rust/compiler/rustc_parse/src/parser/generics.rs
Felix S. Klock II 6a6c6b891b Separate contract feature gates for the internal machinery
The extended syntax for function signature that includes contract clauses
should never be user exposed versus the interface we want to ship
externally eventually.
2025-02-03 13:55:15 -08:00

553 lines
23 KiB
Rust

use ast::token::Delimiter;
use rustc_ast::{
self as ast, AttrVec, DUMMY_NODE_ID, GenericBounds, GenericParam, GenericParamKind, TyKind,
WhereClause, token,
};
use rustc_errors::{Applicability, PResult};
use rustc_span::{Ident, Span, kw, sym};
use thin_vec::ThinVec;
use super::{ForceCollect, Parser, Trailing, UsePreAttrPos};
use crate::errors::{
self, MultipleWhereClauses, UnexpectedDefaultValueForLifetimeInGenericParameters,
UnexpectedSelfInGenericParameters, WhereClauseBeforeTupleStructBody,
WhereClauseBeforeTupleStructBodySugg,
};
use crate::exp;
enum PredicateKindOrStructBody {
PredicateKind(ast::WherePredicateKind),
StructBody(ThinVec<ast::FieldDef>),
}
impl<'a> Parser<'a> {
/// Parses bounds of a lifetime parameter `BOUND + BOUND + BOUND`, possibly with trailing `+`.
///
/// ```text
/// BOUND = LT_BOUND (e.g., `'a`)
/// ```
fn parse_lt_param_bounds(&mut self) -> GenericBounds {
let mut lifetimes = Vec::new();
while self.check_lifetime() {
lifetimes.push(ast::GenericBound::Outlives(self.expect_lifetime()));
if !self.eat_plus() {
break;
}
}
lifetimes
}
/// Matches `typaram = IDENT (`?` unbound)? optbounds ( EQ ty )?`.
fn parse_ty_param(&mut self, preceding_attrs: AttrVec) -> PResult<'a, GenericParam> {
let ident = self.parse_ident()?;
// We might have a typo'd `Const` that was parsed as a type parameter.
if self.may_recover()
&& ident.name.as_str().to_ascii_lowercase() == kw::Const.as_str()
&& self.check_ident()
// `Const` followed by IDENT
{
return self.recover_const_param_with_mistyped_const(preceding_attrs, ident);
}
// Parse optional colon and param bounds.
let mut colon_span = None;
let bounds = if self.eat(exp!(Colon)) {
colon_span = Some(self.prev_token.span);
// recover from `impl Trait` in type param bound
if self.token.is_keyword(kw::Impl) {
let impl_span = self.token.span;
let snapshot = self.create_snapshot_for_diagnostic();
match self.parse_ty() {
Ok(p) => {
if let TyKind::ImplTrait(_, bounds) = &p.kind {
let span = impl_span.to(self.token.span.shrink_to_lo());
let mut err = self.dcx().struct_span_err(
span,
"expected trait bound, found `impl Trait` type",
);
err.span_label(span, "not a trait");
if let [bound, ..] = &bounds[..] {
err.span_suggestion_verbose(
impl_span.until(bound.span()),
"use the trait bounds directly",
String::new(),
Applicability::MachineApplicable,
);
}
return Err(err);
}
}
Err(err) => {
err.cancel();
}
}
self.restore_snapshot(snapshot);
}
self.parse_generic_bounds()?
} else {
Vec::new()
};
let default = if self.eat(exp!(Eq)) { Some(self.parse_ty()?) } else { None };
Ok(GenericParam {
ident,
id: ast::DUMMY_NODE_ID,
attrs: preceding_attrs,
bounds,
kind: GenericParamKind::Type { default },
is_placeholder: false,
colon_span,
})
}
pub(crate) fn parse_const_param(
&mut self,
preceding_attrs: AttrVec,
) -> PResult<'a, GenericParam> {
let const_span = self.token.span;
self.expect_keyword(exp!(Const))?;
let ident = self.parse_ident()?;
self.expect(exp!(Colon))?;
let ty = self.parse_ty()?;
// Parse optional const generics default value.
