mirror of
https://github.com/rust-lang/rust.git
synced 2025-04-29 19:47:38 +00:00
2312 lines
94 KiB
Rust
2312 lines
94 KiB
Rust
use super::pat::{GateOr, PARAM_EXPECTED};
|
||
use super::ty::{AllowPlus, RecoverQPath};
|
||
use super::{BlockMode, Parser, PathStyle, Restrictions, TokenType};
|
||
use super::{SemiColonMode, SeqSep, TokenExpectType};
|
||
use crate::maybe_recover_from_interpolated_ty_qpath;
|
||
|
||
use rustc_ast::ptr::P;
|
||
use rustc_ast::token::{self, Token, TokenKind};
|
||
use rustc_ast::util::classify;
|
||
use rustc_ast::util::literal::LitError;
|
||
use rustc_ast::util::parser::{prec_let_scrutinee_needs_par, AssocOp, Fixity};
|
||
use rustc_ast::{self as ast, AttrStyle, AttrVec, CaptureBy, Field, Lit, UnOp, DUMMY_NODE_ID};
|
||
use rustc_ast::{AnonConst, BinOp, BinOpKind, FnDecl, FnRetTy, MacCall, Param, Ty, TyKind};
|
||
use rustc_ast::{Arm, Async, BlockCheckMode, Expr, ExprKind, Label, Movability, RangeLimits};
|
||
use rustc_ast_pretty::pprust;
|
||
use rustc_errors::{Applicability, DiagnosticBuilder, PResult};
|
||
use rustc_span::source_map::{self, Span, Spanned};
|
||
use rustc_span::symbol::{kw, sym, Ident, Symbol};
|
||
use std::mem;
|
||
use tracing::debug;
|
||
|
||
/// Possibly accepts an `token::Interpolated` expression (a pre-parsed expression
|
||
/// dropped into the token stream, which happens while parsing the result of
|
||
/// macro expansion). Placement of these is not as complex as I feared it would
|
||
/// be. The important thing is to make sure that lookahead doesn't balk at
|
||
/// `token::Interpolated` tokens.
|
||
macro_rules! maybe_whole_expr {
|
||
($p:expr) => {
|
||
if let token::Interpolated(nt) = &$p.token.kind {
|
||
match &**nt {
|
||
token::NtExpr(e) | token::NtLiteral(e) => {
|
||
let e = e.clone();
|
||
$p.bump();
|
||
return Ok(e);
|
||
}
|
||
token::NtPath(path) => {
|
||
let path = path.clone();
|
||
$p.bump();
|
||
return Ok($p.mk_expr(
|
||
$p.token.span,
|
||
ExprKind::Path(None, path),
|
||
AttrVec::new(),
|
||
));
|
||
}
|
||
token::NtBlock(block) => {
|
||
let block = block.clone();
|
||
$p.bump();
|
||
return Ok($p.mk_expr(
|
||
$p.token.span,
|
||
ExprKind::Block(block, None),
|
||
AttrVec::new(),
|
||
));
|
||
}
|
||
_ => {}
|
||
};
|
||
}
|
||
};
|
||
}
|
||
|
||
#[derive(Debug)]
|
||
pub(super) enum LhsExpr {
|
||
NotYetParsed,
|
||
AttributesParsed(AttrVec),
|
||
AlreadyParsed(P<Expr>),
|
||
}
|
||
|
||
impl From<Option<AttrVec>> for LhsExpr {
|
||
/// Converts `Some(attrs)` into `LhsExpr::AttributesParsed(attrs)`
|
||
/// and `None` into `LhsExpr::NotYetParsed`.
|
||
///
|
||
/// This conversion does not allocate.
|
||
fn from(o: Option<AttrVec>) -> Self {
|
||
if let Some(attrs) = o { LhsExpr::AttributesParsed(attrs) } else { LhsExpr::NotYetParsed }
|
||
}
|
||
}
|
||
|
||
impl From<P<Expr>> for LhsExpr {
|
||
/// Converts the `expr: P<Expr>` into `LhsExpr::AlreadyParsed(expr)`.
|
||
///
|
||
/// This conversion does not allocate.
|
||
fn from(expr: P<Expr>) -> Self {
|
||
LhsExpr::AlreadyParsed(expr)
|
||
}
|
||
}
|
||
|
||
impl<'a> Parser<'a> {
|
||
/// Parses an expression.
|
||
#[inline]
|
||
pub fn parse_expr(&mut self) -> PResult<'a, P<Expr>> {
|
||
self.parse_expr_res(Restrictions::empty(), None)
|
||
}
|
||
|
||
pub(super) fn parse_anon_const_expr(&mut self) -> PResult<'a, AnonConst> {
|
||
self.parse_expr().map(|value| AnonConst { id: DUMMY_NODE_ID, value })
|
||
}
|
||
|
||
fn parse_expr_catch_underscore(&mut self) -> PResult<'a, P<Expr>> {
|
||
match self.parse_expr() {
|
||
Ok(expr) => Ok(expr),
|
||
Err(mut err) => match self.token.ident() {
|
||
Some((Ident { name: kw::Underscore, .. }, false))
|
||
if self.look_ahead(1, |t| t == &token::Comma) =>
|
||
{
|
||
// Special-case handling of `foo(_, _, _)`
|
||
err.emit();
|
||
self.bump();
|
||
Ok(self.mk_expr(self.prev_token.span, ExprKind::Err, AttrVec::new()))
|
||
}
|
||
_ => Err(err),
|
||
},
|
||
}
|
||
}
|
||
|
||
/// Parses a sequence of expressions delimited by parentheses.
|
||
fn parse_paren_expr_seq(&mut self) -> PResult<'a, Vec<P<Expr>>> {
|
||
self.parse_paren_comma_seq(|p| p.parse_expr_catch_underscore()).map(|(r, _)| r)
|
||
}
|
||
|
||
/// Parses an expression, subject to the given restrictions.
|
||
#[inline]
|
||
pub(super) fn parse_expr_res(
|
||
&mut self,
|
||
r: Restrictions,
|
||
already_parsed_attrs: Option<AttrVec>,
|
||
) -> PResult<'a, P<Expr>> {
|
||
self.with_res(r, |this| this.parse_assoc_expr(already_parsed_attrs))
|
||
}
|
||
|
||
/// Parses an associative expression.
|
||
///
|
||
/// This parses an expression accounting for associativity and precedence of the operators in
|
||
/// the expression.
|
||
#[inline]
|
||
fn parse_assoc_expr(&mut self, already_parsed_attrs: Option<AttrVec>) -> PResult<'a, P<Expr>> {
|
||
self.parse_assoc_expr_with(0, already_parsed_attrs.into())
|
||
}
|
||
|
||
/// Parses an associative expression with operators of at least `min_prec` precedence.
|
||
pub(super) fn parse_assoc_expr_with(
|
||
&mut self,
|
||
min_prec: usize,
|
||
lhs: LhsExpr,
|
||
) -> PResult<'a, P<Expr>> {
|
||
let mut lhs = if let LhsExpr::AlreadyParsed(expr) = lhs {
|
||
expr
|
||
} else {
|
||
let attrs = match lhs {
|
||
LhsExpr::AttributesParsed(attrs) => Some(attrs),
|
||
_ => None,
|
||
};
|
||
if [token::DotDot, token::DotDotDot, token::DotDotEq].contains(&self.token.kind) {
|
||
return self.parse_prefix_range_expr(attrs);
|
||
} else {
|
||
self.parse_prefix_expr(attrs)?
|
||
}
|
||
};
|
||
let last_type_ascription_set = self.last_type_ascription.is_some();
|
||
|
||
if !self.should_continue_as_assoc_expr(&lhs) {
|
||
self.last_type_ascription = None;
|
||
return Ok(lhs);
|
||
}
|
||
|
||
self.expected_tokens.push(TokenType::Operator);
|
||
while let Some(op) = self.check_assoc_op() {
|
||
// Adjust the span for interpolated LHS to point to the `$lhs` token
|
||
// and not to what it refers to.
|
||
let lhs_span = match self.prev_token.kind {
|
||
TokenKind::Interpolated(..) => self.prev_token.span,
|
||
_ => lhs.span,
|
||
};
|
||
|
||
let cur_op_span = self.token.span;
|
||
let restrictions = if op.node.is_assign_like() {
|
||
self.restrictions & Restrictions::NO_STRUCT_LITERAL
|
||
} else {
|
||
self.restrictions
|
||
};
|
||
let prec = op.node.precedence();
|
||
if prec < min_prec {
|
||
break;
|
||
}
|
||
// Check for deprecated `...` syntax
|
||
if self.token == token::DotDotDot && op.node == AssocOp::DotDotEq {
|
||
self.err_dotdotdot_syntax(self.token.span);
|
||
}
|
||
|
||
if self.token == token::LArrow {
|
||
self.err_larrow_operator(self.token.span);
|
||
}
|
||
|
||
self.bump();
|
||
if op.node.is_comparison() {
|
||
if let Some(expr) = self.check_no_chained_comparison(&lhs, &op)? {
|
||
return Ok(expr);
|
||
}
|
||
}
|
||
|
||
if (op.node == AssocOp::Equal || op.node == AssocOp::NotEqual)
|
||
&& self.token.kind == token::Eq
|
||
&& self.prev_token.span.hi() == self.token.span.lo()
|
||
{
|
||
// Look for JS' `===` and `!==` and recover 😇
|
||
let sp = op.span.to(self.token.span);
|
||
let sugg = match op.node {
|
||
AssocOp::Equal => "==",
|
||
AssocOp::NotEqual => "!=",
|
||
_ => unreachable!(),
|
||
};
|
||
self.struct_span_err(sp, &format!("invalid comparison operator `{}=`", sugg))
|
||
.span_suggestion_short(
|
||
sp,
|
||
&format!("`{s}=` is not a valid comparison operator, use `{s}`", s = sugg),
|
||
sugg.to_string(),
|
||
Applicability::MachineApplicable,
|
||
)
|
||
.emit();
|
||
self.bump();
|
||
}
|
||
|
||
let op = op.node;
|
||
// Special cases:
|
||
if op == AssocOp::As {
|
||
lhs = self.parse_assoc_op_cast(lhs, lhs_span, ExprKind::Cast)?;
|
||
continue;
|
||
} else if op == AssocOp::Colon {
|
||
lhs = self.parse_assoc_op_ascribe(lhs, lhs_span)?;
|
||
continue;
|
||
} else if op == AssocOp::DotDot || op == AssocOp::DotDotEq {
|
||
// If we didn’t have to handle `x..`/`x..=`, it would be pretty easy to
|
||
// generalise it to the Fixity::None code.
|
||
lhs = self.parse_range_expr(prec, lhs, op, cur_op_span)?;
|
||
break;
|
||
}
|
||
|
||
let fixity = op.fixity();
|
||
let prec_adjustment = match fixity {
|
||
Fixity::Right => 0,
|
||
Fixity::Left => 1,
|
||
// We currently have no non-associative operators that are not handled above by
|
||
// the special cases. The code is here only for future convenience.
|
||
Fixity::None => 1,
|
||
};
|
||
let rhs = self.with_res(restrictions - Restrictions::STMT_EXPR, |this| {
|
||
this.parse_assoc_expr_with(prec + prec_adjustment, LhsExpr::NotYetParsed)
|
||
})?;
|
||
|
||
let span = self.mk_expr_sp(&lhs, lhs_span, rhs.span);
|
||
lhs = match op {
|
||
AssocOp::Add
|
||
| AssocOp::Subtract
|
||
| AssocOp::Multiply
|
||
| AssocOp::Divide
|
||
| AssocOp::Modulus
|
||
| AssocOp::LAnd
|
||
| AssocOp::LOr
|
||
| AssocOp::BitXor
|
||
| AssocOp::BitAnd
|
||
| AssocOp::BitOr
|
||
| AssocOp::ShiftLeft
|
||
| AssocOp::ShiftRight
|
||
| AssocOp::Equal
|
||
| AssocOp::Less
|
||
| AssocOp::LessEqual
|
||
| AssocOp::NotEqual
|
||
| AssocOp::Greater
|
||
| AssocOp::GreaterEqual => {
|
||
let ast_op = op.to_ast_binop().unwrap();
|
||
let binary = self.mk_binary(source_map::respan(cur_op_span, ast_op), lhs, rhs);
|
||
self.mk_expr(span, binary, AttrVec::new())
|
||
}
|
||
AssocOp::Assign => {
|
||
self.mk_expr(span, ExprKind::Assign(lhs, rhs, cur_op_span), AttrVec::new())
|
||
}
|
||
AssocOp::AssignOp(k) => {
|
||
let aop = match k {
|
||
token::Plus => BinOpKind::Add,
|
||
token::Minus => BinOpKind::Sub,
|
||
token::Star => BinOpKind::Mul,
|
||
token::Slash => BinOpKind::Div,
|
||
token::Percent => BinOpKind::Rem,
|
||
token::Caret => BinOpKind::BitXor,
|
||
token::And => BinOpKind::BitAnd,
|
||
token::Or => BinOpKind::BitOr,
|
||
token::Shl => BinOpKind::Shl,
|
||
token::Shr => BinOpKind::Shr,
|
||
};
|
||
let aopexpr = self.mk_assign_op(source_map::respan(cur_op_span, aop), lhs, rhs);
|
||
self.mk_expr(span, aopexpr, AttrVec::new())
|
||
}
|
||
AssocOp::As | AssocOp::Colon | AssocOp::DotDot | AssocOp::DotDotEq => {
|
||
self.span_bug(span, "AssocOp should have been handled by special case")
|
||
}
|
||
};
|
||
|
||
if let Fixity::None = fixity {
|
||
break;
|
||
}
|
||
}
|
||
if last_type_ascription_set {
|
||
self.last_type_ascription = None;
|
||
}
|
||
Ok(lhs)
|
||
}
|
||
|
||
fn should_continue_as_assoc_expr(&mut self, lhs: &Expr) -> bool {
|
||
match (self.expr_is_complete(lhs), AssocOp::from_token(&self.token)) {
|
||
// Semi-statement forms are odd:
|
||
// See https://github.com/rust-lang/rust/issues/29071
|
||
(true, None) => false,
|
||
(false, _) => true, // Continue parsing the expression.
