mirror of
https://github.com/rust-lang/rust.git
synced 2025-04-28 11:07:42 +00:00
530 lines
22 KiB
Rust
530 lines
22 KiB
Rust
use std::ffi::CString;
|
|
use std::iter;
|
|
|
|
use itertools::Itertools as _;
|
|
use rustc_abi::Align;
|
|
use rustc_codegen_ssa::traits::{
|
|
BaseTypeCodegenMethods, ConstCodegenMethods, StaticCodegenMethods,
|
|
};
|
|
use rustc_data_structures::fx::{FxHashSet, FxIndexMap, FxIndexSet};
|
|
use rustc_hir::def_id::{DefId, LocalDefId};
|
|
use rustc_index::IndexVec;
|
|
use rustc_middle::mir::coverage::MappingKind;
|
|
use rustc_middle::ty::{self, TyCtxt};
|
|
use rustc_middle::{bug, mir};
|
|
use rustc_span::Symbol;
|
|
use rustc_span::def_id::DefIdSet;
|
|
use rustc_target::spec::HasTargetSpec;
|
|
use tracing::debug;
|
|
|
|
use crate::common::CodegenCx;
|
|
use crate::coverageinfo::map_data::{FunctionCoverage, FunctionCoverageCollector};
|
|
use crate::coverageinfo::{ffi, llvm_cov};
|
|
use crate::llvm;
|
|
|
|
/// Generates and exports the coverage map, which is embedded in special
|
|
/// linker sections in the final binary.
|
|
///
|
|
/// Those sections are then read and understood by LLVM's `llvm-cov` tool,
|
|
/// which is distributed in the `llvm-tools` rustup component.
|
|
pub(crate) fn finalize(cx: &CodegenCx<'_, '_>) {
|
|
let tcx = cx.tcx;
|
|
|
|
// Ensure that LLVM is using a version of the coverage mapping format that
|
|
// agrees with our Rust-side code. Expected versions (encoded as n-1) are:
|
|
// - `CovMapVersion::Version7` (6) used by LLVM 18-19
|
|
let covmap_version = {
|
|
let llvm_covmap_version = llvm_cov::mapping_version();
|
|
let expected_versions = 6..=6;
|
|
assert!(
|
|
expected_versions.contains(&llvm_covmap_version),
|
|
"Coverage mapping version exposed by `llvm-wrapper` is out of sync; \
|
|
expected {expected_versions:?} but was {llvm_covmap_version}"
|
|
);
|
|
// This is the version number that we will embed in the covmap section:
|
|
llvm_covmap_version
|
|
};
|
|
|
|
debug!("Generating coverage map for CodegenUnit: `{}`", cx.codegen_unit.name());
|
|
|
|
// In order to show that unused functions have coverage counts of zero (0), LLVM requires the
|
|
// functions exist. Generate synthetic functions with a (required) single counter, and add the
|
|
// MIR `Coverage` code regions to the `function_coverage_map`, before calling
|
|
// `ctx.take_function_coverage_map()`.
|
|
if cx.codegen_unit.is_code_coverage_dead_code_cgu() {
|
|
add_unused_functions(cx);
|
|
}
|
|
|
|
// FIXME(#132395): Can this be none even when coverage is enabled?
|
|
let function_coverage_map = match cx.coverage_cx {
|
|
Some(ref cx) => cx.take_function_coverage_map(),
|
|
None => return,
|
|
};
|
|
if function_coverage_map.is_empty() {
|
|
// This module has no functions with coverage instrumentation
|
|
return;
|
|
}
|
|
|
|
let function_coverage_entries = function_coverage_map
|
|
.into_iter()
|
|
.map(|(instance, function_coverage)| (instance, function_coverage.into_finished()))
|
|
.collect::<Vec<_>>();
|
|
|
|
let all_file_names =
|
|
function_coverage_entries.iter().flat_map(|(_, fn_cov)| fn_cov.all_file_names());
|
|
let global_file_table = GlobalFileTable::new(all_file_names);
|
|
|
|
// Encode all filenames referenced by coverage mappings in this CGU.
|
|
let filenames_buffer = global_file_table.make_filenames_buffer(tcx);
|
|
|
|
let filenames_size = filenames_buffer.len();
|
|
let filenames_val = cx.const_bytes(&filenames_buffer);
|
|
let filenames_ref = llvm_cov::hash_bytes(&filenames_buffer);
|
|
|
|
// Generate the coverage map header, which contains the filenames used by
|
|
// this CGU's coverage mappings, and store it in a well-known global.