let default = if self.eat(exp!(Eq)) { Some(self.parse_const_arg()?) } else { None };
Ok(GenericParam {
ident,
id: ast::DUMMY_NODE_ID,
attrs: preceding_attrs,
bounds: Vec::new(),
kind: GenericParamKind::Const { ty, kw_span: const_span, default },
is_placeholder: false,
colon_span: None,
})
}
pub(crate) fn recover_const_param_with_mistyped_const(
&mut self,
preceding_attrs: AttrVec,
mistyped_const_ident: Ident,
) -> PResult<'a, GenericParam> {
let ident = self.parse_ident()?;
self.expect(exp!(Colon))?;
let ty = self.parse_ty()?;
// Parse optional const generics default value.
let default = if self.eat(exp!(Eq)) { Some(self.parse_const_arg()?) } else { None };
self.dcx()
.struct_span_err(
mistyped_const_ident.span,
format!("`const` keyword was mistyped as `{}`", mistyped_const_ident.as_str()),
)
.with_span_suggestion_verbose(
mistyped_const_ident.span,
"use the `const` keyword",
kw::Const,
Applicability::MachineApplicable,
)
.emit();
Ok(GenericParam {
ident,
id: ast::DUMMY_NODE_ID,
attrs: preceding_attrs,
bounds: Vec::new(),
kind: GenericParamKind::Const { ty, kw_span: mistyped_const_ident.span, default },
is_placeholder: false,
colon_span: None,
})
}
/// Parses a (possibly empty) list of lifetime and type parameters, possibly including
/// a trailing comma and erroneous trailing attributes.
pub(super) fn parse_generic_params(&mut self) -> PResult<'a, ThinVec<ast::GenericParam>> {
let mut params = ThinVec::new();
let mut done = false;
while !done {
let attrs = self.parse_outer_attributes()?;
let param = self.collect_tokens(None, attrs, ForceCollect::No, |this, attrs| {
if this.eat_keyword_noexpect(kw::SelfUpper) {
// `Self` as a generic param is invalid. Here we emit the diagnostic and continue parsing
// as if `Self` never existed.
this.dcx()
.emit_err(UnexpectedSelfInGenericParameters { span: this.prev_token.span });
// Eat a trailing comma, if it exists.
let _ = this.eat(exp!(Comma));
}
let param = if this.check_lifetime() {
let lifetime = this.expect_lifetime();
// Parse lifetime parameter.
let (colon_span, bounds) = if this.eat(exp!(Colon)) {
(Some(this.prev_token.span), this.parse_lt_param_bounds())
} else {
(None, Vec::new())
};
if this.check_noexpect(&token::Eq) && this.look_ahead(1, |t| t.is_lifetime()) {
let lo = this.token.span;
// Parse `= 'lifetime`.
this.bump(); // `=`
this.bump(); // `'lifetime`
let span = lo.to(this.prev_token.span);
this.dcx().emit_err(UnexpectedDefaultValueForLifetimeInGenericParameters {
span,
});
}
Some(ast::GenericParam {
ident: lifetime.ident,
id: lifetime.id,
attrs,
bounds,
kind: ast::GenericParamKind::Lifetime,
is_placeholder: false,
colon_span,
})
} else if this.check_keyword(exp!(Const)) {
// Parse const parameter.
Some(this.parse_const_param(attrs)?)
} else if this.check_ident() {
// Parse type parameter.
Some(this.parse_ty_param(attrs)?)
} else if this.token.can_begin_type() {
// Trying to write an associated type bound? (#26271)
let snapshot = this.create_snapshot_for_diagnostic();
let lo = this.token.span;
match this.parse_ty_where_predicate_kind() {
Ok(_) => {
this.dcx().emit_err(errors::BadAssocTypeBounds {
span: lo.to(this.prev_token.span),
});
// FIXME - try to continue parsing other generics?
}
Err(err) => {
err.cancel();
// FIXME - maybe we should overwrite 'self' outside of `collect_tokens`?
this.restore_snapshot(snapshot);
}
}
return Ok((None, Trailing::No, UsePreAttrPos::No));
} else {
// Check for trailing attributes and stop parsing.
if !attrs.is_empty() {
if !params.is_empty() {
this.dcx().emit_err(errors::AttrAfterGeneric { span: attrs[0].span });
} else {
this.dcx()
.emit_err(errors::AttrWithoutGenerics { span: attrs[0].span });
}
}
return Ok((None, Trailing::No, UsePreAttrPos::No));
};
if !this.eat(exp!(Comma)) {
done = true;
}
// We just ate the comma, so no need to capture the trailing token.
