rust/compiler/rustc_resolve/src/macros.rs

1106 lines
49 KiB
Rust

//! A bunch of methods and structures more or less related to resolving macros and
//! interface provided by `Resolver` to macro expander.
use crate::imports::ImportResolver;
use crate::Namespace::*;
use crate::{AmbiguityError, AmbiguityErrorMisc, AmbiguityKind, BuiltinMacroState, Determinacy};
use crate::{CrateLint, ParentScope, ResolutionError, Resolver, Scope, ScopeSet, Weak};
use crate::{ModuleKind, ModuleOrUniformRoot, NameBinding, PathResult, Segment, ToNameBinding};
use rustc_ast::{self as ast, NodeId};
use rustc_ast_lowering::ResolverAstLowering;
use rustc_ast_pretty::pprust;
use rustc_attr::StabilityLevel;
use rustc_data_structures::fx::FxHashSet;
use rustc_errors::struct_span_err;
use rustc_expand::base::{Indeterminate, InvocationRes, ResolverExpand, SyntaxExtension};
use rustc_expand::compile_declarative_macro;
use rustc_expand::expand::{AstFragment, AstFragmentKind, Invocation, InvocationKind};
use rustc_feature::is_builtin_attr_name;
use rustc_hir::def::{self, DefKind, NonMacroAttrKind};
use rustc_hir::def_id;
use rustc_middle::middle::stability;
use rustc_middle::ty;
use rustc_session::lint::builtin::UNUSED_MACROS;
use rustc_session::Session;
use rustc_span::edition::Edition;
use rustc_span::hygiene::{self, ExpnData, ExpnId, ExpnKind};
use rustc_span::symbol::{kw, sym, Ident, Symbol};
use rustc_span::{Span, DUMMY_SP};
use rustc_data_structures::sync::Lrc;
use rustc_span::hygiene::{AstPass, MacroKind};
use std::{mem, ptr};
type Res = def::Res<NodeId>;
/// Binding produced by a `macro_rules` item.
/// Not modularized, can shadow previous `macro_rules` bindings, etc.
#[derive(Debug)]
pub struct MacroRulesBinding<'a> {
crate binding: &'a NameBinding<'a>,
/// `macro_rules` scope into which the `macro_rules` item was planted.
crate parent_macro_rules_scope: MacroRulesScope<'a>,
crate ident: Ident,
}
/// The scope introduced by a `macro_rules!` macro.
/// This starts at the macro's definition and ends at the end of the macro's parent
/// module (named or unnamed), or even further if it escapes with `#[macro_use]`.
/// Some macro invocations need to introduce `macro_rules` scopes too because they
/// can potentially expand into macro definitions.
#[derive(Copy, Clone, Debug)]
pub enum MacroRulesScope<'a> {
/// Empty "root" scope at the crate start containing no names.
Empty,
/// The scope introduced by a `macro_rules!` macro definition.
Binding(&'a MacroRulesBinding<'a>),
/// The scope introduced by a macro invocation that can potentially
/// create a `macro_rules!` macro definition.
Invocation(ExpnId),
}
// Macro namespace is separated into two sub-namespaces, one for bang macros and
// one for attribute-like macros (attributes, derives).
// We ignore resolutions from one sub-namespace when searching names in scope for another.
fn sub_namespace_match(candidate: Option<MacroKind>, requirement: Option<MacroKind>) -> bool {
#[derive(PartialEq)]
enum SubNS {
Bang,
AttrLike,
}
let sub_ns = |kind| match kind {
MacroKind::Bang => SubNS::Bang,
MacroKind::Attr | MacroKind::Derive => SubNS::AttrLike,
};
let candidate = candidate.map(sub_ns);
let requirement = requirement.map(sub_ns);
// "No specific sub-namespace" means "matches anything" for both requirements and candidates.
candidate.is_none() || requirement.is_none() || candidate == requirement
}
// We don't want to format a path using pretty-printing,
// `format!("{}", path)`, because that tries to insert
// line-breaks and is slow.
fn fast_print_path(path: &ast::Path) -> Symbol {
if path.segments.len() == 1 {
path.segments[0].ident.name
} else {
let mut path_str = String::with_capacity(64);
for (i, segment) in path.segments.iter().enumerate() {
if i != 0 {
path_str.push_str("::");
}
if segment.ident.name != kw::PathRoot {
path_str.push_str(&segment.ident.as_str())
}
}
Symbol::intern(&path_str)
}
}
/// The code common between processing `#![register_tool]` and `#![register_attr]`.