|
|
generate_covmap_record(cx, covmap_version, filenames_size, filenames_val);
|
|
|
|
let mut unused_function_names = Vec::new();
|
|
|
|
// Encode coverage mappings and generate function records
|
|
for (instance, function_coverage) in function_coverage_entries {
|
|
debug!("Generate function coverage for {}, {:?}", cx.codegen_unit.name(), instance);
|
|
|
|
let mangled_function_name = tcx.symbol_name(instance).name;
|
|
let source_hash = function_coverage.source_hash();
|
|
let is_used = function_coverage.is_used();
|
|
|
|
let coverage_mapping_buffer =
|
|
encode_mappings_for_function(&global_file_table, &function_coverage);
|
|
|
|
if coverage_mapping_buffer.is_empty() {
|
|
if function_coverage.is_used() {
|
|
bug!(
|
|
"A used function should have had coverage mapping data but did not: {}",
|
|
mangled_function_name
|
|
);
|
|
} else {
|
|
debug!("unused function had no coverage mapping data: {}", mangled_function_name);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if !is_used {
|
|
unused_function_names.push(mangled_function_name);
|
|
}
|
|
|
|
generate_covfun_record(
|
|
cx,
|
|
mangled_function_name,
|
|
source_hash,
|
|
filenames_ref,
|
|
coverage_mapping_buffer,
|
|
is_used,
|
|
);
|
|
}
|
|
|
|
// For unused functions, we need to take their mangled names and store them
|
|
// in a specially-named global array. LLVM's `InstrProfiling` pass will
|
|
// detect this global and include those names in its `__llvm_prf_names`
|
|
// section. (See `llvm/lib/Transforms/Instrumentation/InstrProfiling.cpp`.)
|
|
if !unused_function_names.is_empty() {
|
|
assert!(cx.codegen_unit.is_code_coverage_dead_code_cgu());
|
|
|
|
let name_globals = unused_function_names
|
|
.into_iter()
|
|
.map(|mangled_function_name| cx.const_str(mangled_function_name).0)
|
|
.collect::<Vec<_>>();
|
|
let initializer = cx.const_array(cx.type_ptr(), &name_globals);
|
|
|
|
let array = llvm::add_global(cx.llmod, cx.val_ty(initializer), c"__llvm_coverage_names");
|
|
llvm::set_global_constant(array, true);
|
|
llvm::set_linkage(array, llvm::Linkage::InternalLinkage);
|
|
llvm::set_initializer(array, initializer);
|
|
}
|
|
}
|
|
|
|
/// Maps "global" (per-CGU) file ID numbers to their underlying filenames.
|
|
struct GlobalFileTable {
|
|
/// This "raw" table doesn't include the working dir, so a filename's
|
|
/// global ID is its index in this set **plus one**.
|
|
raw_file_table: FxIndexSet<Symbol>,
|
|
}
|
|
|
|
impl GlobalFileTable {
|
|
fn new(all_file_names: impl IntoIterator<Item = Symbol>) -> Self {
|
|
// Collect all of the filenames into a set. Filenames usually come in
|
|
// contiguous runs, so we can dedup adjacent ones to save work.
|
|
let mut raw_file_table = all_file_names.into_iter().dedup().collect::<FxIndexSet<Symbol>>();
|
|
|
|
// Sort the file table by its actual string values, not the arbitrary
|
|
// ordering of its symbols.
|
|
raw_file_table.sort_unstable_by(|a, b| a.as_str().cmp(b.as_str()));
|
|
|
|
Self { raw_file_table }
|
|
}
|
|
|
|
fn global_file_id_for_file_name(&self, file_name: Symbol) -> u32 {
|
|
let raw_id = self.raw_file_table.get_index_of(&file_name).unwrap_or_else(|| {
|
|
bug!("file name not found in prepared global file table: {file_name}");
|
|
});
|
|
// The raw file table doesn't include an entry for the working dir
|
|
// (which has ID 0), so add 1 to get the correct ID.
|
|
(raw_id + 1) as u32
|
|
}
|
|
|
|
fn make_filenames_buffer(&self, tcx: TyCtxt<'_>) -> Vec<u8> {
|
|
// LLVM Coverage Mapping Format version 6 (zero-based encoded as 5)
|
|
// requires setting the first filename to the compilation directory.