Ok((param, Trailing::No, UsePreAttrPos::No))
})?;
if let Some(param) = param {
params.push(param);
} else {
break;
}
}
Ok(params)
}
/// Parses a set of optional generic type parameter declarations. Where
/// clauses are not parsed here, and must be added later via
/// `parse_where_clause()`.
///
/// matches generics = ( ) | ( < > ) | ( < typaramseq ( , )? > ) | ( < lifetimes ( , )? > )
/// | ( < lifetimes , typaramseq ( , )? > )
/// where typaramseq = ( typaram ) | ( typaram , typaramseq )
pub(super) fn parse_generics(&mut self) -> PResult<'a, ast::Generics> {
// invalid path separator `::` in function definition
// for example `fn invalid_path_separator::<T>() {}`
if self.eat_noexpect(&token::PathSep) {
self.dcx()
.emit_err(errors::InvalidPathSepInFnDefinition { span: self.prev_token.span });
}
let span_lo = self.token.span;
let (params, span) = if self.eat_lt() {
let params = self.parse_generic_params()?;
self.expect_gt_or_maybe_suggest_closing_generics(&params)?;
(params, span_lo.to(self.prev_token.span))
} else {
(ThinVec::new(), self.prev_token.span.shrink_to_hi())
};
Ok(ast::Generics {
params,
where_clause: WhereClause {
has_where_token: false,
predicates: ThinVec::new(),
span: self.prev_token.span.shrink_to_hi(),
},
span,
})
}
/// Parses a rustc-internal fn contract
/// (`rustc_contract_requires(WWW) rustc_contract_ensures(ZZZ)`)
pub(super) fn parse_contract(
&mut self,
) -> PResult<'a, Option<rustc_ast::ptr::P<ast::FnContract>>> {
let gate = |span| {
if self.psess.contract_attribute_spans.contains(span) {
// span was generated via a builtin contracts attribute, so gate as end-user visible
self.psess.gated_spans.gate(sym::rustc_contracts, span);
} else {
// span was not generated via a builtin contracts attribute, so gate as internal machinery
self.psess.gated_spans.gate(sym::rustc_contracts_internals, span);
}
};
let requires = if self.eat_keyword_noexpect(exp!(RustcContractRequires).kw) {
let precond = self.parse_expr()?;
gate(precond.span);
Some(precond)
} else {
None
};
let ensures = if self.eat_keyword_noexpect(exp!(RustcContractEnsures).kw) {
let postcond = self.parse_expr()?;
gate(postcond.span);
Some(postcond)
} else {
None
};
if requires.is_none() && ensures.is_none() {
Ok(None)
} else {
Ok(Some(rustc_ast::ptr::P(ast::FnContract { requires, ensures })))
}
}
/// Parses an optional where-clause.
///
/// ```ignore (only-for-syntax-highlight)
/// where T : Trait<U, V> + 'b, 'a : 'b
/// ```
pub(super) fn parse_where_clause(&mut self) -> PResult<'a, WhereClause> {
self.parse_where_clause_common(None).map(|(clause, _)| clause)
}
pub(super) fn parse_struct_where_clause(
&mut self,
struct_name: Ident,
body_insertion_point: Span,
) -> PResult<'a, (WhereClause, Option<ThinVec<ast::FieldDef>>)> {
self.parse_where_clause_common(Some((struct_name, body_insertion_point)))
}
fn parse_where_clause_common(
&mut self,
struct_: Option<(Ident, Span)>,
) -> PResult<'a, (WhereClause, Option<ThinVec<ast::FieldDef>>)> {
let mut where_clause = WhereClause {
has_where_token: false,
predicates: ThinVec::new(),
span: self.prev_token.span.shrink_to_hi(),
};
let mut tuple_struct_body = None;
if !self.eat_keyword(exp!(Where)) {
return Ok((where_clause, None));
}
where_clause.has_where_token = true;
let where_lo = self.prev_token.span;
// We are considering adding generics to the `where` keyword as an alternative higher-rank
// parameter syntax (as in `where<'a>` or `where<T>`. To avoid that being a breaking
// change we parse those generics now, but report an error.