fn registered_idents(
sess: &Session,
attrs: &[ast::Attribute],
attr_name: Symbol,
descr: &str,
) -> FxHashSet<Ident> {
let mut registered = FxHashSet::default();
for attr in sess.filter_by_name(attrs, attr_name) {
for nested_meta in attr.meta_item_list().unwrap_or_default() {
match nested_meta.ident() {
Some(ident) => {
if let Some(old_ident) = registered.replace(ident) {
let msg = format!("{} `{}` was already registered", descr, ident);
sess.struct_span_err(ident.span, &msg)
.span_label(old_ident.span, "already registered here")
.emit();
}
}
None => {
let msg = format!("`{}` only accepts identifiers", attr_name);
let span = nested_meta.span();
sess.struct_span_err(span, &msg).span_label(span, "not an identifier").emit();
}
}
}
}
registered
}
crate fn registered_attrs_and_tools(
sess: &Session,
attrs: &[ast::Attribute],
) -> (FxHashSet<Ident>, FxHashSet<Ident>) {
let registered_attrs = registered_idents(sess, attrs, sym::register_attr, "attribute");
let mut registered_tools = registered_idents(sess, attrs, sym::register_tool, "tool");
// We implicitly add `rustfmt` and `clippy` to known tools,
// but it's not an error to register them explicitly.
let predefined_tools = [sym::clippy, sym::rustfmt];
registered_tools.extend(predefined_tools.iter().cloned().map(Ident::with_dummy_span));
(registered_attrs, registered_tools)
}
impl<'a> ResolverExpand for Resolver<'a> {
fn next_node_id(&mut self) -> NodeId {
self.next_node_id()
}
fn resolve_dollar_crates(&mut self) {
hygiene::update_dollar_crate_names(|ctxt| {
let ident = Ident::new(kw::DollarCrate, DUMMY_SP.with_ctxt(ctxt));
match self.resolve_crate_root(ident).kind {
ModuleKind::Def(.., name) if name != kw::Invalid => name,
_ => kw::Crate,
}
});
}
fn visit_ast_fragment_with_placeholders(&mut self, expansion: ExpnId, fragment: &AstFragment) {
// Integrate the new AST fragment into all the definition and module structures.
// We are inside the `expansion` now, but other parent scope components are still the same.
let parent_scope = ParentScope { expansion, ..self.invocation_parent_scopes[&expansion] };
let output_macro_rules_scope = self.build_reduced_graph(fragment, parent_scope);
self.output_macro_rules_scopes.insert(expansion, output_macro_rules_scope);
parent_scope.module.unexpanded_invocations.borrow_mut().remove(&expansion);
}
fn register_builtin_macro(&mut self, ident: Ident, ext: SyntaxExtension) {
if self.builtin_macros.insert(ident.name, BuiltinMacroState::NotYetSeen(ext)).is_some() {
self.session
.span_err(ident.span, &format!("built-in macro `{}` was already defined", ident));
}
}
// Create a new Expansion with a definition site of the provided module, or
// a fake empty `#[no_implicit_prelude]` module if no module is provided.
fn expansion_for_ast_pass(
&mut self,
call_site: Span,
pass: AstPass,
features: &[Symbol],
parent_module_id: Option<NodeId>,
) -> ExpnId {
let expn_id = ExpnId::fresh(Some(ExpnData::allow_unstable(
ExpnKind::AstPass(pass),
call_site,
self.session.edition(),
features.into(),
None,
)));
let parent_scope = if let Some(module_id) = parent_module_id {
let parent_def_id = self.local_def_id(module_id);
self.definitions.add_parent_module_of_macro_def(expn_id, parent_def_id.to_def_id());
self.module_map[&parent_def_id]
} else {
self.definitions.add_parent_module_of_macro_def(
expn_id,
def_id::DefId::local(def_id::CRATE_DEF_INDEX),
);
self.empty_module
};
self.ast_transform_scopes.insert(expn_id, parent_scope);
expn_id
}
fn resolve_imports(&mut self) {
ImportResolver { r: self }.resolve_imports()
}
fn resolve_macro_invocation(
&mut self,
invoc: &Invocation,
eager_expansion_root: ExpnId,
force: bool,
) -> Result<InvocationRes, Indeterminate> {
let invoc_id = invoc.expansion_data.id;
let parent_scope = match self.invocation_parent_scopes.get(&invoc_id) {
Some(parent_scope) => *parent_scope,
None => {
// If there's no entry in the table, then we are resolving an eagerly expanded
// macro, which should inherit its parent scope from its eager expansion root -
// the macro that requested this eager expansion.
let parent_scope = *self
.invocation_parent_scopes
.get(&eager_expansion_root)
.expect("non-eager expansion without a parent scope");
self.invocation_parent_scopes.insert(invoc_id, parent_scope);
parent_scope
}
};
let (path, kind, derives, after_derive) = match invoc.kind {
InvocationKind::Attr { ref attr, ref derives, after_derive, .. } => (
&attr.get_normal_item().path,
MacroKind::Attr,
self.arenas.alloc_ast_paths(derives),
after_derive,
),
InvocationKind::Bang { ref mac, .. } => (&mac.path, MacroKind::Bang, &[][..], false),
InvocationKind::Derive { ref path, .. } => (path, MacroKind::Derive, &[][..], false),
InvocationKind::DeriveContainer { ref derives, .. } => {
// Block expansion of the container until we resolve all derives in it.