|
||
// An exhaustive check is done in the following block, but these are checked first
|
||
// because they *are* ambiguous but also reasonable looking incorrect syntax, so we
|
||
// want to keep their span info to improve diagnostics in these cases in a later stage.
|
||
(true, Some(AssocOp::Multiply)) | // `{ 42 } *foo = bar;` or `{ 42 } * 3`
|
||
(true, Some(AssocOp::Subtract)) | // `{ 42 } -5`
|
||
(true, Some(AssocOp::Add)) // `{ 42 } + 42
|
||
// If the next token is a keyword, then the tokens above *are* unambiguously incorrect:
|
||
// `if x { a } else { b } && if y { c } else { d }`
|
||
if !self.look_ahead(1, |t| t.is_used_keyword()) => {
|
||
// These cases are ambiguous and can't be identified in the parser alone.
|
||
let sp = self.sess.source_map().start_point(self.token.span);
|
||
self.sess.ambiguous_block_expr_parse.borrow_mut().insert(sp, lhs.span);
|
||
false
|
||
}
|
||
(true, Some(AssocOp::LAnd)) => {
|
||
// `{ 42 } &&x` (#61475) or `{ 42 } && if x { 1 } else { 0 }`. Separated from the
|
||
// above due to #74233.
|
||
// These cases are ambiguous and can't be identified in the parser alone.
|
||
let sp = self.sess.source_map().start_point(self.token.span);
|
||
self.sess.ambiguous_block_expr_parse.borrow_mut().insert(sp, lhs.span);
|
||
false
|
||
}
|
||
(true, Some(ref op)) if !op.can_continue_expr_unambiguously() => false,
|
||
(true, Some(_)) => {
|
||
self.error_found_expr_would_be_stmt(lhs);
|
||
true
|
||
}
|
||
}
|
||
}
|
||
|
||
/// We've found an expression that would be parsed as a statement,
|
||
/// but the next token implies this should be parsed as an expression.
|
||
/// For example: `if let Some(x) = x { x } else { 0 } / 2`.
|
||
fn error_found_expr_would_be_stmt(&self, lhs: &Expr) {
|
||
let mut err = self.struct_span_err(
|
||
self.token.span,
|
||
&format!("expected expression, found `{}`", pprust::token_to_string(&self.token),),
|
||
);
|
||
err.span_label(self.token.span, "expected expression");
|
||
self.sess.expr_parentheses_needed(&mut err, lhs.span, Some(pprust::expr_to_string(&lhs)));
|
||
err.emit();
|
||
}
|
||
|
||
/// Possibly translate the current token to an associative operator.
|
||
/// The method does not advance the current token.
|
||
///
|
||
/// Also performs recovery for `and` / `or` which are mistaken for `&&` and `||` respectively.
|
||
fn check_assoc_op(&self) -> Option<Spanned<AssocOp>> {
|
||
let (op, span) = match (AssocOp::from_token(&self.token), self.token.ident()) {
|
||
(Some(op), _) => (op, self.token.span),
|
||
(None, Some((Ident { name: sym::and, span }, false))) => {
|
||
self.error_bad_logical_op("and", "&&", "conjunction");
|
||
(AssocOp::LAnd, span)
|
||
}
|
||
(None, Some((Ident { name: sym::or, span }, false))) => {
|
||
self.error_bad_logical_op("or", "||", "disjunction");
|
||
(AssocOp::LOr, span)
|
||
}
|
||
_ => return None,
|
||
};
|
||
Some(source_map::respan(span, op))
|
||
}
|
||
|
||
/// Error on `and` and `or` suggesting `&&` and `||` respectively.
|
||
fn error_bad_logical_op(&self, bad: &str, good: &str, english: &str) {
|
||
self.struct_span_err(self.token.span, &format!("`{}` is not a logical operator", bad))
|
||
.span_suggestion_short(
|
||
self.token.span,
|
||
&format!("use `{}` to perform logical {}", good, english),
|
||
good.to_string(),
|
||
Applicability::MachineApplicable,
|
||
)
|
||
.note("unlike in e.g., python and PHP, `&&` and `||` are used for logical operators")
|
||
.emit();
|
||
}
|
||
|
||
/// Checks if this expression is a successfully parsed statement.
|
||
fn expr_is_complete(&self, e: &Expr) -> bool {
|
||
self.restrictions.contains(Restrictions::STMT_EXPR)
|
||
&& !classify::expr_requires_semi_to_be_stmt(e)
|
||
}
|
||
|
||
/// Parses `x..y`, `x..=y`, and `x..`/`x..=`.
|
||
/// The other two variants are handled in `parse_prefix_range_expr` below.
|
||
fn parse_range_expr(
|
||
&mut self,
|
||
prec: usize,
|
||
lhs: P<Expr>,
|
||
op: AssocOp,
|
||
cur_op_span: Span,
|
||
) -> PResult<'a, P<Expr>> {
|
||
let rhs = if self.is_at_start_of_range_notation_rhs() {
|
||
Some(self.parse_assoc_expr_with(prec + 1, LhsExpr::NotYetParsed)?)
|
||
} else {
|
||
None
|
||
};
|
||
let rhs_span = rhs.as_ref().map_or(cur_op_span, |x| x.span);
|
||
let span = lhs.span.to(rhs_span);
|
||
let limits =
|
||
if op == AssocOp::DotDot { RangeLimits::HalfOpen } else { RangeLimits::Closed };
|
||
Ok(self.mk_expr(span, self.mk_range(Some(lhs), rhs, limits)?, AttrVec::new()))
|
||
}
|
||
|
||
fn is_at_start_of_range_notation_rhs(&self) -> bool {
|
||
if self.token.can_begin_expr() {
|
||
// Parse `for i in 1.. { }` as infinite loop, not as `for i in (1..{})`.
|
||
if self.token == token::OpenDelim(token::Brace) {
|
||
return !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL);
|
||
}
|
||
true
|
||
} else {
|
||
false
|
||
}
|
||
}
|
||
|
||
/// Parses prefix-forms of range notation: `..expr`, `..`, `..=expr`.
|
||
fn parse_prefix_range_expr(&mut self, attrs: Option<AttrVec>) -> PResult<'a, P<Expr>> {
|
||
// Check for deprecated `...` syntax.
|
||
if self.token == token::DotDotDot {
|
||
self.err_dotdotdot_syntax(self.token.span);
|
||
}
|
||
|
||
debug_assert!(
|
||
[token::DotDot, token::DotDotDot, token::DotDotEq].contains(&self.token.kind),
|
||
"parse_prefix_range_expr: token {:?} is not DotDot/DotDotEq",
|
||
self.token
|
||
);
|
||
|
||
let limits = match self.token.kind {
|
||
token::DotDot => RangeLimits::HalfOpen,
|
||
_ => RangeLimits::Closed,
|
||
};
|
||
let op = AssocOp::from_token(&self.token);
|
||
let attrs = self.parse_or_use_outer_attributes(attrs)?;
|
||
let lo = self.token.span;
|
||
self.bump();
|
||
let (span, opt_end) = if self.is_at_start_of_range_notation_rhs() {
|
||
// RHS must be parsed with more associativity than the dots.
|
||
self.parse_assoc_expr_with(op.unwrap().precedence() + 1, LhsExpr::NotYetParsed)
|
||
.map(|x| (lo.to(x.span), Some(x)))?
|
||
} else {
|
||
(lo, None)
|
||
};
|
||
Ok(self.mk_expr(span, self.mk_range(None, opt_end, limits)?, attrs))
|
||
}
|
||
|
||
/// Parses a prefix-unary-operator expr.
|
||
fn parse_prefix_expr(&mut self, attrs: Option<AttrVec>) -> PResult<'a, P<Expr>> {
|
||
let attrs = self.parse_or_use_outer_attributes(attrs)?;
|
||
self.maybe_collect_tokens(!attrs.is_empty(), |this| {
|
||
let lo = this.token.span;
|
||
// Note: when adding new unary operators, don't forget to adjust TokenKind::can_begin_expr()
|
||
let (hi, ex) = match this.token.uninterpolate().kind {
|
||
token::Not => this.parse_unary_expr(lo, UnOp::Not), // `!expr`
|
||
token::Tilde => this.recover_tilde_expr(lo), // `~expr`
|
||
token::BinOp(token::Minus) => this.parse_unary_expr(lo, UnOp::Neg), // `-expr`
|
||
token::BinOp(token::Star) => this.parse_unary_expr(lo, UnOp::Deref), // `*expr`
|
||
token::BinOp(token::And) | token::AndAnd => this.parse_borrow_expr(lo),
|
||
token::Ident(..) if this.token.is_keyword(kw::Box) => this.parse_box_expr(lo),
|
||
token::Ident(..) if this.is_mistaken_not_ident_negation() => {
|
||
this.recover_not_expr(lo)
|
||
}
|
||
_ => return this.parse_dot_or_call_expr(Some(attrs)),
|
||
}?;
|
||
Ok(this.mk_expr(lo.to(hi), ex, attrs))
|
||
})
|
||
}
|
||
|
||
fn parse_prefix_expr_common(&mut self, lo: Span) -> PResult<'a, (Span, P<Expr>)> {
|
||
self.bump();
|
||
let expr = self.parse_prefix_expr(None);
|
||
let (span, expr) = self.interpolated_or_expr_span(expr)?;
|
||
Ok((lo.to(span), expr))
|
||
}
|
||
|
||
fn parse_unary_expr(&mut self, lo: Span, op: UnOp) -> PResult<'a, (Span, ExprKind)> {
|
||
let (span, expr) = self.parse_prefix_expr_common(lo)?;
|
||
Ok((span, self.mk_unary(op, expr)))
|
||
}
|
||
|
||
// Recover on `!` suggesting for bitwise negation instead.
|
||
fn recover_tilde_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
|
||
self.struct_span_err(lo, "`~` cannot be used as a unary operator")
|
||
.span_suggestion_short(
|
||
lo,
|
||
"use `!` to perform bitwise not",
|
||
"!".to_owned(),
|
||
Applicability::MachineApplicable,
|
||
)
|
||
.emit();
|
||
|
||
self.parse_unary_expr(lo, UnOp::Not)
|
||
}
|
||
|
||
/// Parse `box expr`.
|
||
fn parse_box_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
|
||
let (span, expr) = self.parse_prefix_expr_common(lo)?;
|
||
self.sess.gated_spans.gate(sym::box_syntax, span);
|
||
Ok((span, ExprKind::Box(expr)))
|
||
}
|
||
|
||
fn is_mistaken_not_ident_negation(&self) -> bool {
|
||
let token_cannot_continue_expr = |t: &Token| match t.uninterpolate().kind {
|
||
// These tokens can start an expression after `!`, but
|
||
// can't continue an expression after an ident
|
||
token::Ident(name, is_raw) => token::ident_can_begin_expr(name, t.span, is_raw),
|
||
token::Literal(..) | token::Pound => true,
|
||
_ => t.is_whole_expr(),
|
||
};
|
||
self.token.is_ident_named(sym::not) && self.look_ahead(1, token_cannot_continue_expr)
|
||
}
|
||
|
||
/// Recover on `not expr` in favor of `!expr`.
|
||
fn recover_not_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
|
||
// Emit the error...
|
||
let not_token = self.look_ahead(1, |t| t.clone());
|
||
self.struct_span_err(
|
||
not_token.span,
|
||
&format!("unexpected {} after identifier", super::token_descr(¬_token)),
|
||
)
|
||
.span_suggestion_short(
|
||
// Span the `not` plus trailing whitespace to avoid
|
||
// trailing whitespace after the `!` in our suggestion
|
||
self.sess.source_map().span_until_non_whitespace(lo.to(not_token.span)),
|
||
"use `!` to perform logical negation",
|
||
"!".to_owned(),
|
||
Applicability::MachineApplicable,
|
||
)
|
||
.emit();
|
||
|
||
// ...and recover!
|
||
self.parse_unary_expr(lo, UnOp::Not)
|
||
}
|
||
|
||
/// Returns the span of expr, if it was not interpolated or the span of the interpolated token.