|
|
// Since rustc generates coverage maps with relative paths, the
|
|
// compilation directory can be combined with the relative paths
|
|
// to get absolute paths, if needed.
|
|
use rustc_session::RemapFileNameExt;
|
|
use rustc_session::config::RemapPathScopeComponents;
|
|
let working_dir: &str = &tcx
|
|
.sess
|
|
.opts
|
|
.working_dir
|
|
.for_scope(tcx.sess, RemapPathScopeComponents::MACRO)
|
|
.to_string_lossy();
|
|
|
|
// Insert the working dir at index 0, before the other filenames.
|
|
let filenames =
|
|
iter::once(working_dir).chain(self.raw_file_table.iter().map(Symbol::as_str));
|
|
llvm_cov::write_filenames_to_buffer(filenames)
|
|
}
|
|
}
|
|
|
|
rustc_index::newtype_index! {
|
|
struct LocalFileId {}
|
|
}
|
|
|
|
/// Holds a mapping from "local" (per-function) file IDs to "global" (per-CGU)
|
|
/// file IDs.
|
|
#[derive(Default)]
|
|
struct VirtualFileMapping {
|
|
local_to_global: IndexVec<LocalFileId, u32>,
|
|
global_to_local: FxIndexMap<u32, LocalFileId>,
|
|
}
|
|
|
|
impl VirtualFileMapping {
|
|
fn local_id_for_global(&mut self, global_file_id: u32) -> LocalFileId {
|
|
*self
|
|
.global_to_local
|
|
.entry(global_file_id)
|
|
.or_insert_with(|| self.local_to_global.push(global_file_id))
|
|
}
|
|
|
|
fn into_vec(self) -> Vec<u32> {
|
|
self.local_to_global.raw
|
|
}
|
|
}
|
|
|
|
/// Using the expressions and counter regions collected for a single function,
|
|
/// generate the variable-sized payload of its corresponding `__llvm_covfun`
|
|
/// entry. The payload is returned as a vector of bytes.
|
|
///
|
|
/// Newly-encountered filenames will be added to the global file table.
|
|
fn encode_mappings_for_function(
|
|
global_file_table: &GlobalFileTable,
|
|
function_coverage: &FunctionCoverage<'_>,
|
|
) -> Vec<u8> {
|
|
let counter_regions = function_coverage.counter_regions();
|
|
if counter_regions.is_empty() {
|
|
return Vec::new();
|
|
}
|
|
|
|
let expressions = function_coverage.counter_expressions().collect::<Vec<_>>();
|
|
|
|
let mut virtual_file_mapping = VirtualFileMapping::default();
|
|
let mut code_regions = vec![];
|
|
let mut branch_regions = vec![];
|
|
let mut mcdc_branch_regions = vec![];
|
|
let mut mcdc_decision_regions = vec![];
|
|
|
|
// Group mappings into runs with the same filename, preserving the order
|
|
// yielded by `FunctionCoverage`.
|
|
// Prepare file IDs for each filename, and prepare the mapping data so that
|
|
// we can pass it through FFI to LLVM.
|
|
for (file_name, counter_regions_for_file) in
|
|
&counter_regions.group_by(|(_, region)| region.file_name)
|
|
{
|
|
// Look up the global file ID for this filename.
|
|
let global_file_id = global_file_table.global_file_id_for_file_name(file_name);
|
|
|
|
// Associate that global file ID with a local file ID for this function.
|
|
let local_file_id = virtual_file_mapping.local_id_for_global(global_file_id);
|
|
debug!(" file id: {local_file_id:?} => global {global_file_id} = '{file_name:?}'");
|
|
|
|
// For each counter/region pair in this function+file, convert it to a
|
|
// form suitable for FFI.
