable(feature = "shared_from_slice", since = "1.21.0")]
|
||
impl From<String> for Arc<str> {
|
||
/// Allocates a reference-counted `str` and copies `v` into it.
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```
|
||
/// # use std::sync::Arc;
|
||
/// let unique: String = "eggplant".to_owned();
|
||
/// let shared: Arc<str> = Arc::from(unique);
|
||
/// assert_eq!("eggplant", &shared[..]);
|
||
/// ```
|
||
#[inline]
|
||
fn from(v: String) -> Arc<str> {
|
||
Arc::from(&v[..])
|
||
}
|
||
}
|
||
|
||
#[cfg(not(no_global_oom_handling))]
|
||
#[stable(feature = "shared_from_slice", since = "1.21.0")]
|
||
impl<T: ?Sized, A: Allocator> From<Box<T, A>> for Arc<T, A> {
|
||
/// Move a boxed object to a new, reference-counted allocation.
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```
|
||
/// # use std::sync::Arc;
|
||
/// let unique: Box<str> = Box::from("eggplant");
|
||
/// let shared: Arc<str> = Arc::from(unique);
|
||
/// assert_eq!("eggplant", &shared[..]);
|
||
/// ```
|
||
#[inline]
|
||
fn from(v: Box<T, A>) -> Arc<T, A> {
|
||
Arc::from_box_in(v)
|
||
}
|
||
}
|
||
|
||
#[cfg(not(no_global_oom_handling))]
|
||
#[stable(feature = "shared_from_slice", since = "1.21.0")]
|
||
impl<T, A: Allocator + Clone> From<Vec<T, A>> for Arc<[T], A> {
|
||
/// Allocates a reference-counted slice and moves `v`'s items into it.
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```
|
||
/// # use std::sync::Arc;
|
||
/// let unique: Vec<i32> = vec![1, 2, 3];
|
||
/// let shared: Arc<[i32]> = Arc::from(unique);
|
||
/// assert_eq!(&[1, 2, 3], &shared[..]);
|
||
/// ```
|
||
#[inline]
|
||
fn from(v: Vec<T, A>) -> Arc<[T], A> {
|
||
unsafe {
|
||
let (vec_ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
|
||
|
||
let rc_ptr = Self::allocate_for_slice_in(len, &alloc);
|
||
ptr::copy_nonoverlapping(vec_ptr, (&raw mut (*rc_ptr).data) as *mut T, len);
|
||
|
||
// Create a `Vec<T, &A>` with length 0, to deallocate the buffer
|
||
// without dropping its contents or the allocator
|
||
let _ = Vec::from_raw_parts_in(vec_ptr, 0, cap, &alloc);
|
||
|
||
Self::from_ptr_in(rc_ptr, alloc)
|
||
}
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "shared_from_cow", since = "1.45.0")]
|
||
impl<'a, B> From<Cow<'a, B>> for Arc<B>
|
||
where
|
||
B: ToOwned + ?Sized,
|
||
Arc<B>: From<&'a B> + From<B::Owned>,
|
||
{
|
||
/// Creates an atomically reference-counted pointer from a clone-on-write
|
||
/// pointer by copying its content.
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```rust
|
||
/// # use std::sync::Arc;
|
||
/// # use std::borrow::Cow;
|
||
/// let cow: Cow<'_, str> = Cow::Borrowed("eggplant");
|
||
/// let shared: Arc<str> = Arc::from(cow);
|
||
/// assert_eq!("eggplant", &shared[..]);
|
||
/// ```
|
||
#[inline]
|
||
fn from(cow: Cow<'a, B>) -> Arc<B> {
|
||
match cow {
|
||
Cow::Borrowed(s) => Arc::from(s),
|
||
Cow::Owned(s) => Arc::from(s),
|
||
}
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "shared_from_str", since = "1.62.0")]
|
||
impl From<Arc<str>> for Arc<[u8]> {
|
||
/// Converts an atomically reference-counted string slice into a byte slice.
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```
|
||
/// # use std::sync::Arc;
|
||
/// let string: Arc<str> = Arc::from("eggplant");
|
||
/// let bytes: Arc<[u8]> = Arc::from(string);
|
||
/// assert_eq!("eggplant".as_bytes(), bytes.as_ref());
|
||
/// ```
|
||
#[inline]
|
||
fn from(rc: Arc<str>) -> Self {
|
||
// SAFETY: `str` has the same layout as `[u8]`.