|
||
fn interpolated_or_expr_span(
|
||
&self,
|
||
expr: PResult<'a, P<Expr>>,
|
||
) -> PResult<'a, (Span, P<Expr>)> {
|
||
expr.map(|e| {
|
||
(
|
||
match self.prev_token.kind {
|
||
TokenKind::Interpolated(..) => self.prev_token.span,
|
||
_ => e.span,
|
||
},
|
||
e,
|
||
)
|
||
})
|
||
}
|
||
|
||
fn parse_assoc_op_cast(
|
||
&mut self,
|
||
lhs: P<Expr>,
|
||
lhs_span: Span,
|
||
expr_kind: fn(P<Expr>, P<Ty>) -> ExprKind,
|
||
) -> PResult<'a, P<Expr>> {
|
||
let mk_expr = |this: &mut Self, rhs: P<Ty>| {
|
||
this.mk_expr(
|
||
this.mk_expr_sp(&lhs, lhs_span, rhs.span),
|
||
expr_kind(lhs, rhs),
|
||
AttrVec::new(),
|
||
)
|
||
};
|
||
|
||
// Save the state of the parser before parsing type normally, in case there is a
|
||
// LessThan comparison after this cast.
|
||
let parser_snapshot_before_type = self.clone();
|
||
let cast_expr = match self.parse_ty_no_plus() {
|
||
Ok(rhs) => mk_expr(self, rhs),
|
||
Err(mut type_err) => {
|
||
// Rewind to before attempting to parse the type with generics, to recover
|
||
// from situations like `x as usize < y` in which we first tried to parse
|
||
// `usize < y` as a type with generic arguments.
|
||
let parser_snapshot_after_type = mem::replace(self, parser_snapshot_before_type);
|
||
|
||
match self.parse_path(PathStyle::Expr) {
|
||
Ok(path) => {
|
||
let (op_noun, op_verb) = match self.token.kind {
|
||
token::Lt => ("comparison", "comparing"),
|
||
token::BinOp(token::Shl) => ("shift", "shifting"),
|
||
_ => {
|
||
// We can end up here even without `<` being the next token, for
|
||
// example because `parse_ty_no_plus` returns `Err` on keywords,
|
||
// but `parse_path` returns `Ok` on them due to error recovery.
|
||
// Return original error and parser state.
|
||
*self = parser_snapshot_after_type;
|
||
return Err(type_err);
|
||
}
|
||
};
|
||
|
||
// Successfully parsed the type path leaving a `<` yet to parse.
|
||
type_err.cancel();
|
||
|
||
// Report non-fatal diagnostics, keep `x as usize` as an expression
|
||
// in AST and continue parsing.
|
||
let msg = format!(
|
||
"`<` is interpreted as a start of generic arguments for `{}`, not a {}",
|
||
pprust::path_to_string(&path),
|
||
op_noun,
|
||
);
|
||
let span_after_type = parser_snapshot_after_type.token.span;
|
||
let expr = mk_expr(self, self.mk_ty(path.span, TyKind::Path(None, path)));
|
||
|
||
let expr_str = self
|
||
.span_to_snippet(expr.span)
|
||
.unwrap_or_else(|_| pprust::expr_to_string(&expr));
|
||
|
||
self.struct_span_err(self.token.span, &msg)
|
||
.span_label(
|
||
self.look_ahead(1, |t| t.span).to(span_after_type),
|
||
"interpreted as generic arguments",
|
||
)
|
||
.span_label(self.token.span, format!("not interpreted as {}", op_noun))
|
||
.span_suggestion(
|
||
expr.span,
|
||
&format!("try {} the cast value", op_verb),
|
||
format!("({})", expr_str),
|
||
Applicability::MachineApplicable,
|
||
)
|
||
.emit();
|
||
|
||
expr
|
||
}
|
||
Err(mut path_err) => {
|
||
// Couldn't parse as a path, return original error and parser state.
|
||
path_err.cancel();
|
||
*self = parser_snapshot_after_type;
|
||
return Err(type_err);
|
||
}
|
||
}
|
||
}
|
||
};
|
||
|
||
self.parse_and_disallow_postfix_after_cast(cast_expr)
|
||
}
|
||
|
||
/// Parses a postfix operators such as `.`, `?`, or index (`[]`) after a cast,
|
||
/// then emits an error and returns the newly parsed tree.
|
||
/// The resulting parse tree for `&x as T[0]` has a precedence of `((&x) as T)[0]`.
|
||
fn parse_and_disallow_postfix_after_cast(
|
||
&mut self,
|
||
cast_expr: P<Expr>,
|
||
) -> PResult<'a, P<Expr>> {
|
||
// Save the memory location of expr before parsing any following postfix operators.
|
||
// This will be compared with the memory location of the output expression.
|
||
// If they different we can assume we parsed another expression because the existing expression is not reallocated.
|
||
let addr_before = &*cast_expr as *const _ as usize;
|
||
let span = cast_expr.span;
|
||
let with_postfix = self.parse_dot_or_call_expr_with_(cast_expr, span)?;
|
||
let changed = addr_before != &*with_postfix as *const _ as usize;
|
||
|
||
// Check if an illegal postfix operator has been added after the cast.
|
||
// If the resulting expression is not a cast, or has a different memory location, it is an illegal postfix operator.
|
||
if !matches!(with_postfix.kind, ExprKind::Cast(_, _) | ExprKind::Type(_, _)) || changed {
|
||
let msg = format!(
|
||
"casts cannot be followed by {}",
|
||
match with_postfix.kind {
|
||
ExprKind::Index(_, _) => "indexing",
|
||
ExprKind::Try(_) => "?",
|
||
ExprKind::Field(_, _) => "a field access",
|
||
ExprKind::MethodCall(_, _, _) => "a method call",
|
||
ExprKind::Call(_, _) => "a function call",
|
||
ExprKind::Await(_) => "`.await`",
|
||
ExprKind::Err => return Ok(with_postfix),
|
||
_ => unreachable!("parse_dot_or_call_expr_with_ shouldn't produce this"),
|
||
}
|
||
);
|
||
let mut err = self.struct_span_err(span, &msg);
|
||
// If type ascription is "likely an error", the user will already be getting a useful
|
||
// help message, and doesn't need a second.
|
||
if self.last_type_ascription.map_or(false, |last_ascription| last_ascription.1) {
|
||
self.maybe_annotate_with_ascription(&mut err, false);
|
||
} else {
|
||
let suggestions = vec![
|
||
(span.shrink_to_lo(), "(".to_string()),
|
||
(span.shrink_to_hi(), ")".to_string()),
|
||
];
|
||
err.multipart_suggestion(
|
||
"try surrounding the expression in parentheses",
|
||
suggestions,
|
||
Applicability::MachineApplicable,
|
||
);
|
||
}
|
||
err.emit();
|
||
};
|
||
Ok(with_postfix)
|
||
}
|
||
|
||
fn parse_assoc_op_ascribe(&mut self, lhs: P<Expr>, lhs_span: Span) -> PResult<'a, P<Expr>> {
|
||
let maybe_path = self.could_ascription_be_path(&lhs.kind);
|
||
self.last_type_ascription = Some((self.prev_token.span, maybe_path));
|
||
let lhs = self.parse_assoc_op_cast(lhs, lhs_span, ExprKind::Type)?;
|
||
self.sess.gated_spans.gate(sym::type_ascription, lhs.span);
|
||
Ok(lhs)
|
||
}
|
||
|
||
/// Parse `& mut? <expr>` or `& raw [ const | mut ] <expr>`.
|
||
fn parse_borrow_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
|
||
self.expect_and()?;
|
||
let has_lifetime = self.token.is_lifetime() && self.look_ahead(1, |t| t != &token::Colon);
|
||
let lifetime = has_lifetime.then(|| self.expect_lifetime()); // For recovery, see below.
|
||
let (borrow_kind, mutbl) = self.parse_borrow_modifiers(lo);
|
||
let expr = self.parse_prefix_expr(None);
|
||
let (hi, expr) = self.interpolated_or_expr_span(expr)?;
|
||
let span = lo.to(hi);
|
||
if let Some(lt) = lifetime {
|
||
self.error_remove_borrow_lifetime(span, lt.ident.span);
|
||
}
|
||
Ok((span, ExprKind::AddrOf(borrow_kind, mutbl, expr)))
|
||
}
|
||
|
||
fn error_remove_borrow_lifetime(&self, span: Span, lt_span: Span) {
|
||
self.struct_span_err(span, "borrow expressions cannot be annotated with lifetimes")
|
||
.span_label(lt_span, "annotated with lifetime here")
|
||
.span_suggestion(
|
||
lt_span,
|
||
"remove the lifetime annotation",
|
||
String::new(),
|
||
Applicability::MachineApplicable,
|
||
)
|
||
.emit();
|
||
}
|
||
|
||
/// Parse `mut?` or `raw [ const | mut ]`.
|
||
fn parse_borrow_modifiers(&mut self, lo: Span) -> (ast::BorrowKind, ast::Mutability) {
|
||
if self.check_keyword(kw::Raw) && self.look_ahead(1, Token::is_mutability) {
|
||
// `raw [ const | mut ]`.
|
||
let found_raw = self.eat_keyword(kw::Raw);
|
||
assert!(found_raw);
|
||
let mutability = self.parse_const_or_mut().unwrap();
|
||
self.sess.gated_spans.gate(sym::raw_ref_op, lo.to(self.prev_token.span));
|
||
(ast::BorrowKind::Raw, mutability)
|
||
} else {
|
||
// `mut?`
|
||
(ast::BorrowKind::Ref, self.parse_mutability())
|
||
}
|
||
}
|
||
|
||
/// Parses `a.b` or `a(13)` or `a[4]` or just `a`.
|
||
fn parse_dot_or_call_expr(&mut self, attrs: Option<AttrVec>) -> PResult<'a, P<Expr>> {
|
||
let attrs = self.parse_or_use_outer_attributes(attrs)?;
|
||
let base = self.parse_bottom_expr();
|
||
let (span, base) = self.interpolated_or_expr_span(base)?;
|
||
self.parse_dot_or_call_expr_with(base, span, attrs)
|
||
}
|
||
|
||
pub(super) fn parse_dot_or_call_expr_with(
|
||
&mut self,
|
||
e0: P<Expr>,
|
||
lo: Span,
|
||
mut attrs: AttrVec,
|
||
) -> PResult<'a, P<Expr>> {
|
||
// Stitch the list of outer attributes onto the return value.
|
||
// A little bit ugly, but the best way given the current code
|
||
// structure
|
||
self.parse_dot_or_call_expr_with_(e0, lo).map(|expr| {
|
||
expr.map(|mut expr| {
|
||
attrs.extend::<Vec<_>>(expr.attrs.into());
|
||
expr.attrs = attrs;
|
||
expr
|
||
})
|
||
})
|
||
}
|
||
|
||
fn parse_dot_or_call_expr_with_(&mut self, mut e: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> {
|
||
loop {
|
||
if self.eat(&token::Question) {
|
||
// `expr?`
|
||
e = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Try(e), AttrVec::new());
|
||
continue;
|
||
}
|
||
if self.eat(&token::Dot) {
|
||
// expr.f
|
||
e = self.parse_dot_suffix_expr(lo, e)?;
|
||
continue;
|
||
}
|
||
if self.expr_is_complete(&e) {
|
||
return Ok(e);
|
||
}
|
||
e = match self.token.kind {
|
||
token::OpenDelim(token::Paren) => self.parse_fn_call_expr(lo, e),
|
||
token::OpenDelim(token::Bracket) => self.parse_index_expr(lo, e)?,
|
||
_ => return Ok(e),
|
||
}
|
||
}
|
||
}
|
||
|
||
fn parse_dot_suffix_expr(&mut self, lo: Span, base: P<Expr>) -> PResult<'a, P<Expr>> {
|
||
match self.token.uninterpolate().kind {
|
||
token::Ident(..) => self.parse_dot_suffix(base, lo),
|
||
token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) => {
|
||
Ok(self.parse_tuple_field_access_expr(lo, base, symbol, suffix, None))
|
||
}
|
||
token::Literal(token::Lit { kind: token::Float, symbol, suffix }) => {
|
||
Ok(self.parse_tuple_field_access_expr_float(lo, base, symbol, suffix))
|
||
}
|
||
_ => {
|
||
self.error_unexpected_after_dot();
|
||
Ok(base)
|
||
}
|
||
}
|
||
}
|
||
|
||
fn error_unexpected_after_dot(&self) {
|
||
// FIXME Could factor this out into non_fatal_unexpected or something.
|
||
let actual = pprust::token_to_string(&self.token);
|
||
self.struct_span_err(self.token.span, &format!("unexpected token: `{}`", actual)).emit();
|
||
}
|
||
|
||
// We need and identifier or integer, but the next token is a float.
|
||
// Break the float into components to extract the identifier or integer.
|
||
// FIXME: With current `TokenCursor` it's hard to break tokens into more than 2
|
||
// parts unless those parts are processed immediately. `TokenCursor` should either
|
||
// support pushing "future tokens" (would be also helpful to `break_and_eat`), or
|
||
// we should break everything including floats into more basic proc-macro style
|
||
// tokens in the lexer (probably preferable).