|
|
for (mapping_kind, region) in counter_regions_for_file {
|
|
debug!("Adding counter {mapping_kind:?} to map for {region:?}");
|
|
let span = ffi::CoverageSpan::from_source_region(local_file_id.as_u32(), region);
|
|
match mapping_kind {
|
|
MappingKind::Code(term) => {
|
|
code_regions
|
|
.push(ffi::CodeRegion { span, counter: ffi::Counter::from_term(term) });
|
|
}
|
|
MappingKind::Branch { true_term, false_term } => {
|
|
branch_regions.push(ffi::BranchRegion {
|
|
span,
|
|
true_counter: ffi::Counter::from_term(true_term),
|
|
false_counter: ffi::Counter::from_term(false_term),
|
|
});
|
|
}
|
|
MappingKind::MCDCBranch { true_term, false_term, mcdc_params } => {
|
|
mcdc_branch_regions.push(ffi::MCDCBranchRegion {
|
|
span,
|
|
true_counter: ffi::Counter::from_term(true_term),
|
|
false_counter: ffi::Counter::from_term(false_term),
|
|
mcdc_branch_params: ffi::mcdc::BranchParameters::from(mcdc_params),
|
|
});
|
|
}
|
|
MappingKind::MCDCDecision(mcdc_decision_params) => {
|
|
mcdc_decision_regions.push(ffi::MCDCDecisionRegion {
|
|
span,
|
|
mcdc_decision_params: ffi::mcdc::DecisionParameters::from(
|
|
mcdc_decision_params,
|
|
),
|
|
});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Encode the function's coverage mappings into a buffer.
|
|
llvm_cov::write_function_mappings_to_buffer(
|
|
&virtual_file_mapping.into_vec(),
|
|
&expressions,
|
|
&code_regions,
|
|
&branch_regions,
|
|
&mcdc_branch_regions,
|
|
&mcdc_decision_regions,
|
|
)
|
|
}
|
|
|
|
/// Generates the contents of the covmap record for this CGU, which mostly
|
|
/// consists of a header and a list of filenames. The record is then stored
|
|
/// as a global variable in the `__llvm_covmap` section.
|
|
fn generate_covmap_record<'ll>(
|
|
cx: &CodegenCx<'ll, '_>,
|
|
version: u32,
|
|
filenames_size: usize,
|
|
filenames_val: &'ll llvm::Value,
|
|
) {
|
|
debug!("cov map: filenames_size = {}, 0-based version = {}", filenames_size, version);
|
|
|
|
// Create the coverage data header (Note, fields 0 and 2 are now always zero,
|
|
// as of `llvm::coverage::CovMapVersion::Version4`.)
|
|
let zero_was_n_records_val = cx.const_u32(0);
|
|
let filenames_size_val = cx.const_u32(filenames_size as u32);
|
|
let zero_was_coverage_size_val = cx.const_u32(0);
|
|
let version_val = cx.const_u32(version);
|
|
let cov_data_header_val = cx.const_struct(
|
|
&[zero_was_n_records_val, filenames_size_val, zero_was_coverage_size_val, version_val],
|
|
/*packed=*/ false,
|
|
);
|
|
|
|
// Create the complete LLVM coverage data value to add to the LLVM IR
|
|
let covmap_data =
|
|
cx.const_struct(&[cov_data_header_val, filenames_val], /*packed=*/ false);
|
|
|
|
let llglobal = llvm::add_global(cx.llmod, cx.val_ty(covmap_data), &llvm_cov::covmap_var_name());
|
|
llvm::set_initializer(llglobal, covmap_data);
|
|
llvm::set_global_constant(llglobal, true);
|
|
llvm::set_linkage(llglobal, llvm::Linkage::PrivateLinkage);
|
|
llvm::set_section(llglobal, &llvm_cov::covmap_section_name(cx.llmod));
|
|
// LLVM's coverage mapping format specifies 8-byte alignment for items in this section.
|
|
// <https://llvm.org/docs/CoverageMappingFormat.html>
|
|
llvm::set_alignment(llglobal, Align::EIGHT);
|
|
cx.add_used_global(llglobal);
|
|
}
|
|
|
|
/// Generates the contents of the covfun record for this function, which
|
|
/// contains the function's coverage mapping data. The record is then stored
|
|
/// as a global variable in the `__llvm_covfun` section.
