rust/compiler/rustc_interface/src/util.rs
bors 6503543d11 Auto merge of #132282 - Noratrieb:it-is-the-end-of-serial, r=cjgillot
Delete the `cfg(not(parallel))` serial compiler

Since it's inception a long time ago, the parallel compiler and its cfgs have been a maintenance burden. This was a necessary evil the allow iteration while not degrading performance because of synchronization overhead.

But this time is over. Thanks to the amazing work by the parallel working group (and the dyn sync crimes), the parallel compiler has now been fast enough to be shipped by default in nightly for quite a while now.
Stable and beta have still been on the serial compiler, because they can't use `-Zthreads` anyways.
But this is quite suboptimal:
- the maintenance burden still sucks
- we're not testing the serial compiler in nightly

Because of these reasons, it's time to end it. The serial compiler has served us well in the years since it was split from the parallel one, but it's over now.

Let the knight slay one head of the two-headed dragon!

#113349

Note that the default is still 1 thread, as more than 1 thread is still fairly broken.

cc `@onur-ozkan` to see if i did the bootstrap field removal correctly, `@SparrowLii` on the sync parts
2024-11-12 15:14:56 +00:00

519 lines
20 KiB
Rust

use std::env::consts::{DLL_PREFIX, DLL_SUFFIX};
use std::path::{Path, PathBuf};
use std::sync::OnceLock;
use std::sync::atomic::{AtomicBool, Ordering};
use std::{env, iter, thread};
use rustc_ast as ast;
use rustc_codegen_ssa::traits::CodegenBackend;
use rustc_data_structures::sync;
use rustc_metadata::{DylibError, load_symbol_from_dylib};
use rustc_middle::ty::CurrentGcx;
use rustc_parse::validate_attr;
use rustc_session::config::{Cfg, OutFileName, OutputFilenames, OutputTypes, host_tuple};
use rustc_session::filesearch::sysroot_candidates;
use rustc_session::lint::{self, BuiltinLintDiag, LintBuffer};
use rustc_session::output::{CRATE_TYPES, categorize_crate_type};
use rustc_session::{EarlyDiagCtxt, Session, filesearch};
use rustc_span::edit_distance::find_best_match_for_name;
use rustc_span::edition::Edition;
use rustc_span::source_map::SourceMapInputs;
use rustc_span::symbol::sym;
use rustc_target::spec::Target;
use tracing::info;
use crate::errors;
/// Function pointer type that constructs a new CodegenBackend.
pub type MakeBackendFn = fn() -> Box<dyn CodegenBackend>;
/// Adds `target_feature = "..."` cfgs for a variety of platform
/// specific features (SSE, NEON etc.).
///
/// This is performed by checking whether a set of permitted features
/// is available on the target machine, by querying the codegen backend.
pub fn add_configuration(cfg: &mut Cfg, sess: &mut Session, codegen_backend: &dyn CodegenBackend) {
let tf = sym::target_feature;
let unstable_target_features = codegen_backend.target_features(sess, true);
sess.unstable_target_features.extend(unstable_target_features.iter().cloned());
let target_features = codegen_backend.target_features(sess, false);
sess.target_features.extend(target_features.iter().cloned());
cfg.extend(target_features.into_iter().map(|feat| (tf, Some(feat))));
if sess.crt_static(None) {
cfg.insert((tf, Some(sym::crt_dash_static)));
}
}
pub static STACK_SIZE: OnceLock<usize> = OnceLock::new();
pub const DEFAULT_STACK_SIZE: usize = 8 * 1024 * 1024;
fn init_stack_size(early_dcx: &EarlyDiagCtxt) -> usize {
// Obey the environment setting or default
*STACK_SIZE.get_or_init(|| {
env::var_os("RUST_MIN_STACK")
.as_ref()
.map(|os_str| os_str.to_string_lossy())