|
||
fn parse_tuple_field_access_expr_float(
|
||
&mut self,
|
||
lo: Span,
|
||
base: P<Expr>,
|
||
float: Symbol,
|
||
suffix: Option<Symbol>,
|
||
) -> P<Expr> {
|
||
#[derive(Debug)]
|
||
enum FloatComponent {
|
||
IdentLike(String),
|
||
Punct(char),
|
||
}
|
||
use FloatComponent::*;
|
||
|
||
let mut components = Vec::new();
|
||
let mut ident_like = String::new();
|
||
for c in float.as_str().chars() {
|
||
if c == '_' || c.is_ascii_alphanumeric() {
|
||
ident_like.push(c);
|
||
} else if matches!(c, '.' | '+' | '-') {
|
||
if !ident_like.is_empty() {
|
||
components.push(IdentLike(mem::take(&mut ident_like)));
|
||
}
|
||
components.push(Punct(c));
|
||
} else {
|
||
panic!("unexpected character in a float token: {:?}", c)
|
||
}
|
||
}
|
||
if !ident_like.is_empty() {
|
||
components.push(IdentLike(ident_like));
|
||
}
|
||
|
||
// FIXME: Make the span more precise.
|
||
let span = self.token.span;
|
||
match &*components {
|
||
// 1e2
|
||
[IdentLike(i)] => {
|
||
self.parse_tuple_field_access_expr(lo, base, Symbol::intern(&i), suffix, None)
|
||
}
|
||
// 1.
|
||
[IdentLike(i), Punct('.')] => {
|
||
assert!(suffix.is_none());
|
||
let symbol = Symbol::intern(&i);
|
||
self.token = Token::new(token::Ident(symbol, false), span);
|
||
let next_token = Token::new(token::Dot, span);
|
||
self.parse_tuple_field_access_expr(lo, base, symbol, None, Some(next_token))
|
||
}
|
||
// 1.2 | 1.2e3
|
||
[IdentLike(i1), Punct('.'), IdentLike(i2)] => {
|
||
let symbol1 = Symbol::intern(&i1);
|
||
self.token = Token::new(token::Ident(symbol1, false), span);
|
||
let next_token1 = Token::new(token::Dot, span);
|
||
let base1 =
|
||
self.parse_tuple_field_access_expr(lo, base, symbol1, None, Some(next_token1));
|
||
let symbol2 = Symbol::intern(&i2);
|
||
let next_token2 = Token::new(token::Ident(symbol2, false), span);
|
||
self.bump_with(next_token2); // `.`
|
||
self.parse_tuple_field_access_expr(lo, base1, symbol2, suffix, None)
|
||
}
|
||
// 1e+ | 1e- (recovered)
|
||
[IdentLike(_), Punct('+' | '-')] |
|
||
// 1e+2 | 1e-2
|
||
[IdentLike(_), Punct('+' | '-'), IdentLike(_)] |
|
||
// 1.2e+3 | 1.2e-3
|
||
[IdentLike(_), Punct('.'), IdentLike(_), Punct('+' | '-'), IdentLike(_)] => {
|
||
// See the FIXME about `TokenCursor` above.
|
||
self.error_unexpected_after_dot();
|
||
base
|
||
}
|
||
_ => panic!("unexpected components in a float token: {:?}", components),
|
||
}
|
||
}
|
||
|
||
fn parse_tuple_field_access_expr(
|
||
&mut self,
|
||
lo: Span,
|
||
base: P<Expr>,
|
||
field: Symbol,
|
||
suffix: Option<Symbol>,
|
||
next_token: Option<Token>,
|
||
) -> P<Expr> {
|
||
match next_token {
|
||
Some(next_token) => self.bump_with(next_token),
|
||
None => self.bump(),
|
||
}
|
||
let span = self.prev_token.span;
|
||
let field = ExprKind::Field(base, Ident::new(field, span));
|
||
self.expect_no_suffix(span, "a tuple index", suffix);
|
||
self.mk_expr(lo.to(span), field, AttrVec::new())
|
||
}
|
||
|
||
/// Parse a function call expression, `expr(...)`.
|
||
fn parse_fn_call_expr(&mut self, lo: Span, fun: P<Expr>) -> P<Expr> {
|
||
let seq = self.parse_paren_expr_seq().map(|args| {
|
||
self.mk_expr(lo.to(self.prev_token.span), self.mk_call(fun, args), AttrVec::new())
|
||
});
|
||
self.recover_seq_parse_error(token::Paren, lo, seq)
|
||
}
|
||
|
||
/// Parse an indexing expression `expr[...]`.
|
||
fn parse_index_expr(&mut self, lo: Span, base: P<Expr>) -> PResult<'a, P<Expr>> {
|
||
self.bump(); // `[`
|
||
let index = self.parse_expr()?;
|
||
self.expect(&token::CloseDelim(token::Bracket))?;
|
||
Ok(self.mk_expr(lo.to(self.prev_token.span), self.mk_index(base, index), AttrVec::new()))
|
||
}
|
||
|
||
/// Assuming we have just parsed `.`, continue parsing into an expression.
|
||
fn parse_dot_suffix(&mut self, self_arg: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> {
|
||
if self.token.uninterpolated_span().rust_2018() && self.eat_keyword(kw::Await) {
|
||
return self.mk_await_expr(self_arg, lo);
|
||
}
|
||
|
||
let fn_span_lo = self.token.span;
|
||
let mut segment = self.parse_path_segment(PathStyle::Expr)?;
|
||
self.check_trailing_angle_brackets(&segment, &[&token::OpenDelim(token::Paren)]);
|
||
self.check_turbofish_missing_angle_brackets(&mut segment);
|
||
|
||
if self.check(&token::OpenDelim(token::Paren)) {
|
||
// Method call `expr.f()`
|
||
let mut args = self.parse_paren_expr_seq()?;
|
||
args.insert(0, self_arg);
|
||
|
||
let fn_span = fn_span_lo.to(self.prev_token.span);
|
||
let span = lo.to(self.prev_token.span);
|
||
Ok(self.mk_expr(span, ExprKind::MethodCall(segment, args, fn_span), AttrVec::new()))
|
||
} else {
|
||
// Field access `expr.f`
|
||
if let Some(args) = segment.args {
|
||
self.struct_span_err(
|
||
args.span(),
|
||
"field expressions cannot have generic arguments",
|
||
)
|
||
.emit();
|
||
}
|
||
|
||
let span = lo.to(self.prev_token.span);
|
||
Ok(self.mk_expr(span, ExprKind::Field(self_arg, segment.ident), AttrVec::new()))
|
||
}
|
||
}
|
||
|
||
/// At the bottom (top?) of the precedence hierarchy,
|
||
/// Parses things like parenthesized exprs, macros, `return`, etc.
|
||
///
|
||
/// N.B., this does not parse outer attributes, and is private because it only works
|
||
/// correctly if called from `parse_dot_or_call_expr()`.
|
||
fn parse_bottom_expr(&mut self) -> PResult<'a, P<Expr>> {
|
||
maybe_recover_from_interpolated_ty_qpath!(self, true);
|
||
maybe_whole_expr!(self);
|
||
|
||
// Outer attributes are already parsed and will be
|
||
// added to the return value after the fact.
|
||
//
|
||
// Therefore, prevent sub-parser from parsing
|
||
// attributes by giving them a empty "already-parsed" list.
|
||
let attrs = AttrVec::new();
|
||
|
||
// Note: when adding new syntax here, don't forget to adjust `TokenKind::can_begin_expr()`.
|
||
let lo = self.token.span;
|
||
if let token::Literal(_) = self.token.kind {
|
||
// This match arm is a special-case of the `_` match arm below and
|
||
// could be removed without changing functionality, but it's faster
|
||
// to have it here, especially for programs with large constants.
|
||
self.parse_lit_expr(attrs)
|
||
} else if self.check(&token::OpenDelim(token::Paren)) {
|
||
self.parse_tuple_parens_expr(attrs)
|
||
} else if self.check(&token::OpenDelim(token::Brace)) {
|
||
self.parse_block_expr(None, lo, BlockCheckMode::Default, attrs)
|
||
} else if self.check(&token::BinOp(token::Or)) || self.check(&token::OrOr) {
|
||
self.parse_closure_expr(attrs)
|
||
} else if self.check(&token::OpenDelim(token::Bracket)) {
|
||
self.parse_array_or_repeat_expr(attrs)
|
||
} else if self.eat_lt() {
|
||
let (qself, path) = self.parse_qpath(PathStyle::Expr)?;
|
||
Ok(self.mk_expr(lo.to(path.span), ExprKind::Path(Some(qself), path), attrs))
|
||
} else if self.check_path() {
|
||
self.parse_path_start_expr(attrs)
|
||
} else if self.check_keyword(kw::Move) || self.check_keyword(kw::Static) {
|
||
self.parse_closure_expr(attrs)
|
||
} else if self.eat_keyword(kw::If) {
|
||
self.parse_if_expr(attrs)
|
||
} else if self.check_keyword(kw::For) {
|
||
if self.choose_generics_over_qpath(1) {
|
||
// NOTE(Centril, eddyb): DO NOT REMOVE! Beyond providing parser recovery,
|
||
// this is an insurance policy in case we allow qpaths in (tuple-)struct patterns.
|
||
// When `for <Foo as Bar>::Proj in $expr $block` is wanted,
|
||
// you can disambiguate in favor of a pattern with `(...)`.
|
||
self.recover_quantified_closure_expr(attrs)
|
||
} else {
|
||
assert!(self.eat_keyword(kw::For));
|
||
self.parse_for_expr(None, self.prev_token.span, attrs)
|
||
}
|
||
} else if self.eat_keyword(kw::While) {
|
||
self.parse_while_expr(None, self.prev_token.span, attrs)
|
||
} else if let Some(label) = self.eat_label() {
|
||
self.parse_labeled_expr(label, attrs)
|
||
} else if self.eat_keyword(kw::Loop) {
|
||
self.parse_loop_expr(None, self.prev_token.span, attrs)
|
||
} else if self.eat_keyword(kw::Continue) {
|
||
let kind = ExprKind::Continue(self.eat_label());
|
||
Ok(self.mk_expr(lo.to(self.prev_token.span), kind, attrs))
|
||
} else if self.eat_keyword(kw::Match) {
|
||
let match_sp = self.prev_token.span;
|
||
self.parse_match_expr(attrs).map_err(|mut err| {
|
||
err.span_label(match_sp, "while parsing this match expression");
|
||
err
|
||
})
|
||
} else if self.eat_keyword(kw::Unsafe) {
|
||
self.parse_block_expr(None, lo, BlockCheckMode::Unsafe(ast::UserProvided), attrs)
|
||
} else if self.is_do_catch_block() {
|
||
self.recover_do_catch(attrs)
|
||
} else if self.is_try_block() {
|
||
self.expect_keyword(kw::Try)?;
|
||
self.parse_try_block(lo, attrs)
|
||
} else if self.eat_keyword(kw::Return) {
|
||
self.parse_return_expr(attrs)
|
||
} else if self.eat_keyword(kw::Break) {
|
||
self.parse_break_expr(attrs)
|
||
} else if self.eat_keyword(kw::Yield) {
|
||
self.parse_yield_expr(attrs)
|
||
} else if self.eat_keyword(kw::Let) {
|
||
self.parse_let_expr(attrs)
|
||
} else if !self.unclosed_delims.is_empty() && self.check(&token::Semi) {
|
||
// Don't complain about bare semicolons after unclosed braces
|
||
// recovery in order to keep the error count down. Fixing the
|
||
// delimiters will possibly also fix the bare semicolon found in
|
||
// expression context. For example, silence the following error:
|
||
//
|
||
// error: expected expression, found `;`
|
||
// --> file.rs:2:13
|
||
// |
|
||
// 2 | foo(bar(;
|
||
// | ^ expected expression
|
||
self.bump();
|
||
Ok(self.mk_expr_err(self.token.span))
|
||
} else if self.token.uninterpolated_span().rust_2018() {
|
||
// `Span::rust_2018()` is somewhat expensive; don't get it repeatedly.
|
||
if self.check_keyword(kw::Async) {
|
||
if self.is_async_block() {
|
||
// Check for `async {` and `async move {`.
|
||
self.parse_async_block(attrs)
|
||
} else {
|
||
self.parse_closure_expr(attrs)
|
||
}
|
||
} else if self.eat_keyword(kw::Await) {
|
||
self.recover_incorrect_await_syntax(lo, self.prev_token.span, attrs)
|
||
} else {
|
||
self.parse_lit_expr(attrs)
|
||
}
|
||
} else {
|
||
self.parse_lit_expr(attrs)
|
||
}
|
||
}
|
||
|
||
fn maybe_collect_tokens(
|
||
&mut self,
|
||
has_outer_attrs: bool,
|
||
f: impl FnOnce(&mut Self) -> PResult<'a, P<Expr>>,
|
||
) -> PResult<'a, P<Expr>> {
|
||
if has_outer_attrs {
|
||
let (mut expr, tokens) = self.collect_tokens(f)?;
|
||
debug!("maybe_collect_tokens: Collected tokens for {:?} (tokens {:?}", expr, tokens);
|
||
expr.tokens = Some(tokens);
|
||
Ok(expr)
|
||
} else {
|
||
f(self)
|
||
}
|
||
}
|
||
|
||
fn parse_lit_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
|
||
let lo = self.token.span;
|
||
match self.parse_opt_lit() {
|
||
Some(literal) => {
|
||
let expr = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Lit(literal), attrs);
|
||
self.maybe_recover_from_bad_qpath(expr, true)
|
||
}
|
||
None => self.try_macro_suggestion(),
|
||
}
|
||
}
|
||
|
||
fn parse_tuple_parens_expr(&mut self, mut attrs: AttrVec) -> PResult<'a, P<Expr>> {
|
||
let lo = self.token.span;
|
||
self.expect(&token::OpenDelim(token::Paren))?;
|
||
attrs.extend(self.parse_inner_attributes()?); // `(#![foo] a, b, ...)` is OK.