|
|
fn generate_covfun_record(
|
|
cx: &CodegenCx<'_, '_>,
|
|
mangled_function_name: &str,
|
|
source_hash: u64,
|
|
filenames_ref: u64,
|
|
coverage_mapping_buffer: Vec<u8>,
|
|
is_used: bool,
|
|
) {
|
|
// Concatenate the encoded coverage mappings
|
|
let coverage_mapping_size = coverage_mapping_buffer.len();
|
|
let coverage_mapping_val = cx.const_bytes(&coverage_mapping_buffer);
|
|
|
|
let func_name_hash = llvm_cov::hash_bytes(mangled_function_name.as_bytes());
|
|
let func_name_hash_val = cx.const_u64(func_name_hash);
|
|
let coverage_mapping_size_val = cx.const_u32(coverage_mapping_size as u32);
|
|
let source_hash_val = cx.const_u64(source_hash);
|
|
let filenames_ref_val = cx.const_u64(filenames_ref);
|
|
let func_record_val = cx.const_struct(
|
|
&[
|
|
func_name_hash_val,
|
|
coverage_mapping_size_val,
|
|
source_hash_val,
|
|
filenames_ref_val,
|
|
coverage_mapping_val,
|
|
],
|
|
/*packed=*/ true,
|
|
);
|
|
|
|
// Choose a variable name to hold this function's covfun data.
|
|
// Functions that are used have a suffix ("u") to distinguish them from
|
|
// unused copies of the same function (from different CGUs), so that if a
|
|
// linker sees both it won't discard the used copy's data.
|
|
let func_record_var_name =
|
|
CString::new(format!("__covrec_{:X}{}", func_name_hash, if is_used { "u" } else { "" }))
|
|
.unwrap();
|
|
debug!("function record var name: {:?}", func_record_var_name);
|
|
|
|
let llglobal = llvm::add_global(cx.llmod, cx.val_ty(func_record_val), &func_record_var_name);
|
|
llvm::set_initializer(llglobal, func_record_val);
|
|
llvm::set_global_constant(llglobal, true);
|
|
llvm::set_linkage(llglobal, llvm::Linkage::LinkOnceODRLinkage);
|
|
llvm::set_visibility(llglobal, llvm::Visibility::Hidden);
|
|
llvm::set_section(llglobal, cx.covfun_section_name());
|
|
// LLVM's coverage mapping format specifies 8-byte alignment for items in this section.
|
|
// <https://llvm.org/docs/CoverageMappingFormat.html>
|
|
llvm::set_alignment(llglobal, Align::EIGHT);
|
|
if cx.target_spec().supports_comdat() {
|
|
llvm::set_comdat(cx.llmod, llglobal, &func_record_var_name);
|
|
}
|
|
cx.add_used_global(llglobal);
|
|
}
|
|
|
|
/// Each CGU will normally only emit coverage metadata for the functions that it actually generates.
|
|
/// But since we don't want unused functions to disappear from coverage reports, we also scan for
|
|
/// functions that were instrumented but are not participating in codegen.
|
|
///
|
|
/// These unused functions don't need to be codegenned, but we do need to add them to the function
|
|
/// coverage map (in a single designated CGU) so that we still emit coverage mappings for them.
|
|
/// We also end up adding their symbol names to a special global array that LLVM will include in
|
|
/// its embedded coverage data.
|
|
fn add_unused_functions(cx: &CodegenCx<'_, '_>) {
|
|
assert!(cx.codegen_unit.is_code_coverage_dead_code_cgu());
|
|
|
|
let tcx = cx.tcx;
|
|
let usage = prepare_usage_sets(tcx);
|
|
|
|
let is_unused_fn = |def_id: LocalDefId| -> bool {
|
|
let def_id = def_id.to_def_id();
|
|
|
|
// To be eligible for "unused function" mappings, a definition must:
|
|
// - Be function-like
|
|
// - Not participate directly in codegen (or have lost all its coverage statements)
|
|
// - Not have any coverage statements inlined into codegenned functions
|
|
tcx.def_kind(def_id).is_fn_like()
|
|
&& (!usage.all_mono_items.contains(&def_id)
|
|
|| usage.missing_own_coverage.contains(&def_id))
|
|
&& !usage.used_via_inlining.contains(&def_id)
|
|
};
|
|
|
|
// Scan for unused functions that were instrumented for coverage.
|
|
for def_id in tcx.mir_keys(()).iter().copied().filter(|&def_id| is_unused_fn(def_id)) {
|
|
// Get the coverage info from MIR, skipping functions that were never instrumented.
|
|
let body = tcx.optimized_mir(def_id);
|
|
let Some(function_coverage_info) = body.function_coverage_info.as_deref() else { continue };
|
|
|
|
// FIXME(79651): Consider trying to filter out dummy instantiations of
|
|
// unused generic functions from library crates, because they can produce
|
|
// "unused instantiation" in coverage reports even when they are actually
|
|
// used by some downstream crate in the same binary.