// if someone finds out `export RUST_MIN_STACK=640000` isn't enough stack
// they might try to "unset" it by running `RUST_MIN_STACK= rustc code.rs`
// this is wrong, but std would nonetheless "do what they mean", so let's do likewise
.filter(|s| !s.trim().is_empty())
// rustc is a batch program, so error early on inputs which are unlikely to be intended
// so no one thinks we parsed them setting `RUST_MIN_STACK="64 megabytes"`
// FIXME: we could accept `RUST_MIN_STACK=64MB`, perhaps?
.map(|s| {
let s = s.trim();
// FIXME(workingjubilee): add proper diagnostics when we factor out "pre-run" setup
#[allow(rustc::untranslatable_diagnostic, rustc::diagnostic_outside_of_impl)]
s.parse::<usize>().unwrap_or_else(|_| {
let mut err = early_dcx.early_struct_fatal(format!(
r#"`RUST_MIN_STACK` should be a number of bytes, but was "{s}""#,
));
err.note("you can also unset `RUST_MIN_STACK` to use the default stack size");
err.emit()
})
})
// otherwise pick a consistent default
.unwrap_or(DEFAULT_STACK_SIZE)
})
}
fn run_in_thread_with_globals<F: FnOnce(CurrentGcx) -> R + Send, R: Send>(
thread_stack_size: usize,
edition: Edition,
sm_inputs: SourceMapInputs,
f: F,
) -> R {
// The "thread pool" is a single spawned thread in the non-parallel
// compiler. We run on a spawned thread instead of the main thread (a) to
// provide control over the stack size, and (b) to increase similarity with
// the parallel compiler, in particular to ensure there is no accidental
// sharing of data between the main thread and the compilation thread
// (which might cause problems for the parallel compiler).
let builder = thread::Builder::new().name("rustc".to_string()).stack_size(thread_stack_size);
// We build the session globals and run `f` on the spawned thread, because
// `SessionGlobals` does not impl `Send` in the non-parallel compiler.
thread::scope(|s| {
// `unwrap` is ok here because `spawn_scoped` only panics if the thread
// name contains null bytes.
let r = builder
.spawn_scoped(s, move || {
rustc_span::create_session_globals_then(edition, Some(sm_inputs), || {
f(CurrentGcx::new())
})
})
.unwrap()
.join();
match r {
Ok(v) => v,
Err(e) => std::panic::resume_unwind(e),
}
})
}
pub(crate) fn run_in_thread_pool_with_globals<F: FnOnce(CurrentGcx) -> R + Send, R: Send>(
thread_builder_diag: &EarlyDiagCtxt,
edition: Edition,
threads: usize,
sm_inputs: SourceMapInputs,
f: F,
) -> R {
use std::process;
use rustc_data_structures::sync::FromDyn;
use rustc_data_structures::{defer, jobserver};
use rustc_middle::ty::tls;
use rustc_query_impl::QueryCtxt;
use rustc_query_system::query::{QueryContext, break_query_cycles};
let thread_stack_size = init_stack_size(thread_builder_diag);
let registry = sync::Registry::new(std::num::NonZero::new(threads).unwrap());
if !sync::is_dyn_thread_safe() {
return run_in_thread_with_globals(thread_stack_size, edition, sm_inputs, |current_gcx| {
// Register the thread for use with the `WorkerLocal` type.
registry.register();
f(current_gcx)
});
}
let current_gcx = FromDyn::from(CurrentGcx::new());
let current_gcx2 = current_gcx.clone();
let builder = rayon::ThreadPoolBuilder::new()
.thread_name(|_| "rustc".to_string())
.acquire_thread_handler(jobserver::acquire_thread)
.release_thread_handler(jobserver::release_thread)
.num_threads(threads)
.deadlock_handler(move || {
// On deadlock, creates a new thread and forwards information in thread
// locals to it. The new thread runs the deadlock handler.
// Get a `GlobalCtxt` reference from `CurrentGcx` as we cannot rely on having a
// `TyCtxt` TLS reference here.