|
||
let (es, trailing_comma) = match self.parse_seq_to_end(
|
||
&token::CloseDelim(token::Paren),
|
||
SeqSep::trailing_allowed(token::Comma),
|
||
|p| p.parse_expr_catch_underscore(),
|
||
) {
|
||
Ok(x) => x,
|
||
Err(err) => return Ok(self.recover_seq_parse_error(token::Paren, lo, Err(err))),
|
||
};
|
||
let kind = if es.len() == 1 && !trailing_comma {
|
||
// `(e)` is parenthesized `e`.
|
||
ExprKind::Paren(es.into_iter().next().unwrap())
|
||
} else {
|
||
// `(e,)` is a tuple with only one field, `e`.
|
||
ExprKind::Tup(es)
|
||
};
|
||
let expr = self.mk_expr(lo.to(self.prev_token.span), kind, attrs);
|
||
self.maybe_recover_from_bad_qpath(expr, true)
|
||
}
|
||
|
||
fn parse_array_or_repeat_expr(&mut self, mut attrs: AttrVec) -> PResult<'a, P<Expr>> {
|
||
let lo = self.token.span;
|
||
self.bump(); // `[`
|
||
|
||
attrs.extend(self.parse_inner_attributes()?);
|
||
|
||
let close = &token::CloseDelim(token::Bracket);
|
||
let kind = if self.eat(close) {
|
||
// Empty vector
|
||
ExprKind::Array(Vec::new())
|
||
} else {
|
||
// Non-empty vector
|
||
let first_expr = self.parse_expr()?;
|
||
if self.eat(&token::Semi) {
|
||
// Repeating array syntax: `[ 0; 512 ]`
|
||
let count = self.parse_anon_const_expr()?;
|
||
self.expect(close)?;
|
||
ExprKind::Repeat(first_expr, count)
|
||
} else if self.eat(&token::Comma) {
|
||
// Vector with two or more elements.
|
||
let sep = SeqSep::trailing_allowed(token::Comma);
|
||
let (remaining_exprs, _) = self.parse_seq_to_end(close, sep, |p| p.parse_expr())?;
|
||
let mut exprs = vec![first_expr];
|
||
exprs.extend(remaining_exprs);
|
||
ExprKind::Array(exprs)
|
||
} else {
|
||
// Vector with one element
|
||
self.expect(close)?;
|
||
ExprKind::Array(vec![first_expr])
|
||
}
|
||
};
|
||
let expr = self.mk_expr(lo.to(self.prev_token.span), kind, attrs);
|
||
self.maybe_recover_from_bad_qpath(expr, true)
|
||
}
|
||
|
||
fn parse_path_start_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
|
||
let path = self.parse_path(PathStyle::Expr)?;
|
||
let lo = path.span;
|
||
|
||
// `!`, as an operator, is prefix, so we know this isn't that.
|
||
let (hi, kind) = if self.eat(&token::Not) {
|
||
// MACRO INVOCATION expression
|
||
let mac = MacCall {
|
||
path,
|
||
args: self.parse_mac_args()?,
|
||
prior_type_ascription: self.last_type_ascription,
|
||
};
|
||
(self.prev_token.span, ExprKind::MacCall(mac))
|
||
} else if self.check(&token::OpenDelim(token::Brace)) {
|
||
if let Some(expr) = self.maybe_parse_struct_expr(&path, &attrs) {
|
||
return expr;
|
||
} else {
|
||
(path.span, ExprKind::Path(None, path))
|
||
}
|
||
} else {
|
||
(path.span, ExprKind::Path(None, path))
|
||
};
|
||
|
||
let expr = self.mk_expr(lo.to(hi), kind, attrs);
|
||
self.maybe_recover_from_bad_qpath(expr, true)
|
||
}
|
||
|
||
/// Parse `'label: $expr`. The label is already parsed.
|
||
fn parse_labeled_expr(&mut self, label: Label, attrs: AttrVec) -> PResult<'a, P<Expr>> {
|
||
let lo = label.ident.span;
|
||
let label = Some(label);
|
||
let ate_colon = self.eat(&token::Colon);
|
||
let expr = if self.eat_keyword(kw::While) {
|
||
self.parse_while_expr(label, lo, attrs)
|
||
} else if self.eat_keyword(kw::For) {
|
||
self.parse_for_expr(label, lo, attrs)
|
||
} else if self.eat_keyword(kw::Loop) {
|
||
self.parse_loop_expr(label, lo, attrs)
|
||
} else if self.check(&token::OpenDelim(token::Brace)) || self.token.is_whole_block() {
|
||
self.parse_block_expr(label, lo, BlockCheckMode::Default, attrs)
|
||
} else {
|
||
let msg = "expected `while`, `for`, `loop` or `{` after a label";
|
||
self.struct_span_err(self.token.span, msg).span_label(self.token.span, msg).emit();
|
||
// Continue as an expression in an effort to recover on `'label: non_block_expr`.
|
||
self.parse_expr()
|
||
}?;
|
||
|
||
if !ate_colon {
|
||
self.error_labeled_expr_must_be_followed_by_colon(lo, expr.span);
|
||
}
|
||
|
||
Ok(expr)
|
||
}
|
||
|
||
fn error_labeled_expr_must_be_followed_by_colon(&self, lo: Span, span: Span) {
|
||
self.struct_span_err(span, "labeled expression must be followed by `:`")
|
||
.span_label(lo, "the label")
|
||
.span_suggestion_short(
|
||
lo.shrink_to_hi(),
|
||
"add `:` after the label",
|
||
": ".to_string(),
|
||
Applicability::MachineApplicable,
|
||
)
|
||
.note("labels are used before loops and blocks, allowing e.g., `break 'label` to them")
|
||
.emit();
|
||
}
|
||
|
||
/// Recover on the syntax `do catch { ... }` suggesting `try { ... }` instead.
|
||
fn recover_do_catch(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
|
||
let lo = self.token.span;
|
||
|
||
self.bump(); // `do`
|
||
self.bump(); // `catch`
|
||
|
||
let span_dc = lo.to(self.prev_token.span);
|
||
self.struct_span_err(span_dc, "found removed `do catch` syntax")
|
||
.span_suggestion(
|
||
span_dc,
|
||
"replace with the new syntax",
|
||
"try".to_string(),
|
||
Applicability::MachineApplicable,
|
||
)
|
||
.note("following RFC #2388, the new non-placeholder syntax is `try`")
|
||
.emit();
|
||
|
||
self.parse_try_block(lo, attrs)
|
||
}
|
||
|
||
/// Parse an expression if the token can begin one.
|
||
fn parse_expr_opt(&mut self) -> PResult<'a, Option<P<Expr>>> {
|
||
Ok(if self.token.can_begin_expr() { Some(self.parse_expr()?) } else { None })
|
||
}
|
||
|
||
/// Parse `"return" expr?`.
|
||
fn parse_return_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
|
||
let lo = self.prev_token.span;
|
||
let kind = ExprKind::Ret(self.parse_expr_opt()?);
|
||
let expr = self.mk_expr(lo.to(self.prev_token.span), kind, attrs);
|
||
self.maybe_recover_from_bad_qpath(expr, true)
|
||
}
|
||
|
||
/// Parse `"('label ":")? break expr?`.
|
||
fn parse_break_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
|
||
let lo = self.prev_token.span;
|
||
let label = self.eat_label();
|
||
let kind = if self.token != token::OpenDelim(token::Brace)
|
||
|| !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL)
|
||
{
|
||
self.parse_expr_opt()?
|
||
} else {
|
||
None
|
||
};
|
||
let expr = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Break(label, kind), attrs);
|
||
self.maybe_recover_from_bad_qpath(expr, true)
|
||
}
|
||
|
||
/// Parse `"yield" expr?`.
|
||
fn parse_yield_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
|
||
let lo = self.prev_token.span;
|
||
let kind = ExprKind::Yield(self.parse_expr_opt()?);
|
||
let span = lo.to(self.prev_token.span);
|
||
self.sess.gated_spans.gate(sym::generators, span);
|
||
let expr = self.mk_expr(span, kind, attrs);
|
||
self.maybe_recover_from_bad_qpath(expr, true)
|
||
}
|
||
|
||
/// Returns a string literal if the next token is a string literal.
|
||
/// In case of error returns `Some(lit)` if the next token is a literal with a wrong kind,
|
||
/// and returns `None` if the next token is not literal at all.
|
||
pub fn parse_str_lit(&mut self) -> Result<ast::StrLit, Option<Lit>> {
|
||
match self.parse_opt_lit() {
|
||
Some(lit) => match lit.kind {
|
||
ast::LitKind::Str(symbol_unescaped, style) => Ok(ast::StrLit {
|
||
style,
|
||
symbol: lit.token.symbol,
|
||
suffix: lit.token.suffix,
|
||
span: lit.span,
|
||
symbol_unescaped,
|
||
}),
|
||
_ => Err(Some(lit)),
|
||
},
|
||
None => Err(None),
|
||
}
|
||
}
|
||
|
||
pub(super) fn parse_lit(&mut self) -> PResult<'a, Lit> {
|
||
self.parse_opt_lit().ok_or_else(|| {
|
||
let msg = format!("unexpected token: {}", super::token_descr(&self.token));
|
||
self.struct_span_err(self.token.span, &msg)
|
||
})
|
||
}
|
||
|
||
/// Matches `lit = true | false | token_lit`.
|
||
/// Returns `None` if the next token is not a literal.
|
||
pub(super) fn parse_opt_lit(&mut self) -> Option<Lit> {
|
||
let mut recovered = None;
|
||
if self.token == token::Dot {
|
||
// Attempt to recover `.4` as `0.4`. We don't currently have any syntax where
|
||
// dot would follow an optional literal, so we do this unconditionally.
|
||
recovered = self.look_ahead(1, |next_token| {
|
||
if let token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) =
|
||
next_token.kind
|
||
{
|
||
if self.token.span.hi() == next_token.span.lo() {
|
||
let s = String::from("0.") + &symbol.as_str();
|
||
let kind = TokenKind::lit(token::Float, Symbol::intern(&s), suffix);
|
||
return Some(Token::new(kind, self.token.span.to(next_token.span)));
|
||
}
|
||
}
|
||
None
|
||
});
|
||
if let Some(token) = &recovered {
|
||
self.bump();
|
||
self.error_float_lits_must_have_int_part(&token);
|
||
}
|
||
}
|
||
|
||
let token = recovered.as_ref().unwrap_or(&self.token);
|
||
match Lit::from_token(token) {
|
||
Ok(lit) => {
|
||
self.bump();
|
||
Some(lit)
|
||
}
|
||
Err(LitError::NotLiteral) => None,
|
||
Err(err) => {
|
||
let span = token.span;
|
||
let lit = match token.kind {
|
||
token::Literal(lit) => lit,
|
||
_ => unreachable!(),
|
||
};
|
||
self.bump();
|
||
self.report_lit_error(err, lit, span);
|
||
// Pack possible quotes and prefixes from the original literal into
|
||
// the error literal's symbol so they can be pretty-printed faithfully.
|
||
let suffixless_lit = token::Lit::new(lit.kind, lit.symbol, None);
|
||
let symbol = Symbol::intern(&suffixless_lit.to_string());
|
||
let lit = token::Lit::new(token::Err, symbol, lit.suffix);
|
||
Some(Lit::from_lit_token(lit, span).unwrap_or_else(|_| unreachable!()))
|
||
}
|
||
}
|
||
}
|
||
|
||
fn error_float_lits_must_have_int_part(&self, token: &Token) {
|
||
self.struct_span_err(token.span, "float literals must have an integer part")
|
||
.span_suggestion(
|
||
token.span,
|
||
"must have an integer part",
|
||
pprust::token_to_string(token),
|
||
Applicability::MachineApplicable,
|
||
)
|
||
.emit();
|
||
}
|
||
|
||
fn report_lit_error(&self, err: LitError, lit: token::Lit, span: Span) {
|
||
// Checks if `s` looks like i32 or u1234 etc.
|
||
fn looks_like_width_suffix(first_chars: &[char], s: &str) -> bool {
|
||
s.len() > 1 && s.starts_with(first_chars) && s[1..].chars().all(|c| c.is_ascii_digit())
|
||
}
|
||
|
||
let token::Lit { kind, suffix, .. } = lit;
|
||
match err {
|
||
// `NotLiteral` is not an error by itself, so we don't report
|
||
// it and give the parser opportunity to try something else.