|
||
unsafe { Arc::from_raw(Arc::into_raw(rc) as *const [u8]) }
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "boxed_slice_try_from", since = "1.43.0")]
|
||
impl<T, A: Allocator, const N: usize> TryFrom<Arc<[T], A>> for Arc<[T; N], A> {
|
||
type Error = Arc<[T], A>;
|
||
|
||
fn try_from(boxed_slice: Arc<[T], A>) -> Result<Self, Self::Error> {
|
||
if boxed_slice.len() == N {
|
||
let (ptr, alloc) = Arc::into_inner_with_allocator(boxed_slice);
|
||
Ok(unsafe { Arc::from_inner_in(ptr.cast(), alloc) })
|
||
} else {
|
||
Err(boxed_slice)
|
||
}
|
||
}
|
||
}
|
||
|
||
#[cfg(not(no_global_oom_handling))]
|
||
#[stable(feature = "shared_from_iter", since = "1.37.0")]
|
||
impl<T> FromIterator<T> for Arc<[T]> {
|
||
/// Takes each element in the `Iterator` and collects it into an `Arc<[T]>`.
|
||
///
|
||
/// # Performance characteristics
|
||
///
|
||
/// ## The general case
|
||
///
|
||
/// In the general case, collecting into `Arc<[T]>` is done by first
|
||
/// collecting into a `Vec<T>`. That is, when writing the following:
|
||
///
|
||
/// ```rust
|
||
/// # use std::sync::Arc;
|
||
/// let evens: Arc<[u8]> = (0..10).filter(|&x| x % 2 == 0).collect();
|
||
/// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
|
||
/// ```
|
||
///
|
||
/// this behaves as if we wrote:
|
||
///
|
||
/// ```rust
|
||
/// # use std::sync::Arc;
|
||
/// let evens: Arc<[u8]> = (0..10).filter(|&x| x % 2 == 0)
|
||
/// .collect::<Vec<_>>() // The first set of allocations happens here.
|
||
/// .into(); // A second allocation for `Arc<[T]>` happens here.
|
||
/// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
|
||
/// ```
|
||
///
|
||
/// This will allocate as many times as needed for constructing the `Vec<T>`
|
||
/// and then it will allocate once for turning the `Vec<T>` into the `Arc<[T]>`.
|
||
///
|
||
/// ## Iterators of known length
|
||
///
|
||
/// When your `Iterator` implements `TrustedLen` and is of an exact size,
|
||
/// a single allocation will be made for the `Arc<[T]>`. For example:
|
||
///
|
||
/// ```rust
|
||
/// # use std::sync::Arc;
|
||
/// let evens: Arc<[u8]> = (0..10).collect(); // Just a single allocation happens here.
|
||
/// # assert_eq!(&*evens, &*(0..10).collect::<Vec<_>>());
|
||
/// ```
|
||
fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
|
||
ToArcSlice::to_arc_slice(iter.into_iter())
|
||
}
|
||
}
|
||
|
||
#[cfg(not(no_global_oom_handling))]
|
||
/// Specialization trait used for collecting into `Arc<[T]>`.
|
||
trait ToArcSlice<T>: Iterator<Item = T> + Sized {
|
||
fn to_arc_slice(self) -> Arc<[T]>;
|
||
}
|
||
|
||
#[cfg(not(no_global_oom_handling))]
|
||
impl<T, I: Iterator<Item = T>> ToArcSlice<T> for I {
|
||
default fn to_arc_slice(self) -> Arc<[T]> {
|
||
self.collect::<Vec<T>>().into()
|
||
}
|
||
}
|
||
|
||
#[cfg(not(no_global_oom_handling))]
|
||
impl<T, I: iter::TrustedLen<Item = T>> ToArcSlice<T> for I {
|
||
fn to_arc_slice(self) -> Arc<[T]> {
|
||
// This is the case for a `TrustedLen` iterator.
|
||
let (low, high) = self.size_hint();
|
||
if let Some(high) = high {
|
||
debug_assert_eq!(
|
||
low,
|
||
high,
|
||
"TrustedLen iterator's size hint is not exact: {:?}",
|
||
(low, high)
|
||
);
|
||
|
||
unsafe {
|
||
// SAFETY: We need to ensure that the iterator has an exact length and we have.
|
||
Arc::from_iter_exact(self, low)
|
||
}
|
||
} else {
|
||
// TrustedLen contract guarantees that `upper_bound == None` implies an iterator
|
||
// length exceeding `usize::MAX`.
|
||
// The default implementation would collect into a vec which would panic.
|
||
// Thus we panic here immediately without invoking `Vec` code.
|
||
panic!("capacity overflow");
|
||
}
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for Arc<T, A> {
|
||
fn borrow(&self) -> &T {
|
||
&**self
|
||
}
|
||
}
|
||
|
||
#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
|
||
impl<T: ?Sized, A: Allocator> AsRef<T> for Arc<T, A> {
|
||
fn as_ref(&self) -> &T {
|
||
&**self
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "pin", since = "1.33.0")]
|
||
impl<T: ?Sized, A: Allocator> Unpin for Arc<T, A> {}
|
||
|
||
/// Gets the offset within an `ArcInner` for the payload behind a pointer.
|
||
///
|
||
/// # Safety
|
||
///
|
||
/// The pointer must point to (and have valid metadata for) a previously
|
||
/// valid instance of T, but the T is allowed to be dropped.