let query_map = current_gcx2.access(|gcx| {
tls::enter_context(&tls::ImplicitCtxt::new(gcx), || {
tls::with(|tcx| QueryCtxt::new(tcx).collect_active_jobs())
})
});
let query_map = FromDyn::from(query_map);
let registry = rayon_core::Registry::current();
thread::Builder::new()
.name("rustc query cycle handler".to_string())
.spawn(move || {
let on_panic = defer(|| {
eprintln!("query cycle handler thread panicked, aborting process");
// We need to abort here as we failed to resolve the deadlock,
// otherwise the compiler could just hang,
process::abort();
});
break_query_cycles(query_map.into_inner(), &registry);
on_panic.disable();
})
.unwrap();
})
.stack_size(thread_stack_size);
// We create the session globals on the main thread, then create the thread
// pool. Upon creation, each worker thread created gets a copy of the
// session globals in TLS. This is possible because `SessionGlobals` impls
// `Send` in the parallel compiler.
rustc_span::create_session_globals_then(edition, Some(sm_inputs), || {
rustc_span::with_session_globals(|session_globals| {
let session_globals = FromDyn::from(session_globals);
builder
.build_scoped(
// Initialize each new worker thread when created.
move |thread: rayon::ThreadBuilder| {
// Register the thread for use with the `WorkerLocal` type.
registry.register();
rustc_span::set_session_globals_then(session_globals.into_inner(), || {
thread.run()
})
},
// Run `f` on the first thread in the thread pool.
move |pool: &rayon::ThreadPool| pool.install(|| f(current_gcx.into_inner())),
)
.unwrap()
})
})
}
#[allow(rustc::untranslatable_diagnostic)] // FIXME: make this translatable
fn load_backend_from_dylib(early_dcx: &EarlyDiagCtxt, path: &Path) -> MakeBackendFn {
match unsafe { load_symbol_from_dylib::<MakeBackendFn>(path, "__rustc_codegen_backend") } {
Ok(backend_sym) => backend_sym,
Err(DylibError::DlOpen(path, err)) => {
let err = format!("couldn't load codegen backend {path}{err}");
early_dcx.early_fatal(err);
}
Err(DylibError::DlSym(_path, err)) => {
let e = format!(
"`__rustc_codegen_backend` symbol lookup in the codegen backend failed{err}",
);
early_dcx.early_fatal(e);
}
}
}
/// Get the codegen backend based on the name and specified sysroot.
///
/// A name of `None` indicates that the default backend should be used.
pub fn get_codegen_backend(
early_dcx: &EarlyDiagCtxt,
sysroot: &Path,
backend_name: Option<&str>,
target: &Target,
) -> Box<dyn CodegenBackend> {
static LOAD: OnceLock<unsafe fn() -> Box<dyn CodegenBackend>> = OnceLock::new();
let load = LOAD.get_or_init(|| {
let backend = backend_name
.or(target.default_codegen_backend.as_deref())
.or(option_env!("CFG_DEFAULT_CODEGEN_BACKEND"))
.unwrap_or("llvm");
match backend {
filename if filename.contains('.') => {
load_backend_from_dylib(early_dcx, filename.as_ref())
}
#[cfg(feature = "llvm")]
"llvm" => rustc_codegen_llvm::LlvmCodegenBackend::new,
backend_name => get_codegen_sysroot(early_dcx, sysroot, backend_name),
}
});
// SAFETY: In case of a builtin codegen backend this is safe. In case of an external codegen
// backend we hope that the backend links against the same rustc_driver version. If this is not
// the case, we get UB.
unsafe { load() }
}
// This is used for rustdoc, but it uses similar machinery to codegen backend
// loading, so we leave the code here. It is potentially useful for other tools
// that want to invoke the rustc binary while linking to rustc as well.
pub fn rustc_path<'a>() -> Option<&'a Path> {
static RUSTC_PATH: OnceLock<Option<PathBuf>> = OnceLock::new();