// This is required for two reasons:
// - Derive helper attributes are in scope for the item to which the `#[derive]`
// is applied, so they have to be produced by the container's expansion rather
// than by individual derives.
// - Derives in the container need to know whether one of them is a built-in `Copy`.
// FIXME: Try to avoid repeated resolutions for derives here and in expansion.
let mut exts = Vec::new();
let mut helper_attrs = Vec::new();
for path in derives {
exts.push(
match self.resolve_macro_path(
path,
Some(MacroKind::Derive),
&parent_scope,
true,
force,
) {
Ok((Some(ext), _)) => {
let span = path
.segments
.last()
.unwrap()
.ident
.span
.normalize_to_macros_2_0();
helper_attrs.extend(
ext.helper_attrs.iter().map(|name| Ident::new(*name, span)),
);
if ext.is_derive_copy {
self.add_derive_copy(invoc_id);
}
ext
}
Ok(_) | Err(Determinacy::Determined) => {
self.dummy_ext(MacroKind::Derive)
}
Err(Determinacy::Undetermined) => return Err(Indeterminate),
},
)
}
self.helper_attrs.insert(invoc_id, helper_attrs);
return Ok(InvocationRes::DeriveContainer(exts));
}
};
// Derives are not included when `invocations` are collected, so we have to add them here.
let parent_scope = &ParentScope { derives, ..parent_scope };
let node_id = self.lint_node_id(eager_expansion_root);
let (ext, res) = self.smart_resolve_macro_path(path, kind, parent_scope, node_id, force)?;
let span = invoc.span();
invoc_id.set_expn_data(ext.expn_data(
parent_scope.expansion,
span,
fast_print_path(path),
res.opt_def_id(),
));
if let Res::Def(_, _) = res {
if after_derive {
self.session.span_err(span, "macro attributes must be placed before `#[derive]`");
}
let normal_module_def_id = self.macro_def_scope(invoc_id).normal_ancestor_id;
self.definitions.add_parent_module_of_macro_def(invoc_id, normal_module_def_id);
}
match invoc.fragment_kind {
AstFragmentKind::Arms
| AstFragmentKind::Fields
| AstFragmentKind::FieldPats
| AstFragmentKind::GenericParams
| AstFragmentKind::Params
| AstFragmentKind::StructFields
| AstFragmentKind::Variants => {
if let Res::Def(..) = res {
self.session.span_err(
span,
&format!(
"expected an inert attribute, found {} {}",
res.article(),
res.descr()
),
);
return Ok(InvocationRes::Single(self.dummy_ext(kind)));
}
}
_ => {}
}
Ok(InvocationRes::Single(ext))
}
fn check_unused_macros(&mut self) {
for (_, &(node_id, span)) in self.unused_macros.iter() {
self.lint_buffer.buffer_lint(UNUSED_MACROS, node_id, span, "unused macro definition");
}
}
fn lint_node_id(&mut self, expn_id: ExpnId) -> NodeId {
self.invocation_parents
.get(&expn_id)
.map_or(ast::CRATE_NODE_ID, |id| self.def_id_to_node_id[*id])
}
fn has_derive_copy(&self, expn_id: ExpnId) -> bool {
self.containers_deriving_copy.contains(&expn_id)
}
fn add_derive_copy(&mut self, expn_id: ExpnId) {
self.containers_deriving_copy.insert(expn_id);
}
// The function that implements the resolution logic of `#[cfg_accessible(path)]`.
// Returns true if the path can certainly be resolved in one of three namespaces,
// returns false if the path certainly cannot be resolved in any of the three namespaces.
// Returns `Indeterminate` if we cannot give a certain answer yet.
fn cfg_accessible(&mut self, expn_id: ExpnId, path: &ast::Path) -> Result<bool, Indeterminate> {
let span = path.span;
let path = &Segment::from_path(path);
let parent_scope = self.invocation_parent_scopes[&expn_id];
let mut indeterminate = false;
for ns in [TypeNS, ValueNS, MacroNS].iter().copied() {
match self.resolve_path(path, Some(ns), &parent_scope, false, span, CrateLint::No) {
PathResult::Module(ModuleOrUniformRoot::Module(_)) => return Ok(true),
PathResult::NonModule(partial_res) if partial_res.unresolved_segments() == 0 => {
return Ok(true);
}
PathResult::Indeterminate => indeterminate = true,
// FIXME: `resolve_path` is not ready to report partially resolved paths
// correctly, so we just report an error if the path was reported as unresolved.