|
||
LitError::NotLiteral => {}
|
||
// `LexerError` *is* an error, but it was already reported
|
||
// by lexer, so here we don't report it the second time.
|
||
LitError::LexerError => {}
|
||
LitError::InvalidSuffix => {
|
||
self.expect_no_suffix(
|
||
span,
|
||
&format!("{} {} literal", kind.article(), kind.descr()),
|
||
suffix,
|
||
);
|
||
}
|
||
LitError::InvalidIntSuffix => {
|
||
let suf = suffix.expect("suffix error with no suffix").as_str();
|
||
if looks_like_width_suffix(&['i', 'u'], &suf) {
|
||
// If it looks like a width, try to be helpful.
|
||
let msg = format!("invalid width `{}` for integer literal", &suf[1..]);
|
||
self.struct_span_err(span, &msg)
|
||
.help("valid widths are 8, 16, 32, 64 and 128")
|
||
.emit();
|
||
} else {
|
||
let msg = format!("invalid suffix `{}` for integer literal", suf);
|
||
self.struct_span_err(span, &msg)
|
||
.span_label(span, format!("invalid suffix `{}`", suf))
|
||
.help("the suffix must be one of the integral types (`u32`, `isize`, etc)")
|
||
.emit();
|
||
}
|
||
}
|
||
LitError::InvalidFloatSuffix => {
|
||
let suf = suffix.expect("suffix error with no suffix").as_str();
|
||
if looks_like_width_suffix(&['f'], &suf) {
|
||
// If it looks like a width, try to be helpful.
|
||
let msg = format!("invalid width `{}` for float literal", &suf[1..]);
|
||
self.struct_span_err(span, &msg).help("valid widths are 32 and 64").emit();
|
||
} else {
|
||
let msg = format!("invalid suffix `{}` for float literal", suf);
|
||
self.struct_span_err(span, &msg)
|
||
.span_label(span, format!("invalid suffix `{}`", suf))
|
||
.help("valid suffixes are `f32` and `f64`")
|
||
.emit();
|
||
}
|
||
}
|
||
LitError::NonDecimalFloat(base) => {
|
||
let descr = match base {
|
||
16 => "hexadecimal",
|
||
8 => "octal",
|
||
2 => "binary",
|
||
_ => unreachable!(),
|
||
};
|
||
self.struct_span_err(span, &format!("{} float literal is not supported", descr))
|
||
.span_label(span, "not supported")
|
||
.emit();
|
||
}
|
||
LitError::IntTooLarge => {
|
||
self.struct_span_err(span, "integer literal is too large").emit();
|
||
}
|
||
}
|
||
}
|
||
|
||
pub(super) fn expect_no_suffix(&self, sp: Span, kind: &str, suffix: Option<Symbol>) {
|
||
if let Some(suf) = suffix {
|
||
let mut err = if kind == "a tuple index"
|
||
&& [sym::i32, sym::u32, sym::isize, sym::usize].contains(&suf)
|
||
{
|
||
// #59553: warn instead of reject out of hand to allow the fix to percolate
|
||
// through the ecosystem when people fix their macros
|
||
let mut err = self
|
||
.sess
|
||
.span_diagnostic
|
||
.struct_span_warn(sp, &format!("suffixes on {} are invalid", kind));
|
||
err.note(&format!(
|
||
"`{}` is *temporarily* accepted on tuple index fields as it was \
|
||
incorrectly accepted on stable for a few releases",
|
||
suf,
|
||
));
|
||
err.help(
|
||
"on proc macros, you'll want to use `syn::Index::from` or \
|
||
`proc_macro::Literal::*_unsuffixed` for code that will desugar \
|
||
to tuple field access",
|
||
);
|
||
err.note(
|
||
"see issue #60210 <https://github.com/rust-lang/rust/issues/60210> \
|
||
for more information",
|
||
);
|
||
err
|
||
} else {
|
||
self.struct_span_err(sp, &format!("suffixes on {} are invalid", kind))
|
||
};
|
||
err.span_label(sp, format!("invalid suffix `{}`", suf));
|
||
err.emit();
|
||
}
|
||
}
|
||
|
||
/// Matches `'-' lit | lit` (cf. `ast_validation::AstValidator::check_expr_within_pat`).
|
||
/// Keep this in sync with `Token::can_begin_literal_maybe_minus`.
|
||
pub fn parse_literal_maybe_minus(&mut self) -> PResult<'a, P<Expr>> {
|
||
maybe_whole_expr!(self);
|
||
|
||
let lo = self.token.span;
|
||
let minus_present = self.eat(&token::BinOp(token::Minus));
|
||
let lit = self.parse_lit()?;
|
||
let expr = self.mk_expr(lit.span, ExprKind::Lit(lit), AttrVec::new());
|
||
|
||
if minus_present {
|
||
Ok(self.mk_expr(
|
||
lo.to(self.prev_token.span),
|
||
self.mk_unary(UnOp::Neg, expr),
|
||
AttrVec::new(),
|
||
))
|
||
} else {
|
||
Ok(expr)
|
||
}
|
||
}
|
||
|
||
/// Parses a block or unsafe block.
|
||
pub(super) fn parse_block_expr(
|
||
&mut self,
|
||
opt_label: Option<Label>,
|
||
lo: Span,
|
||
blk_mode: BlockCheckMode,
|
||
mut attrs: AttrVec,
|
||
) -> PResult<'a, P<Expr>> {
|
||
if let Some(label) = opt_label {
|
||
self.sess.gated_spans.gate(sym::label_break_value, label.ident.span);
|
||
}
|
||
|
||
if self.token.is_whole_block() {
|
||
self.struct_span_err(self.token.span, "cannot use a `block` macro fragment here")
|
||
.span_label(lo.to(self.token.span), "the `block` fragment is within this context")
|
||
.emit();
|
||
}
|
||
|
||
let (inner_attrs, blk) = self.parse_block_common(lo, blk_mode)?;
|
||
attrs.extend(inner_attrs);
|
||
Ok(self.mk_expr(blk.span, ExprKind::Block(blk, opt_label), attrs))
|
||
}
|
||
|
||
/// Recover on an explicitly quantified closure expression, e.g., `for<'a> |x: &'a u8| *x + 1`.
|
||
fn recover_quantified_closure_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
|
||
let lo = self.token.span;
|
||
let _ = self.parse_late_bound_lifetime_defs()?;
|
||
let span_for = lo.to(self.prev_token.span);
|
||
let closure = self.parse_closure_expr(attrs)?;
|
||
|
||
self.struct_span_err(span_for, "cannot introduce explicit parameters for a closure")
|
||
.span_label(closure.span, "the parameters are attached to this closure")
|
||
.span_suggestion(
|
||
span_for,
|
||
"remove the parameters",
|
||
String::new(),
|
||
Applicability::MachineApplicable,
|
||
)
|
||
.emit();
|
||
|
||
Ok(self.mk_expr_err(lo.to(closure.span)))
|
||
}
|
||
|
||
/// Parses a closure expression (e.g., `move |args| expr`).
|
||
fn parse_closure_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
|
||
let lo = self.token.span;
|
||
|
||
let movability =
|
||
if self.eat_keyword(kw::Static) { Movability::Static } else { Movability::Movable };
|
||
|
||
let asyncness = if self.token.uninterpolated_span().rust_2018() {
|
||
self.parse_asyncness()
|
||
} else {
|
||
Async::No
|
||
};
|
||
if let Async::Yes { span, .. } = asyncness {
|
||
// Feature-gate `async ||` closures.
|
||
self.sess.gated_spans.gate(sym::async_closure, span);
|
||
}
|
||
|
||
let capture_clause = self.parse_capture_clause();
|
||
let decl = self.parse_fn_block_decl()?;
|
||
let decl_hi = self.prev_token.span;
|
||
let body = match decl.output {
|
||
FnRetTy::Default(_) => {
|
||
let restrictions = self.restrictions - Restrictions::STMT_EXPR;
|
||
self.parse_expr_res(restrictions, None)?
|
||
}
|
||
_ => {
|
||
// If an explicit return type is given, require a block to appear (RFC 968).
|
||
let body_lo = self.token.span;
|
||
self.parse_block_expr(None, body_lo, BlockCheckMode::Default, AttrVec::new())?
|
||
}
|
||
};
|
||
|
||
Ok(self.mk_expr(
|
||
lo.to(body.span),
|
||
ExprKind::Closure(capture_clause, asyncness, movability, decl, body, lo.to(decl_hi)),
|
||
attrs,
|
||
))
|
||
}
|
||
|
||
/// Parses an optional `move` prefix to a closure-like construct.
|
||
fn parse_capture_clause(&mut self) -> CaptureBy {
|
||
if self.eat_keyword(kw::Move) { CaptureBy::Value } else { CaptureBy::Ref }
|
||
}
|
||
|
||
/// Parses the `|arg, arg|` header of a closure.
|
||
fn parse_fn_block_decl(&mut self) -> PResult<'a, P<FnDecl>> {
|
||
let inputs = if self.eat(&token::OrOr) {
|
||
Vec::new()
|
||
} else {
|
||
self.expect(&token::BinOp(token::Or))?;
|
||
let args = self
|
||
.parse_seq_to_before_tokens(
|
||
&[&token::BinOp(token::Or), &token::OrOr],
|
||
SeqSep::trailing_allowed(token::Comma),
|
||
TokenExpectType::NoExpect,
|
||
|p| p.parse_fn_block_param(),
|
||
)?
|
||
.0;
|
||
self.expect_or()?;
|
||
args
|
||
};
|
||
let output = self.parse_ret_ty(AllowPlus::Yes, RecoverQPath::Yes)?;
|
||
|
||
Ok(P(FnDecl { inputs, output }))
|
||
}
|
||
|
||
/// Parses a parameter in a closure header (e.g., `|arg, arg|`).
|
||
fn parse_fn_block_param(&mut self) -> PResult<'a, Param> {
|
||
let lo = self.token.span;
|
||
let attrs = self.parse_outer_attributes()?;
|
||
let pat = self.parse_pat(PARAM_EXPECTED)?;
|
||
let ty = if self.eat(&token::Colon) {
|
||
self.parse_ty()?
|
||
} else {
|
||
self.mk_ty(self.prev_token.span, TyKind::Infer)
|
||
};
|
||
Ok(Param {
|
||
attrs: attrs.into(),
|
||
ty,
|
||
pat,
|
||
span: lo.to(self.token.span),
|
||
id: DUMMY_NODE_ID,
|
||
is_placeholder: false,
|
||
})
|
||
}
|
||
|
||
/// Parses an `if` expression (`if` token already eaten).
|
||
fn parse_if_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
|
||
let lo = self.prev_token.span;
|
||
let cond = self.parse_cond_expr()?;
|
||
|
||
// Verify that the parsed `if` condition makes sense as a condition. If it is a block, then
|
||
// verify that the last statement is either an implicit return (no `;`) or an explicit
|
||
// return. This won't catch blocks with an explicit `return`, but that would be caught by
|
||
// the dead code lint.
|
||
let thn = if self.eat_keyword(kw::Else) || !cond.returns() {
|
||
self.error_missing_if_cond(lo, cond.span)
|
||
} else {
|
||
let attrs = self.parse_outer_attributes()?; // For recovery.
|
||
let not_block = self.token != token::OpenDelim(token::Brace);
|
||
let block = self.parse_block().map_err(|mut err| {
|
||
if not_block {
|
||
err.span_label(lo, "this `if` expression has a condition, but no block");
|
||
if let ExprKind::Binary(_, _, ref right) = cond.kind {
|
||
if let ExprKind::Block(_, _) = right.kind {
|
||
err.help("maybe you forgot the right operand of the condition?");
|
||
}
|
||
}
|
||
}
|
||
err
|
||
})?;
|
||
self.error_on_if_block_attrs(lo, false, block.span, &attrs);
|
||
block
|
||
};
|
||
let els = if self.eat_keyword(kw::Else) { Some(self.parse_else_expr()?) } else { None };
|
||
Ok(self.mk_expr(lo.to(self.prev_token.span), ExprKind::If(cond, thn, els), attrs))
|
||
}
|
||
|
||
fn error_missing_if_cond(&self, lo: Span, span: Span) -> P<ast::Block> {
|
||
let sp = self.sess.source_map().next_point(lo);
|
||
self.struct_span_err(sp, "missing condition for `if` expression")
|
||
.span_label(sp, "expected if condition here")
|
||
.emit();
|
||
self.mk_block_err(span)
|
||
}
|
||
|
||
/// Parses the condition of a `if` or `while` expression.
|
||
fn parse_cond_expr(&mut self) -> PResult<'a, P<Expr>> {
|
||
let cond = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
|
||
|
||
if let ExprKind::Let(..) = cond.kind {
|
||
// Remove the last feature gating of a `let` expression since it's stable.
|
||
self.sess.gated_spans.ungate_last(sym::let_chains, cond.span);
|
||
}
|
||
|
||
Ok(cond)
|
||
}
|
||
|
||
/// Parses a `let $pat = $expr` pseudo-expression.
|
||
/// The `let` token has already been eaten.