const BIN_PATH: &str = env!("RUSTC_INSTALL_BINDIR");
RUSTC_PATH.get_or_init(|| get_rustc_path_inner(BIN_PATH)).as_deref()
}
fn get_rustc_path_inner(bin_path: &str) -> Option<PathBuf> {
sysroot_candidates().iter().find_map(|sysroot| {
let candidate = sysroot.join(bin_path).join(if cfg!(target_os = "windows") {
"rustc.exe"
} else {
"rustc"
});
candidate.exists().then_some(candidate)
})
}
#[allow(rustc::untranslatable_diagnostic)] // FIXME: make this translatable
fn get_codegen_sysroot(
early_dcx: &EarlyDiagCtxt,
sysroot: &Path,
backend_name: &str,
) -> MakeBackendFn {
// For now we only allow this function to be called once as it'll dlopen a
// few things, which seems to work best if we only do that once. In
// general this assertion never trips due to the once guard in `get_codegen_backend`,
// but there's a few manual calls to this function in this file we protect
// against.
static LOADED: AtomicBool = AtomicBool::new(false);
assert!(
!LOADED.fetch_or(true, Ordering::SeqCst),
"cannot load the default codegen backend twice"
);
let target = host_tuple();
let sysroot_candidates = sysroot_candidates();
let sysroot = iter::once(sysroot)
.chain(sysroot_candidates.iter().map(<_>::as_ref))
.map(|sysroot| {
filesearch::make_target_lib_path(sysroot, target).with_file_name("codegen-backends")
})
.find(|f| {
info!("codegen backend candidate: {}", f.display());
f.exists()
})
.unwrap_or_else(|| {
let candidates = sysroot_candidates
.iter()
.map(|p| p.display().to_string())
.collect::<Vec<_>>()
.join("\n* ");
let err = format!(
"failed to find a `codegen-backends` folder \
in the sysroot candidates:\n* {candidates}"
);
early_dcx.early_fatal(err);
});
info!("probing {} for a codegen backend", sysroot.display());
let d = sysroot.read_dir().unwrap_or_else(|e| {
let err = format!(
"failed to load default codegen backend, couldn't \
read `{}`: {}",
sysroot.display(),
e
);
early_dcx.early_fatal(err);
});
let mut file: Option<PathBuf> = None;
let expected_names = &[
format!("rustc_codegen_{}-{}", backend_name, env!("CFG_RELEASE")),
format!("rustc_codegen_{backend_name}"),
];
for entry in d.filter_map(|e| e.ok()) {
let path = entry.path();
let Some(filename) = path.file_name().and_then(|s| s.to_str()) else { continue };
if !(filename.starts_with(DLL_PREFIX) && filename.ends_with(DLL_SUFFIX)) {
continue;
}
let name = &filename[DLL_PREFIX.len()..filename.len() - DLL_SUFFIX.len()];
if !expected_names.iter().any(|expected| expected == name) {
continue;
}
if let Some(ref prev) = file {
let err = format!(
"duplicate codegen backends found\n\
first: {}\n\
second: {}\n\
",
prev.display(),
path.display()
);
early_dcx.early_fatal(err);
}
file = Some(path.clone());
}
match file {
Some(ref s) => load_backend_from_dylib(early_dcx, s),
None => {
let err = format!("unsupported builtin codegen backend `{backend_name}`");
early_dcx.early_fatal(err);
}
}
}
pub(crate) fn check_attr_crate_type(
sess: &Session,
attrs: &[ast::Attribute],
lint_buffer: &mut LintBuffer,
) {
// Unconditionally collect crate types from attributes to make them used
for a in attrs.iter() {
if a.has_name(sym::crate_type) {
if let Some(n) = a.value_str() {
if categorize_crate_type(n).is_some() {
return;
}
if let ast::MetaItemKind::NameValue(spanned) = a.meta_kind().unwrap() {
let span = spanned.span;
let candidate = find_best_match_for_name(
&CRATE_TYPES.iter().map(|(k, _)| *k).collect::<Vec<_>>(),
n,
None,
);
lint_buffer.buffer_lint(
lint::builtin::UNKNOWN_CRATE_TYPES,
ast::CRATE_NODE_ID,
span,
BuiltinLintDiag::UnknownCrateTypes { span, candidate },