// This needs to be fixed for `cfg_accessible` to be useful.
PathResult::NonModule(..) | PathResult::Failed { .. } => {}
PathResult::Module(_) => panic!("unexpected path resolution"),
}
}
if indeterminate {
return Err(Indeterminate);
}
self.session
.struct_span_err(span, "not sure whether the path is accessible or not")
.span_note(span, "`cfg_accessible` is not fully implemented")
.emit();
Ok(false)
}
}
impl<'a> Resolver<'a> {
/// Resolve macro path with error reporting and recovery.
fn smart_resolve_macro_path(
&mut self,
path: &ast::Path,
kind: MacroKind,
parent_scope: &ParentScope<'a>,
node_id: NodeId,
force: bool,
) -> Result<(Lrc<SyntaxExtension>, Res), Indeterminate> {
let (ext, res) = match self.resolve_macro_path(path, Some(kind), parent_scope, true, force)
{
Ok((Some(ext), res)) => (ext, res),
// Use dummy syntax extensions for unresolved macros for better recovery.
Ok((None, res)) => (self.dummy_ext(kind), res),
Err(Determinacy::Determined) => (self.dummy_ext(kind), Res::Err),
Err(Determinacy::Undetermined) => return Err(Indeterminate),
};
// Report errors for the resolved macro.
for segment in &path.segments {
if let Some(args) = &segment.args {
self.session.span_err(args.span(), "generic arguments in macro path");
}
if kind == MacroKind::Attr && segment.ident.as_str().starts_with("rustc") {
self.session.span_err(
segment.ident.span,
"attributes starting with `rustc` are reserved for use by the `rustc` compiler",
);
}
}
match res {
Res::Def(DefKind::Macro(_), def_id) => {
if let Some(def_id) = def_id.as_local() {
self.unused_macros.remove(&def_id);
if self.proc_macro_stubs.contains(&def_id) {
self.session.span_err(
path.span,
"can't use a procedural macro from the same crate that defines it",
);
}
}
}
Res::NonMacroAttr(..) | Res::Err => {}
_ => panic!("expected `DefKind::Macro` or `Res::NonMacroAttr`"),
};
self.check_stability_and_deprecation(&ext, path, node_id);
Ok(if ext.macro_kind() != kind {
let expected = kind.descr_expected();
let path_str = pprust::path_to_string(path);
let msg = format!("expected {}, found {} `{}`", expected, res.descr(), path_str);
self.session
.struct_span_err(path.span, &msg)
.span_label(path.span, format!("not {} {}", kind.article(), expected))
.emit();
// Use dummy syntax extensions for unexpected macro kinds for better recovery.
(self.dummy_ext(kind), Res::Err)
} else {
(ext, res)
})
}
pub fn resolve_macro_path(
&mut self,
path: &ast::Path,
kind: Option<MacroKind>,
parent_scope: &ParentScope<'a>,
trace: bool,
force: bool,
) -> Result<(Option<Lrc<SyntaxExtension>>, Res), Determinacy> {
let path_span = path.span;
let mut path = Segment::from_path(path);
// Possibly apply the macro helper hack
if kind == Some(MacroKind::Bang)
&& path.len() == 1
&& path[0].ident.span.ctxt().outer_expn_data().local_inner_macros
{
let root = Ident::new(kw::DollarCrate, path[0].ident.span);
path.insert(0, Segment::from_ident(root));
}
let res = if path.len() > 1 {
let res = match self.resolve_path(
&path,
Some(MacroNS),
parent_scope,
false,
path_span,
CrateLint::No,
) {
PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 => {
Ok(path_res.base_res())
}
PathResult::Indeterminate if !force => return Err(Determinacy::Undetermined),
PathResult::NonModule(..)
| PathResult::Indeterminate
| PathResult::Failed { .. } => Err(Determinacy::Determined),
PathResult::Module(..) => unreachable!(),
};
if trace {
let kind = kind.expect("macro kind must be specified if tracing is enabled");
self.multi_segment_macro_resolutions.push((
path,
path_span,
kind,
*parent_scope,
res.ok(),
));
}
self.prohibit_imported_non_macro_attrs(None, res.ok(), path_span);
res
} else {
let scope_set = kind.map_or(ScopeSet::All(MacroNS, false), ScopeSet::Macro);
let binding = self.early_resolve_ident_in_lexical_scope(
path[0].ident,
scope_set,
parent_scope,
false,
force,
path_span,
);
if let Err(Determinacy::Undetermined) = binding {
return Err(Determinacy::Undetermined);
}
if trace {
let kind = kind.expect("macro kind must be specified if tracing is enabled");
self.single_segment_macro_resolutions.push((
path[0].ident,
kind,
*parent_scope,
binding.ok(),
));
}
let res = binding.map(|binding| binding.res());
self.prohibit_imported_non_macro_attrs(binding.ok(), res.ok(), path_span);
res
};
res.map(|res| (self.get_macro(res), res))
}
// Resolve an identifier in lexical scope.