|
||
fn parse_let_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
|
||
let lo = self.prev_token.span;
|
||
let pat = self.parse_top_pat(GateOr::No)?;
|
||
self.expect(&token::Eq)?;
|
||
let expr = self.with_res(Restrictions::NO_STRUCT_LITERAL, |this| {
|
||
this.parse_assoc_expr_with(1 + prec_let_scrutinee_needs_par(), None.into())
|
||
})?;
|
||
let span = lo.to(expr.span);
|
||
self.sess.gated_spans.gate(sym::let_chains, span);
|
||
Ok(self.mk_expr(span, ExprKind::Let(pat, expr), attrs))
|
||
}
|
||
|
||
/// Parses an `else { ... }` expression (`else` token already eaten).
|
||
fn parse_else_expr(&mut self) -> PResult<'a, P<Expr>> {
|
||
let ctx_span = self.prev_token.span; // `else`
|
||
let attrs = self.parse_outer_attributes()?; // For recovery.
|
||
let expr = if self.eat_keyword(kw::If) {
|
||
self.parse_if_expr(AttrVec::new())?
|
||
} else {
|
||
let blk = self.parse_block()?;
|
||
self.mk_expr(blk.span, ExprKind::Block(blk, None), AttrVec::new())
|
||
};
|
||
self.error_on_if_block_attrs(ctx_span, true, expr.span, &attrs);
|
||
Ok(expr)
|
||
}
|
||
|
||
fn error_on_if_block_attrs(
|
||
&self,
|
||
ctx_span: Span,
|
||
is_ctx_else: bool,
|
||
branch_span: Span,
|
||
attrs: &[ast::Attribute],
|
||
) {
|
||
let (span, last) = match attrs {
|
||
[] => return,
|
||
[x0 @ xn] | [x0, .., xn] => (x0.span.to(xn.span), xn.span),
|
||
};
|
||
let ctx = if is_ctx_else { "else" } else { "if" };
|
||
self.struct_span_err(last, "outer attributes are not allowed on `if` and `else` branches")
|
||
.span_label(branch_span, "the attributes are attached to this branch")
|
||
.span_label(ctx_span, format!("the branch belongs to this `{}`", ctx))
|
||
.span_suggestion(
|
||
span,
|
||
"remove the attributes",
|
||
String::new(),
|
||
Applicability::MachineApplicable,
|
||
)
|
||
.emit();
|
||
}
|
||
|
||
/// Parses `for <src_pat> in <src_expr> <src_loop_block>` (`for` token already eaten).
|
||
fn parse_for_expr(
|
||
&mut self,
|
||
opt_label: Option<Label>,
|
||
lo: Span,
|
||
mut attrs: AttrVec,
|
||
) -> PResult<'a, P<Expr>> {
|
||
// Record whether we are about to parse `for (`.
|
||
// This is used below for recovery in case of `for ( $stuff ) $block`
|
||
// in which case we will suggest `for $stuff $block`.
|
||
let begin_paren = match self.token.kind {
|
||
token::OpenDelim(token::Paren) => Some(self.token.span),
|
||
_ => None,
|
||
};
|
||
|
||
let pat = self.parse_top_pat(GateOr::Yes)?;
|
||
if !self.eat_keyword(kw::In) {
|
||
self.error_missing_in_for_loop();
|
||
}
|
||
self.check_for_for_in_in_typo(self.prev_token.span);
|
||
let expr = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
|
||
|
||
let pat = self.recover_parens_around_for_head(pat, &expr, begin_paren);
|
||
|
||
let (iattrs, loop_block) = self.parse_inner_attrs_and_block()?;
|
||
attrs.extend(iattrs);
|
||
|
||
let kind = ExprKind::ForLoop(pat, expr, loop_block, opt_label);
|
||
Ok(self.mk_expr(lo.to(self.prev_token.span), kind, attrs))
|
||
}
|
||
|
||
fn error_missing_in_for_loop(&mut self) {
|
||
let (span, msg, sugg) = if self.token.is_ident_named(sym::of) {
|
||
// Possibly using JS syntax (#75311).
|
||
let span = self.token.span;
|
||
self.bump();
|
||
(span, "try using `in` here instead", "in")
|
||
} else {
|
||
(self.prev_token.span.between(self.token.span), "try adding `in` here", " in ")
|
||
};
|
||
self.struct_span_err(span, "missing `in` in `for` loop")
|
||
.span_suggestion_short(
|
||
span,
|
||
msg,
|
||
sugg.into(),
|
||
// Has been misleading, at least in the past (closed Issue #48492).
|
||
Applicability::MaybeIncorrect,
|
||
)
|
||
.emit();
|
||
}
|
||
|
||
/// Parses a `while` or `while let` expression (`while` token already eaten).
|
||
fn parse_while_expr(
|
||
&mut self,
|
||
opt_label: Option<Label>,
|
||
lo: Span,
|
||
mut attrs: AttrVec,
|
||
) -> PResult<'a, P<Expr>> {
|
||
let cond = self.parse_cond_expr()?;
|
||
let (iattrs, body) = self.parse_inner_attrs_and_block()?;
|
||
attrs.extend(iattrs);
|
||
Ok(self.mk_expr(lo.to(self.prev_token.span), ExprKind::While(cond, body, opt_label), attrs))
|
||
}
|
||
|
||
/// Parses `loop { ... }` (`loop` token already eaten).
|
||
fn parse_loop_expr(
|
||
&mut self,
|
||
opt_label: Option<Label>,
|
||
lo: Span,
|
||
mut attrs: AttrVec,
|
||
) -> PResult<'a, P<Expr>> {
|
||
let (iattrs, body) = self.parse_inner_attrs_and_block()?;
|
||
attrs.extend(iattrs);
|
||
Ok(self.mk_expr(lo.to(self.prev_token.span), ExprKind::Loop(body, opt_label), attrs))
|
||
}
|
||
|
||
fn eat_label(&mut self) -> Option<Label> {
|
||
self.token.lifetime().map(|ident| {
|
||
self.bump();
|
||
Label { ident }
|
||
})
|
||
}
|
||
|
||
/// Parses a `match ... { ... }` expression (`match` token already eaten).
|
||
fn parse_match_expr(&mut self, mut attrs: AttrVec) -> PResult<'a, P<Expr>> {
|
||
let match_span = self.prev_token.span;
|
||
let lo = self.prev_token.span;
|
||
let scrutinee = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
|
||
if let Err(mut e) = self.expect(&token::OpenDelim(token::Brace)) {
|
||
if self.token == token::Semi {
|
||
e.span_suggestion_short(
|
||
match_span,
|
||
"try removing this `match`",
|
||
String::new(),
|
||
Applicability::MaybeIncorrect, // speculative
|
||
);
|
||
}
|
||
return Err(e);
|
||
}
|
||
attrs.extend(self.parse_inner_attributes()?);
|
||
|
||
let mut arms: Vec<Arm> = Vec::new();
|
||
while self.token != token::CloseDelim(token::Brace) {
|
||
match self.parse_arm() {
|
||
Ok(arm) => arms.push(arm),
|
||
Err(mut e) => {
|
||
// Recover by skipping to the end of the block.
|
||
e.emit();
|
||
self.recover_stmt();
|
||
let span = lo.to(self.token.span);
|
||
if self.token == token::CloseDelim(token::Brace) {
|
||
self.bump();
|
||
}
|
||
return Ok(self.mk_expr(span, ExprKind::Match(scrutinee, arms), attrs));
|
||
}
|
||
}
|
||
}
|
||
let hi = self.token.span;
|
||
self.bump();
|
||
Ok(self.mk_expr(lo.to(hi), ExprKind::Match(scrutinee, arms), attrs))
|
||
}
|
||
|
||
pub(super) fn parse_arm(&mut self) -> PResult<'a, Arm> {
|
||
let attrs = self.parse_outer_attributes()?;
|
||
let lo = self.token.span;
|
||
let pat = self.parse_top_pat(GateOr::No)?;
|
||
let guard = if self.eat_keyword(kw::If) {
|
||
let if_span = self.prev_token.span;
|
||
let cond = self.parse_expr()?;
|
||
if let ExprKind::Let(..) = cond.kind {
|
||
// Remove the last feature gating of a `let` expression since it's stable.
|
||
self.sess.gated_spans.ungate_last(sym::let_chains, cond.span);
|
||
let span = if_span.to(cond.span);
|
||
self.sess.gated_spans.gate(sym::if_let_guard, span);
|
||
}
|
||
Some(cond)
|
||
} else {
|
||
None
|
||
};
|
||
let arrow_span = self.token.span;
|
||
self.expect(&token::FatArrow)?;
|
||
let arm_start_span = self.token.span;
|
||
|
||
let expr = self.parse_expr_res(Restrictions::STMT_EXPR, None).map_err(|mut err| {
|
||
err.span_label(arrow_span, "while parsing the `match` arm starting here");
|
||
err
|
||
})?;
|
||
|
||
let require_comma = classify::expr_requires_semi_to_be_stmt(&expr)
|
||
&& self.token != token::CloseDelim(token::Brace);
|
||
|
||
let hi = self.prev_token.span;
|
||
|
||
if require_comma {
|
||
let sm = self.sess.source_map();
|
||
self.expect_one_of(&[token::Comma], &[token::CloseDelim(token::Brace)]).map_err(
|
||
|mut err| {
|
||
match (sm.span_to_lines(expr.span), sm.span_to_lines(arm_start_span)) {
|
||
(Ok(ref expr_lines), Ok(ref arm_start_lines))
|
||
if arm_start_lines.lines[0].end_col == expr_lines.lines[0].end_col
|
||
&& expr_lines.lines.len() == 2
|
||
&& self.token == token::FatArrow =>
|
||
{
|
||
// We check whether there's any trailing code in the parse span,
|
||
// if there isn't, we very likely have the following:
|
||
//
|
||
// X | &Y => "y"
|
||
// | -- - missing comma
|
||
// | |
|
||
// | arrow_span
|
||
// X | &X => "x"
|
||
// | - ^^ self.token.span
|
||
// | |
|
||
// | parsed until here as `"y" & X`
|
||
err.span_suggestion_short(
|
||
arm_start_span.shrink_to_hi(),
|
||
"missing a comma here to end this `match` arm",
|
||
",".to_owned(),
|
||
Applicability::MachineApplicable,
|
||
);
|
||
}
|
||
_ => {
|
||
err.span_label(
|
||
arrow_span,
|
||
"while parsing the `match` arm starting here",
|
||
);
|
||
}
|
||
}
|
||
err
|
||
},
|
||
)?;
|
||
} else {
|
||
self.eat(&token::Comma);
|
||
}
|
||
|
||
Ok(ast::Arm {
|
||
attrs,
|
||
pat,
|
||
guard,
|
||
body: expr,
|
||
span: lo.to(hi),
|
||
id: DUMMY_NODE_ID,
|
||
is_placeholder: false,
|
||
})
|
||
}
|
||
|
||
/// Parses a `try {...}` expression (`try` token already eaten).
|
||
fn parse_try_block(&mut self, span_lo: Span, mut attrs: AttrVec) -> PResult<'a, P<Expr>> {
|
||
let (iattrs, body) = self.parse_inner_attrs_and_block()?;
|
||
attrs.extend(iattrs);
|
||
if self.eat_keyword(kw::Catch) {
|
||
let mut error = self.struct_span_err(
|
||
self.prev_token.span,
|
||
"keyword `catch` cannot follow a `try` block",
|
||
);
|
||
error.help("try using `match` on the result of the `try` block instead");
|
||
error.emit();
|
||
Err(error)
|
||
} else {
|
||
let span = span_lo.to(body.span);
|
||
self.sess.gated_spans.gate(sym::try_blocks, span);
|
||
Ok(self.mk_expr(span, ExprKind::TryBlock(body), attrs))
|
||
}
|
||
}
|
||
|
||
fn is_do_catch_block(&self) -> bool {
|
||
self.token.is_keyword(kw::Do)
|
||
&& self.is_keyword_ahead(1, &[kw::Catch])
|
||
&& self.look_ahead(2, |t| *t == token::OpenDelim(token::Brace))
|
||
&& !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL)
|
||
}
|
||
|
||
fn is_try_block(&self) -> bool {
|
||
self.token.is_keyword(kw::Try)
|
||
&& self.look_ahead(1, |t| *t == token::OpenDelim(token::Brace))
|
||
&& self.token.uninterpolated_span().rust_2018()
|
||
}
|
||
|
||
/// Parses an `async move? {...}` expression.
|
||
fn parse_async_block(&mut self, mut attrs: AttrVec) -> PResult<'a, P<Expr>> {
|
||
let lo = self.token.span;
|
||
self.expect_keyword(kw::Async)?;
|
||
let capture_clause = self.parse_capture_clause();
|
||
let (iattrs, body) = self.parse_inner_attrs_and_block()?;
|
||
attrs.extend(iattrs);
|
||
let kind = ExprKind::Async(capture_clause, DUMMY_NODE_ID, body);
|
||
Ok(self.mk_expr(lo.to(self.prev_token.span), kind, attrs))
|
||
}
|
||
|
||
fn is_async_block(&self) -> bool {
|
||
self.token.is_keyword(kw::Async)
|
||
&& ((
|
||
// `async move {`
|
||
self.is_keyword_ahead(1, &[kw::Move])
|
||
&& self.look_ahead(2, |t| *t == token::OpenDelim(token::Brace))
|
||
) || (
|
||
// `async {`
|
||
self.look_ahead(1, |t| *t == token::OpenDelim(token::Brace))
|
||
))
|
||
}
|
||
|
||
fn is_certainly_not_a_block(&self) -> bool {
|
||
self.look_ahead(1, |t| t.is_ident())
|
||
&& (
|
||
// `{ ident, ` cannot start a block.