|
||
unsafe fn data_offset<T: ?Sized>(ptr: *const T) -> usize {
|
||
// Align the unsized value to the end of the ArcInner.
|
||
// Because RcInner is repr(C), it will always be the last field in memory.
|
||
// SAFETY: since the only unsized types possible are slices, trait objects,
|
||
// and extern types, the input safety requirement is currently enough to
|
||
// satisfy the requirements of align_of_val_raw; this is an implementation
|
||
// detail of the language that must not be relied upon outside of std.
|
||
unsafe { data_offset_align(align_of_val_raw(ptr)) }
|
||
}
|
||
|
||
#[inline]
|
||
fn data_offset_align(align: usize) -> usize {
|
||
let layout = Layout::new::<ArcInner<()>>();
|
||
layout.size() + layout.padding_needed_for(align)
|
||
}
|
||
|
||
/// A unique owning pointer to an [`ArcInner`] **that does not imply the contents are initialized,**
|
||
/// but will deallocate it (without dropping the value) when dropped.
|
||
///
|
||
/// This is a helper for [`Arc::make_mut()`] to ensure correct cleanup on panic.
|
||
#[cfg(not(no_global_oom_handling))]
|
||
struct UniqueArcUninit<T: ?Sized, A: Allocator> {
|
||
ptr: NonNull<ArcInner<T>>,
|
||
layout_for_value: Layout,
|
||
alloc: Option<A>,
|
||
}
|
||
|
||
#[cfg(not(no_global_oom_handling))]
|
||
impl<T: ?Sized, A: Allocator> UniqueArcUninit<T, A> {
|
||
/// Allocates an ArcInner with layout suitable to contain `for_value` or a clone of it.
|
||
fn new(for_value: &T, alloc: A) -> UniqueArcUninit<T, A> {
|
||
let layout = Layout::for_value(for_value);
|
||
let ptr = unsafe {
|
||
Arc::allocate_for_layout(
|
||
layout,
|
||
|layout_for_arcinner| alloc.allocate(layout_for_arcinner),
|
||
|mem| mem.with_metadata_of(ptr::from_ref(for_value) as *const ArcInner<T>),
|
||
)
|
||
};
|
||
Self { ptr: NonNull::new(ptr).unwrap(), layout_for_value: layout, alloc: Some(alloc) }
|
||
}
|
||
|
||
/// Returns the pointer to be written into to initialize the [`Arc`].
|
||
fn data_ptr(&mut self) -> *mut T {
|
||
let offset = data_offset_align(self.layout_for_value.align());
|
||
unsafe { self.ptr.as_ptr().byte_add(offset) as *mut T }
|
||
}
|
||
|
||
/// Upgrade this into a normal [`Arc`].
|
||
///
|
||
/// # Safety
|
||
///
|
||
/// The data must have been initialized (by writing to [`Self::data_ptr()`]).
|
||
unsafe fn into_arc(self) -> Arc<T, A> {
|
||
let mut this = ManuallyDrop::new(self);
|
||
let ptr = this.ptr.as_ptr();
|
||
let alloc = this.alloc.take().unwrap();
|
||
|
||
// SAFETY: The pointer is valid as per `UniqueArcUninit::new`, and the caller is responsible
|
||
// for having initialized the data.
|
||
unsafe { Arc::from_ptr_in(ptr, alloc) }
|
||
}
|
||
}
|
||
|
||
#[cfg(not(no_global_oom_handling))]
|
||
impl<T: ?Sized, A: Allocator> Drop for UniqueArcUninit<T, A> {
|
||
fn drop(&mut self) {
|
||
// SAFETY:
|
||
// * new() produced a pointer safe to deallocate.
|
||
// * We own the pointer unless into_arc() was called, which forgets us.
|
||
unsafe {
|
||
self.alloc.take().unwrap().deallocate(
|
||
self.ptr.cast(),
|
||
arcinner_layout_for_value_layout(self.layout_for_value),
|
||
);
|
||
}
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "arc_error", since = "1.52.0")]
|
||
impl<T: core::error::Error + ?Sized> core::error::Error for Arc<T> {
|
||
#[allow(deprecated, deprecated_in_future)]
|
||
fn description(&self) -> &str {
|
||
core::error::Error::description(&**self)
|
||
}
|
||
|
||
#[allow(deprecated)]
|
||
fn cause(&self) -> Option<&dyn core::error::Error> {
|
||
core::error::Error::cause(&**self)
|
||
}
|
||
|
||
fn source(&self) -> Option<&(dyn core::error::Error + 'static)> {
|
||
core::error::Error::source(&**self)
|
||
}
|
||
|
||
fn provide<'a>(&'a self, req: &mut core::error::Request<'a>) {
|
||
core::error::Error::provide(&**self, req);
|
||
}
|
||
}
|