// This is a variation of `fn resolve_ident_in_lexical_scope` that can be run during
// expansion and import resolution (perhaps they can be merged in the future).
// The function is used for resolving initial segments of macro paths (e.g., `foo` in
// `foo::bar!(); or `foo!();`) and also for import paths on 2018 edition.
crate fn early_resolve_ident_in_lexical_scope(
&mut self,
orig_ident: Ident,
scope_set: ScopeSet,
parent_scope: &ParentScope<'a>,
record_used: bool,
force: bool,
path_span: Span,
) -> Result<&'a NameBinding<'a>, Determinacy> {
bitflags::bitflags! {
struct Flags: u8 {
const MACRO_RULES = 1 << 0;
const MODULE = 1 << 1;
const DERIVE_HELPER_COMPAT = 1 << 2;
const MISC_SUGGEST_CRATE = 1 << 3;
const MISC_SUGGEST_SELF = 1 << 4;
const MISC_FROM_PRELUDE = 1 << 5;
}
}
assert!(force || !record_used); // `record_used` implies `force`
// Make sure `self`, `super` etc produce an error when passed to here.
if orig_ident.is_path_segment_keyword() {
return Err(Determinacy::Determined);
}
let (ns, macro_kind, is_import) = match scope_set {
ScopeSet::All(ns, is_import) => (ns, None, is_import),
ScopeSet::AbsolutePath(ns) => (ns, None, false),
ScopeSet::Macro(macro_kind) => (MacroNS, Some(macro_kind), false),
};
// This is *the* result, resolution from the scope closest to the resolved identifier.
// However, sometimes this result is "weak" because it comes from a glob import or
// a macro expansion, and in this case it cannot shadow names from outer scopes, e.g.
// mod m { ... } // solution in outer scope
// {
// use prefix::*; // imports another `m` - innermost solution
// // weak, cannot shadow the outer `m`, need to report ambiguity error
// m::mac!();
// }
// So we have to save the innermost solution and continue searching in outer scopes
// to detect potential ambiguities.
let mut innermost_result: Option<(&NameBinding<'_>, Flags)> = None;
let mut determinacy = Determinacy::Determined;
// Go through all the scopes and try to resolve the name.
let break_result = self.visit_scopes(
scope_set,
parent_scope,
orig_ident,
|this, scope, use_prelude, ident| {
let ok = |res, span, arenas| {
Ok((
(res, ty::Visibility::Public, span, ExpnId::root()).to_name_binding(arenas),
Flags::empty(),
))
};
let result = match scope {
Scope::DeriveHelpers(expn_id) => {
if let Some(attr) = this
.helper_attrs
.get(&expn_id)
.and_then(|attrs| attrs.iter().rfind(|i| ident == **i))
{
let binding = (
Res::NonMacroAttr(NonMacroAttrKind::DeriveHelper),
ty::Visibility::Public,
attr.span,
expn_id,
)
.to_name_binding(this.arenas);
Ok((binding, Flags::empty()))
} else {
Err(Determinacy::Determined)
}
}
Scope::DeriveHelpersCompat => {
let mut result = Err(Determinacy::Determined);
for derive in parent_scope.derives {
let parent_scope = &ParentScope { derives: &[], ..*parent_scope };
match this.resolve_macro_path(
derive,
Some(MacroKind::Derive),
parent_scope,
true,
force,
) {
Ok((Some(ext), _)) => {
if ext.helper_attrs.contains(&ident.name) {
let binding = (
Res::NonMacroAttr(NonMacroAttrKind::DeriveHelper),
ty::Visibility::Public,
derive.span,
ExpnId::root(),
)
.to_name_binding(this.arenas);
result = Ok((binding, Flags::DERIVE_HELPER_COMPAT));
break;
}
}
Ok(_) | Err(Determinacy::Determined) => {}
Err(Determinacy::Undetermined) => {
result = Err(Determinacy::Undetermined)
}
}
}
result
}
Scope::MacroRules(macro_rules_scope) => match macro_rules_scope {
MacroRulesScope::Binding(macro_rules_binding)
if ident == macro_rules_binding.ident =>
{