|
||
self.look_ahead(2, |t| t == &token::Comma)
|
||
|| self.look_ahead(2, |t| t == &token::Colon)
|
||
&& (
|
||
// `{ ident: token, ` cannot start a block.
|
||
self.look_ahead(4, |t| t == &token::Comma) ||
|
||
// `{ ident: ` cannot start a block unless it's a type ascription `ident: Type`.
|
||
self.look_ahead(3, |t| !t.can_begin_type())
|
||
)
|
||
)
|
||
}
|
||
|
||
fn maybe_parse_struct_expr(
|
||
&mut self,
|
||
path: &ast::Path,
|
||
attrs: &AttrVec,
|
||
) -> Option<PResult<'a, P<Expr>>> {
|
||
let struct_allowed = !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL);
|
||
if struct_allowed || self.is_certainly_not_a_block() {
|
||
if let Err(err) = self.expect(&token::OpenDelim(token::Brace)) {
|
||
return Some(Err(err));
|
||
}
|
||
let expr = self.parse_struct_expr(path.clone(), attrs.clone(), true);
|
||
if let (Ok(expr), false) = (&expr, struct_allowed) {
|
||
// This is a struct literal, but we don't can't accept them here.
|
||
self.error_struct_lit_not_allowed_here(path.span, expr.span);
|
||
}
|
||
return Some(expr);
|
||
}
|
||
None
|
||
}
|
||
|
||
fn error_struct_lit_not_allowed_here(&self, lo: Span, sp: Span) {
|
||
self.struct_span_err(sp, "struct literals are not allowed here")
|
||
.multipart_suggestion(
|
||
"surround the struct literal with parentheses",
|
||
vec![(lo.shrink_to_lo(), "(".to_string()), (sp.shrink_to_hi(), ")".to_string())],
|
||
Applicability::MachineApplicable,
|
||
)
|
||
.emit();
|
||
}
|
||
|
||
/// Precondition: already parsed the '{'.
|
||
pub(super) fn parse_struct_expr(
|
||
&mut self,
|
||
pth: ast::Path,
|
||
mut attrs: AttrVec,
|
||
recover: bool,
|
||
) -> PResult<'a, P<Expr>> {
|
||
let mut fields = Vec::new();
|
||
let mut base = None;
|
||
let mut recover_async = false;
|
||
|
||
attrs.extend(self.parse_inner_attributes()?);
|
||
|
||
let mut async_block_err = |e: &mut DiagnosticBuilder<'_>, span: Span| {
|
||
recover_async = true;
|
||
e.span_label(span, "`async` blocks are only allowed in the 2018 edition");
|
||
e.help("set `edition = \"2018\"` in `Cargo.toml`");
|
||
e.note("for more on editions, read https://doc.rust-lang.org/edition-guide");
|
||
};
|
||
|
||
while self.token != token::CloseDelim(token::Brace) {
|
||
if self.eat(&token::DotDot) {
|
||
let exp_span = self.prev_token.span;
|
||
match self.parse_expr() {
|
||
Ok(e) => base = Some(e),
|
||
Err(mut e) if recover => {
|
||
e.emit();
|
||
self.recover_stmt();
|
||
}
|
||
Err(e) => return Err(e),
|
||
}
|
||
self.recover_struct_comma_after_dotdot(exp_span);
|
||
break;
|
||
}
|
||
|
||
let recovery_field = self.find_struct_error_after_field_looking_code();
|
||
let parsed_field = match self.parse_field() {
|
||
Ok(f) => Some(f),
|
||
Err(mut e) => {
|
||
if pth == kw::Async {
|
||
async_block_err(&mut e, pth.span);
|
||
} else {
|
||
e.span_label(pth.span, "while parsing this struct");
|
||
}
|
||
e.emit();
|
||
|
||
// If the next token is a comma, then try to parse
|
||
// what comes next as additional fields, rather than
|
||
// bailing out until next `}`.
|
||
if self.token != token::Comma {
|
||
self.recover_stmt_(SemiColonMode::Comma, BlockMode::Ignore);
|
||
if self.token != token::Comma {
|
||
break;
|
||
}
|
||
}
|
||
None
|
||
}
|
||
};
|
||
|
||
match self.expect_one_of(&[token::Comma], &[token::CloseDelim(token::Brace)]) {
|
||
Ok(_) => {
|
||
if let Some(f) = parsed_field.or(recovery_field) {
|
||
// Only include the field if there's no parse error for the field name.
|
||
fields.push(f);
|
||
}
|
||
}
|
||
Err(mut e) => {
|
||
if pth == kw::Async {
|
||
async_block_err(&mut e, pth.span);
|
||
} else {
|
||
e.span_label(pth.span, "while parsing this struct");
|
||
if let Some(f) = recovery_field {
|
||
fields.push(f);
|
||
e.span_suggestion(
|
||
self.prev_token.span.shrink_to_hi(),
|
||
"try adding a comma",
|
||
",".into(),
|
||
Applicability::MachineApplicable,
|
||
);
|
||
}
|
||
}
|
||
if !recover {
|
||
return Err(e);
|
||
}
|
||
e.emit();
|
||
self.recover_stmt_(SemiColonMode::Comma, BlockMode::Ignore);
|
||
self.eat(&token::Comma);
|
||
}
|
||
}
|
||
}
|
||
|
||
let span = pth.span.to(self.token.span);
|
||
self.expect(&token::CloseDelim(token::Brace))?;
|
||
let expr = if recover_async { ExprKind::Err } else { ExprKind::Struct(pth, fields, base) };
|
||
Ok(self.mk_expr(span, expr, attrs))
|
||
}
|
||
|
||
/// Use in case of error after field-looking code: `S { foo: () with a }`.
|
||
fn find_struct_error_after_field_looking_code(&self) -> Option<Field> {
|
||
match self.token.ident() {
|
||
Some((ident, is_raw))
|
||
if (is_raw || !ident.is_reserved())
|
||
&& self.look_ahead(1, |t| *t == token::Colon) =>
|
||
{
|
||
Some(ast::Field {
|
||
ident,
|
||
span: self.token.span,
|
||
expr: self.mk_expr_err(self.token.span),
|
||
is_shorthand: false,
|
||
attrs: AttrVec::new(),
|
||
id: DUMMY_NODE_ID,
|
||
is_placeholder: false,
|
||
})
|
||
}
|
||
_ => None,
|
||
}
|
||
}
|
||
|
||
fn recover_struct_comma_after_dotdot(&mut self, span: Span) {
|
||
if self.token != token::Comma {
|
||
return;
|
||
}
|
||
self.struct_span_err(
|
||
span.to(self.prev_token.span),
|
||
"cannot use a comma after the base struct",
|
||
)
|
||
.span_suggestion_short(
|
||
self.token.span,
|
||
"remove this comma",
|
||
String::new(),
|
||
Applicability::MachineApplicable,
|
||
)
|
||
.note("the base struct must always be the last field")
|
||
.emit();
|
||
self.recover_stmt();
|
||
}
|
||
|
||
/// Parses `ident (COLON expr)?`.
|
||
fn parse_field(&mut self) -> PResult<'a, Field> {
|
||
let attrs = self.parse_outer_attributes()?.into();
|
||
let lo = self.token.span;
|
||
|
||
// Check if a colon exists one ahead. This means we're parsing a fieldname.
|
||
let is_shorthand = !self.look_ahead(1, |t| t == &token::Colon || t == &token::Eq);
|
||
let (ident, expr) = if is_shorthand {
|
||
// Mimic `x: x` for the `x` field shorthand.
|
||
let ident = self.parse_ident_common(false)?;
|
||
let path = ast::Path::from_ident(ident);
|
||
(ident, self.mk_expr(ident.span, ExprKind::Path(None, path), AttrVec::new()))
|
||
} else {
|
||
let ident = self.parse_field_name()?;
|
||
self.error_on_eq_field_init(ident);
|
||
self.bump(); // `:`
|
||
(ident, self.parse_expr()?)
|
||
};
|
||
Ok(ast::Field {
|
||
ident,
|
||
span: lo.to(expr.span),
|
||
expr,
|
||
is_shorthand,
|
||
attrs,
|
||
id: DUMMY_NODE_ID,
|
||
is_placeholder: false,
|
||
})
|
||
}
|
||
|
||
/// Check for `=`. This means the source incorrectly attempts to
|
||
/// initialize a field with an eq rather than a colon.
|
||
fn error_on_eq_field_init(&self, field_name: Ident) {
|
||
if self.token != token::Eq {
|
||
return;
|
||
}
|
||
|
||
self.struct_span_err(self.token.span, "expected `:`, found `=`")
|
||
.span_suggestion(
|
||
field_name.span.shrink_to_hi().to(self.token.span),
|
||
"replace equals symbol with a colon",
|
||
":".to_string(),
|
||
Applicability::MachineApplicable,
|
||
)
|
||
.emit();
|
||
}
|
||
|
||
fn err_dotdotdot_syntax(&self, span: Span) {
|
||
self.struct_span_err(span, "unexpected token: `...`")
|
||
.span_suggestion(
|
||
span,
|
||
"use `..` for an exclusive range",
|
||
"..".to_owned(),
|
||
Applicability::MaybeIncorrect,
|
||
)
|
||
.span_suggestion(
|
||
span,
|
||
"or `..=` for an inclusive range",
|
||
"..=".to_owned(),
|
||
Applicability::MaybeIncorrect,
|
||
)
|
||
.emit();
|
||
}
|
||
|
||
fn err_larrow_operator(&self, span: Span) {
|
||
self.struct_span_err(span, "unexpected token: `<-`")
|
||
.span_suggestion(
|
||
span,
|
||
"if you meant to write a comparison against a negative value, add a \
|
||
space in between `<` and `-`",
|
||
"< -".to_string(),
|
||
Applicability::MaybeIncorrect,
|
||
)
|
||
.emit();
|
||
}
|
||
|
||
fn mk_assign_op(&self, binop: BinOp, lhs: P<Expr>, rhs: P<Expr>) -> ExprKind {
|
||
ExprKind::AssignOp(binop, lhs, rhs)
|
||
}
|
||
|
||
fn mk_range(
|
||
&self,
|
||
start: Option<P<Expr>>,
|
||
end: Option<P<Expr>>,
|
||
limits: RangeLimits,
|
||
) -> PResult<'a, ExprKind> {
|
||
if end.is_none() && limits == RangeLimits::Closed {
|
||
self.error_inclusive_range_with_no_end(self.prev_token.span);
|
||
Ok(ExprKind::Err)
|
||
} else {
|
||
Ok(ExprKind::Range(start, end, limits))
|
||
}
|
||
}
|
||
|
||
fn mk_unary(&self, unop: UnOp, expr: P<Expr>) -> ExprKind {
|
||
ExprKind::Unary(unop, expr)
|
||
}
|
||
|
||
fn mk_binary(&self, binop: BinOp, lhs: P<Expr>, rhs: P<Expr>) -> ExprKind {
|
||
ExprKind::Binary(binop, lhs, rhs)
|
||
}
|
||
|
||
fn mk_index(&self, expr: P<Expr>, idx: P<Expr>) -> ExprKind {
|
||
ExprKind::Index(expr, idx)
|
||
}
|
||
|
||
fn mk_call(&self, f: P<Expr>, args: Vec<P<Expr>>) -> ExprKind {
|
||
ExprKind::Call(f, args)
|
||
}
|
||
|
||
fn mk_await_expr(&mut self, self_arg: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> {
|
||
let span = lo.to(self.prev_token.span);
|
||
let await_expr = self.mk_expr(span, ExprKind::Await(self_arg), AttrVec::new());
|
||
self.recover_from_await_method_call();
|
||
Ok(await_expr)
|
||
}
|
||
|
||
crate fn mk_expr(&self, span: Span, kind: ExprKind, attrs: AttrVec) -> P<Expr> {
|
||
P(Expr { kind, span, attrs, id: DUMMY_NODE_ID, tokens: None })
|
||
}
|
||
|
||
pub(super) fn mk_expr_err(&self, span: Span) -> P<Expr> {
|
||
self.mk_expr(span, ExprKind::Err, AttrVec::new())
|
||
}
|
||
|
||
/// Create expression span ensuring the span of the parent node
|
||
/// is larger than the span of lhs and rhs, including the attributes.
|
||
fn mk_expr_sp(&self, lhs: &P<Expr>, lhs_span: Span, rhs_span: Span) -> Span {
|
||
lhs.attrs
|
||
.iter()
|
||
.find(|a| a.style == AttrStyle::Outer)
|
||
.map_or(lhs_span, |a| a.span)
|
||
.to(rhs_span)
|
||
}
|
||
}
|