);
}
} else {
// This is here mainly to check for using a macro, such as
// #![crate_type = foo!()]. That is not supported since the
// crate type needs to be known very early in compilation long
// before expansion. Otherwise, validation would normally be
// caught in AstValidator (via `check_builtin_attribute`), but
// by the time that runs the macro is expanded, and it doesn't
// give an error.
validate_attr::emit_fatal_malformed_builtin_attribute(
&sess.psess,
a,
sym::crate_type,
);
}
}
}
}
fn multiple_output_types_to_stdout(
output_types: &OutputTypes,
single_output_file_is_stdout: bool,
) -> bool {
use std::io::IsTerminal;
if std::io::stdout().is_terminal() {
// If stdout is a tty, check if multiple text output types are
// specified by `--emit foo=- --emit bar=-` or `-o - --emit foo,bar`
let named_text_types = output_types
.iter()
.filter(|(f, o)| f.is_text_output() && *o == &Some(OutFileName::Stdout))
.count();
let unnamed_text_types =
output_types.iter().filter(|(f, o)| f.is_text_output() && o.is_none()).count();
named_text_types > 1 || unnamed_text_types > 1 && single_output_file_is_stdout
} else {
// Otherwise, all the output types should be checked
let named_types =
output_types.values().filter(|o| *o == &Some(OutFileName::Stdout)).count();
let unnamed_types = output_types.values().filter(|o| o.is_none()).count();
named_types > 1 || unnamed_types > 1 && single_output_file_is_stdout
}
}
pub fn build_output_filenames(attrs: &[ast::Attribute], sess: &Session) -> OutputFilenames {
if multiple_output_types_to_stdout(
&sess.opts.output_types,
sess.io.output_file == Some(OutFileName::Stdout),
) {
sess.dcx().emit_fatal(errors::MultipleOutputTypesToStdout);
}
let crate_name = sess
.opts
.crate_name
.clone()
.or_else(|| rustc_attr::find_crate_name(attrs).map(|n| n.to_string()));
match sess.io.output_file {
None => {
// "-" as input file will cause the parser to read from stdin so we
// have to make up a name
// We want to toss everything after the final '.'
let dirpath = sess.io.output_dir.clone().unwrap_or_default();
// If a crate name is present, we use it as the link name
let stem = crate_name.clone().unwrap_or_else(|| sess.io.input.filestem().to_owned());
OutputFilenames::new(
dirpath,
crate_name.unwrap_or_else(|| stem.replace('-', "_")),
stem,
None,
sess.io.temps_dir.clone(),
sess.opts.cg.extra_filename.clone(),
sess.opts.output_types.clone(),
)
}
Some(ref out_file) => {
let unnamed_output_types =
sess.opts.output_types.values().filter(|a| a.is_none()).count();
let ofile = if unnamed_output_types > 1 {
sess.dcx().emit_warn(errors::MultipleOutputTypesAdaption);
None
} else {
if !sess.opts.cg.extra_filename.is_empty() {
sess.dcx().emit_warn(errors::IgnoringExtraFilename);
}
Some(out_file.clone())
};
if sess.io.output_dir != None {
sess.dcx().emit_warn(errors::IgnoringOutDir);
}
let out_filestem =
out_file.filestem().unwrap_or_default().to_str().unwrap().to_string();
OutputFilenames::new(
out_file.parent().unwrap_or_else(|| Path::new("")).to_path_buf(),
crate_name.unwrap_or_else(|| out_filestem.replace('-', "_")),
out_filestem,
ofile,
sess.io.temps_dir.clone(),
sess.opts.cg.extra_filename.clone(),
sess.opts.output_types.clone(),
)
}
}
}
/// Returns a version string such as "1.46.0 (04488afe3 2020-08-24)" when invoked by an in-tree tool.
pub macro version_str() {
option_env!("CFG_VERSION")
}
/// Returns the version string for `rustc` itself (which may be different from a tool version).
pub fn rustc_version_str() -> Option<&'static str> {
version_str!()
}