Ok((macro_rules_binding.binding, Flags::MACRO_RULES))
}
MacroRulesScope::Invocation(invoc_id)
if !this.output_macro_rules_scopes.contains_key(&invoc_id) =>
{
Err(Determinacy::Undetermined)
}
_ => Err(Determinacy::Determined),
},
Scope::CrateRoot => {
let root_ident = Ident::new(kw::PathRoot, ident.span);
let root_module = this.resolve_crate_root(root_ident);
let binding = this.resolve_ident_in_module_ext(
ModuleOrUniformRoot::Module(root_module),
ident,
ns,
parent_scope,
record_used,
path_span,
);
match binding {
Ok(binding) => Ok((binding, Flags::MODULE | Flags::MISC_SUGGEST_CRATE)),
Err((Determinacy::Undetermined, Weak::No)) => {
return Some(Err(Determinacy::determined(force)));
}
Err((Determinacy::Undetermined, Weak::Yes)) => {
Err(Determinacy::Undetermined)
}
Err((Determinacy::Determined, _)) => Err(Determinacy::Determined),
}
}
Scope::Module(module) => {
let adjusted_parent_scope = &ParentScope { module, ..*parent_scope };
let binding = this.resolve_ident_in_module_unadjusted_ext(
ModuleOrUniformRoot::Module(module),
ident,
ns,
adjusted_parent_scope,
true,
record_used,
path_span,
);
match binding {
Ok(binding) => {
let misc_flags = if ptr::eq(module, this.graph_root) {
Flags::MISC_SUGGEST_CRATE
} else if module.is_normal() {
Flags::MISC_SUGGEST_SELF
} else {
Flags::empty()
};
Ok((binding, Flags::MODULE | misc_flags))
}
Err((Determinacy::Undetermined, Weak::No)) => {
return Some(Err(Determinacy::determined(force)));
}
Err((Determinacy::Undetermined, Weak::Yes)) => {
Err(Determinacy::Undetermined)
}
Err((Determinacy::Determined, _)) => Err(Determinacy::Determined),
}
}
Scope::RegisteredAttrs => match this.registered_attrs.get(&ident).cloned() {
Some(ident) => ok(
Res::NonMacroAttr(NonMacroAttrKind::Registered),
ident.span,
this.arenas,
),
None => Err(Determinacy::Determined),
},
Scope::MacroUsePrelude => {
match this.macro_use_prelude.get(&ident.name).cloned() {
Some(binding) => Ok((binding, Flags::MISC_FROM_PRELUDE)),
None => Err(Determinacy::determined(
this.graph_root.unexpanded_invocations.borrow().is_empty(),
)),
}
}
Scope::BuiltinAttrs => {
if is_builtin_attr_name(ident.name) {
ok(Res::NonMacroAttr(NonMacroAttrKind::Builtin), DUMMY_SP, this.arenas)
} else {
Err(Determinacy::Determined)
}
}
Scope::ExternPrelude => match this.extern_prelude_get(ident, !record_used) {
Some(binding) => Ok((binding, Flags::empty())),
None => Err(Determinacy::determined(
this.graph_root.unexpanded_invocations.borrow().is_empty(),
)),
},
Scope::ToolPrelude => match this.registered_tools.get(&ident).cloned() {
Some(ident) => ok(Res::ToolMod, ident.span, this.arenas),
None => Err(Determinacy::Determined),
},
Scope::StdLibPrelude => {
let mut result = Err(Determinacy::Determined);
if let Some(prelude) = this.prelude {
if let Ok(binding) = this.resolve_ident_in_module_unadjusted(
ModuleOrUniformRoot::Module(prelude),
ident,
ns,
parent_scope,
false,
path_span,
) {
if use_prelude || this.is_builtin_macro(binding.res()) {
result = Ok((binding, Flags::MISC_FROM_PRELUDE));
}
}
}
result
}
Scope::BuiltinTypes => {
match this.primitive_type_table.primitive_types.get(&ident.name).cloned() {
Some(prim_ty) => ok(Res::PrimTy(prim_ty), DUMMY_SP, this.arenas),
None => Err(Determinacy::Determined),
}
}
};
match result {
Ok((binding, flags))
if sub_namespace_match(binding.macro_kind(), macro_kind) =>
{
if !record_used {
return Some(Ok(binding));
}
if let Some((innermost_binding, innermost_flags)) = innermost_result {
// Found another solution, if the first one was "weak", report an error.