|
|
|
|
debug!("generating unused fn: {def_id:?}");
|
|
add_unused_function_coverage(cx, def_id, function_coverage_info);
|
|
}
|
|
}
|
|
|
|
struct UsageSets<'tcx> {
|
|
all_mono_items: &'tcx DefIdSet,
|
|
used_via_inlining: FxHashSet<DefId>,
|
|
missing_own_coverage: FxHashSet<DefId>,
|
|
}
|
|
|
|
/// Prepare sets of definitions that are relevant to deciding whether something
|
|
/// is an "unused function" for coverage purposes.
|
|
fn prepare_usage_sets<'tcx>(tcx: TyCtxt<'tcx>) -> UsageSets<'tcx> {
|
|
let (all_mono_items, cgus) = tcx.collect_and_partition_mono_items(());
|
|
|
|
// Obtain a MIR body for each function participating in codegen, via an
|
|
// arbitrary instance.
|
|
let mut def_ids_seen = FxHashSet::default();
|
|
let def_and_mir_for_all_mono_fns = cgus
|
|
.iter()
|
|
.flat_map(|cgu| cgu.items().keys())
|
|
.filter_map(|item| match item {
|
|
mir::mono::MonoItem::Fn(instance) => Some(instance),
|
|
mir::mono::MonoItem::Static(_) | mir::mono::MonoItem::GlobalAsm(_) => None,
|
|
})
|
|
// We only need one arbitrary instance per definition.
|
|
.filter(move |instance| def_ids_seen.insert(instance.def_id()))
|
|
.map(|instance| {
|
|
// We don't care about the instance, just its underlying MIR.
|
|
let body = tcx.instance_mir(instance.def);
|
|
(instance.def_id(), body)
|
|
});
|
|
|
|
// Functions whose coverage statements were found inlined into other functions.
|
|
let mut used_via_inlining = FxHashSet::default();
|
|
// Functions that were instrumented, but had all of their coverage statements
|
|
// removed by later MIR transforms (e.g. UnreachablePropagation).
|
|
let mut missing_own_coverage = FxHashSet::default();
|
|
|
|
for (def_id, body) in def_and_mir_for_all_mono_fns {
|
|
let mut saw_own_coverage = false;
|
|
|
|
// Inspect every coverage statement in the function's MIR.
|
|
for stmt in body
|
|
.basic_blocks
|
|
.iter()
|
|
.flat_map(|block| &block.statements)
|
|
.filter(|stmt| matches!(stmt.kind, mir::StatementKind::Coverage(_)))
|
|
{
|
|
if let Some(inlined) = stmt.source_info.scope.inlined_instance(&body.source_scopes) {
|
|
// This coverage statement was inlined from another function.
|
|
used_via_inlining.insert(inlined.def_id());
|
|
} else {
|
|
// Non-inlined coverage statements belong to the enclosing function.
|
|
saw_own_coverage = true;
|
|
}
|
|
}
|
|
|
|
if !saw_own_coverage && body.function_coverage_info.is_some() {
|
|
missing_own_coverage.insert(def_id);
|
|
}
|
|
}
|
|
|
|
UsageSets { all_mono_items, used_via_inlining, missing_own_coverage }
|
|
}
|
|
|
|
fn add_unused_function_coverage<'tcx>(
|
|
cx: &CodegenCx<'_, 'tcx>,
|
|
def_id: LocalDefId,
|
|
function_coverage_info: &'tcx mir::coverage::FunctionCoverageInfo,
|
|
) {
|
|
let tcx = cx.tcx;
|
|
let def_id = def_id.to_def_id();
|
|
|
|
// Make a dummy instance that fills in all generics with placeholders.
|
|
let instance = ty::Instance::new(
|
|
def_id,
|
|
ty::GenericArgs::for_item(tcx, def_id, |param, _| {
|
|
if let ty::GenericParamDefKind::Lifetime = param.kind {
|
|
tcx.lifetimes.re_erased.into()
|
|
} else {
|
|
tcx.mk_param_from_def(param)
|
|
}
|
|
}),
|
|
);
|
|
|
|
// An unused function's mappings will automatically be rewritten to map to
|
|
// zero, because none of its counters/expressions are marked as seen.
|
|
let function_coverage = FunctionCoverageCollector::unused(instance, function_coverage_info);
|
|
|
|
cx.coverage_cx().function_coverage_map.borrow_mut().insert(instance, function_coverage);
|
|
}
|