let (res, innermost_res) = (binding.res(), innermost_binding.res());
if res != innermost_res {
let builtin = Res::NonMacroAttr(NonMacroAttrKind::Builtin);
let is_derive_helper_compat = |res, flags: Flags| {
res == Res::NonMacroAttr(NonMacroAttrKind::DeriveHelper)
&& flags.contains(Flags::DERIVE_HELPER_COMPAT)
};
let ambiguity_error_kind = if is_import {
Some(AmbiguityKind::Import)
} else if innermost_res == builtin || res == builtin {
Some(AmbiguityKind::BuiltinAttr)
} else if is_derive_helper_compat(innermost_res, innermost_flags)
|| is_derive_helper_compat(res, flags)
{
Some(AmbiguityKind::DeriveHelper)
} else if innermost_flags.contains(Flags::MACRO_RULES)
&& flags.contains(Flags::MODULE)
&& !this.disambiguate_macro_rules_vs_modularized(
innermost_binding,
binding,
)
|| flags.contains(Flags::MACRO_RULES)
&& innermost_flags.contains(Flags::MODULE)
&& !this.disambiguate_macro_rules_vs_modularized(
binding,
innermost_binding,
)
{
Some(AmbiguityKind::MacroRulesVsModularized)
} else if innermost_binding.is_glob_import() {
Some(AmbiguityKind::GlobVsOuter)
} else if innermost_binding
.may_appear_after(parent_scope.expansion, binding)
{
Some(AmbiguityKind::MoreExpandedVsOuter)
} else {
None
};
if let Some(kind) = ambiguity_error_kind {
let misc = |f: Flags| {
if f.contains(Flags::MISC_SUGGEST_CRATE) {
AmbiguityErrorMisc::SuggestCrate
} else if f.contains(Flags::MISC_SUGGEST_SELF) {
AmbiguityErrorMisc::SuggestSelf
} else if f.contains(Flags::MISC_FROM_PRELUDE) {
AmbiguityErrorMisc::FromPrelude
} else {
AmbiguityErrorMisc::None
}
};
this.ambiguity_errors.push(AmbiguityError {
kind,
ident: orig_ident,
b1: innermost_binding,
b2: binding,
misc1: misc(innermost_flags),
misc2: misc(flags),
});
return Some(Ok(innermost_binding));
}
}
} else {
// Found the first solution.
innermost_result = Some((binding, flags));
}
}
Ok(..) | Err(Determinacy::Determined) => {}
Err(Determinacy::Undetermined) => determinacy = Determinacy::Undetermined,
}
None
},
);
if let Some(break_result) = break_result {
return break_result;
}
// The first found solution was the only one, return it.
if let Some((binding, _)) = innermost_result {
return Ok(binding);
}
Err(Determinacy::determined(determinacy == Determinacy::Determined || force))
}
crate fn finalize_macro_resolutions(&mut self) {
let check_consistency = |this: &mut Self,
path: &[Segment],
span,
kind: MacroKind,
initial_res: Option<Res>,
res: Res| {
if let Some(initial_res) = initial_res {
if res != initial_res {
// Make sure compilation does not succeed if preferred macro resolution
// has changed after the macro had been expanded. In theory all such
// situations should be reported as errors, so this is a bug.
this.session.delay_span_bug(span, "inconsistent resolution for a macro");
}
} else {
// It's possible that the macro was unresolved (indeterminate) and silently
// expanded into a dummy fragment for recovery during expansion.
// Now, post-expansion, the resolution may succeed, but we can't change the
// past and need to report an error.
// However, non-speculative `resolve_path` can successfully return private items
// even if speculative `resolve_path` returned nothing previously, so we skip this
// less informative error if the privacy error is reported elsewhere.
if this.privacy_errors.is_empty() {
let msg = format!(
"cannot determine resolution for the {} `{}`",
kind.descr(),
Segment::names_to_string(path)
);
let msg_note = "import resolution is stuck, try simplifying macro imports";
this.session.struct_span_err(span, &msg).note(msg_note).emit();
}
}
};
let macro_resolutions = mem::take(&mut self.multi_segment_macro_resolutions);
for (mut path, path_span, kind, parent_scope, initial_res) in macro_resolutions {
// FIXME: Path resolution will ICE if segment IDs present.
for seg in &mut path {
seg.id = None;
}
match self.resolve_path(
&path,
Some(MacroNS),
&parent_scope,
true,
path_span,
CrateLint::No,
) {
PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 => {
let res = path_res.base_res();
check_consistency(self, &path, path_span, kind, initial_res, res);
}
path_res @ PathResult::NonModule(..) | path_res @ PathResult::Failed { .. } => {
let (span, label) = if let PathResult::Failed { span, label, .. } = path_res {
(span, label)
} else {
(
path_span,
format!(
"partially resolved path in {} {}",
kind.article(),
kind.descr()
),
)
};
self.report_error(
span,
ResolutionError::FailedToResolve { label, suggestion: None },
);
}
PathResult::Module(..) | PathResult::Indeterminate => unreachable!(),
}
}
let macro_resolutions = mem::take(&mut self.single_segment_macro_resolutions);
for (ident, kind, parent_scope, initial_binding) in macro_resolutions {
match self.early_resolve_ident_in_lexical_scope(
ident,
ScopeSet::Macro(kind),
&parent_scope,
true,
true,
ident.span,
) {
Ok(binding) => {
let initial_res = initial_binding.map(|initial_binding| {
self.record_use(ident, MacroNS, initial_binding, false);
initial_binding.res()
});
let res = binding.res();
let seg = Segment::from_ident(ident);
check_consistency(self, &[seg], ident.span, kind, initial_res, res);
}
Err(..) => {
let expected = kind.descr_expected();
let msg = format!("cannot find {} `{}` in this scope", expected, ident);
let mut err = self.session.struct_span_err(ident.span, &msg);
self.unresolved_macro_suggestions(&mut err, kind, &parent_scope, ident);
err.emit();
}
}
}
let builtin_attrs = mem::take(&mut self.builtin_attrs);
for (ident, parent_scope) in builtin_attrs {
let _ = self.early_resolve_ident_in_lexical_scope(
ident,
ScopeSet::Macro(MacroKind::Attr),
&parent_scope,
true,
true,
ident.span,
);
}
}
fn check_stability_and_deprecation(
&mut self,
ext: &SyntaxExtension,
path: &ast::Path,
node_id: NodeId,
) {
let span = path.span;
if let Some(stability) = &ext.stability {
if let StabilityLevel::Unstable { reason, issue, is_soft } = stability.level {
let feature = stability.feature;
if !self.active_features.contains(&feature) && !span.allows_unstable(feature) {
let lint_buffer = &mut self.lint_buffer;
let soft_handler =
|lint, span, msg: &_| lint_buffer.buffer_lint(lint, node_id, span, msg);
stability::report_unstable(
self.session,
feature,
reason,
issue,
is_soft,
span,
soft_handler,
);
}
}
}
if let Some(depr) = &ext.deprecation {
let path = pprust::path_to_string(&path);
let (message, lint) = stability::deprecation_message(depr, "macro", &path);
stability::early_report_deprecation(
&mut self.lint_buffer,
&message,
depr.suggestion,
lint,
span,
);
}
}
fn prohibit_imported_non_macro_attrs(
&self,
binding: Option<&'a NameBinding<'a>>,
res: Option<Res>,
span: Span,
) {
if let Some(Res::NonMacroAttr(kind)) = res {
if kind != NonMacroAttrKind::Tool && binding.map_or(true, |b| b.is_import()) {
let msg =
format!("cannot use {} {} through an import", kind.article(), kind.descr());
let mut err = self.session.struct_span_err(span, &msg);
if let Some(binding) = binding {
err.span_note(binding.span, &format!("the {} imported here", kind.descr()));
}
err.emit();
}
}
}
crate fn check_reserved_macro_name(&mut self, ident: Ident, res: Res) {
// Reserve some names that are not quite covered by the general check
// performed on `Resolver::builtin_attrs`.
if ident.name == sym::cfg || ident.name == sym::cfg_attr || ident.name == sym::derive {
let macro_kind = self.get_macro(res).map(|ext| ext.macro_kind());
if macro_kind.is_some() && sub_namespace_match(macro_kind, Some(MacroKind::Attr)) {
self.session.span_err(
ident.span,
&format!("name `{}` is reserved in attribute namespace", ident),
);
}
}
}
/// Compile the macro into a `SyntaxExtension` and possibly replace
/// its expander to a pre-defined one for built-in macros.
crate fn compile_macro(&mut self, item: &ast::Item, edition: Edition) -> SyntaxExtension {
let mut result = compile_declarative_macro(
&self.session,
self.session.features_untracked(),
item,
edition,
);
if result.is_builtin {
// The macro was marked with `#[rustc_builtin_macro]`.
if let Some(builtin_macro) = self.builtin_macros.get_mut(&item.ident.name) {
// The macro is a built-in, replace its expander function
// while still taking everything else from the source code.
// If we already loaded this builtin macro, give a better error message than 'no such builtin macro'.
match mem::replace(builtin_macro, BuiltinMacroState::AlreadySeen(item.span)) {
BuiltinMacroState::NotYetSeen(ext) => result.kind = ext.kind,
BuiltinMacroState::AlreadySeen(span) => {
struct_span_err!(
self.session,
item.span,
E0773,
"attempted to define built-in macro more than once"
)
.span_note(span, "previously defined here")
.emit();
}
}
} else {
let msg = format!("cannot find a built-in macro with name `{}`", item.ident);
self.session.span_err(item.span, &msg);
}
}
result
}
}