if self.choose_generics_over_qpath(0) {
let generics = self.parse_generics()?;
self.dcx().emit_err(errors::WhereOnGenerics { span: generics.span });
}
loop {
let where_sp = where_lo.to(self.prev_token.span);
let pred_lo = self.token.span;
let kind = if self.check_lifetime() && self.look_ahead(1, |t| !t.is_like_plus()) {
let lifetime = self.expect_lifetime();
// Bounds starting with a colon are mandatory, but possibly empty.
self.expect(exp!(Colon))?;
let bounds = self.parse_lt_param_bounds();
ast::WherePredicateKind::RegionPredicate(ast::WhereRegionPredicate {
lifetime,
bounds,
})
} else if self.check_type() {
match self.parse_ty_where_predicate_kind_or_recover_tuple_struct_body(
struct_, pred_lo, where_sp,
)? {
PredicateKindOrStructBody::PredicateKind(kind) => kind,
PredicateKindOrStructBody::StructBody(body) => {
tuple_struct_body = Some(body);
break;
}
}
} else {
break;
};
where_clause.predicates.push(ast::WherePredicate {
kind,
id: DUMMY_NODE_ID,
span: pred_lo.to(self.prev_token.span),
});
let prev_token = self.prev_token.span;
let ate_comma = self.eat(exp!(Comma));
if self.eat_keyword_noexpect(kw::Where) {
self.dcx().emit_err(MultipleWhereClauses {
span: self.token.span,
previous: pred_lo,
between: prev_token.shrink_to_hi().to(self.prev_token.span),
});
} else if !ate_comma {
break;
}
}
where_clause.span = where_lo.to(self.prev_token.span);
Ok((where_clause, tuple_struct_body))
}
fn parse_ty_where_predicate_kind_or_recover_tuple_struct_body(
&mut self,
struct_: Option<(Ident, Span)>,
pred_lo: Span,
where_sp: Span,
) -> PResult<'a, PredicateKindOrStructBody> {
let mut snapshot = None;
if let Some(struct_) = struct_
&& self.may_recover()
&& self.token == token::OpenDelim(Delimiter::Parenthesis)
{
snapshot = Some((struct_, self.create_snapshot_for_diagnostic()));
};
match self.parse_ty_where_predicate_kind() {
Ok(pred) => Ok(PredicateKindOrStructBody::PredicateKind(pred)),
Err(type_err) => {
let Some(((struct_name, body_insertion_point), mut snapshot)) = snapshot else {
return Err(type_err);
};
// Check if we might have encountered an out of place tuple struct body.
match snapshot.parse_tuple_struct_body() {
// Since we don't know the exact reason why we failed to parse the
// predicate (we might have stumbled upon something bogus like `(T): ?`),
// employ a simple heuristic to weed out some pathological cases:
// Look for a semicolon (strong indicator) or anything that might mark
// the end of the item (weak indicator) following the body.
Ok(body)
if matches!(snapshot.token.kind, token::Semi | token::Eof)
|| snapshot.token.can_begin_item() =>
{
type_err.cancel();
let body_sp = pred_lo.to(snapshot.prev_token.span);
let map = self.psess.source_map();
self.dcx().emit_err(WhereClauseBeforeTupleStructBody {
span: where_sp,
name: struct_name.span,
body: body_sp,
sugg: map.span_to_snippet(body_sp).ok().map(|body| {
WhereClauseBeforeTupleStructBodySugg {
left: body_insertion_point.shrink_to_hi(),
snippet: body,
right: map.end_point(where_sp).to(body_sp),
}
}),
});
self.restore_snapshot(snapshot);
Ok(PredicateKindOrStructBody::StructBody(body))
}
Ok(_) => Err(type_err),
Err(body_err) => {
body_err.cancel();
Err(type_err)
}
}
}
}
}
fn parse_ty_where_predicate_kind(&mut self) -> PResult<'a, ast::WherePredicateKind> {
// Parse optional `for<'a, 'b>`.
// This `for` is parsed greedily and applies to the whole predicate,
// the bounded type can have its own `for` applying only to it.
// Examples:
// * `for<'a> Trait1<'a>: Trait2<'a /* ok */>`
// * `(for<'a> Trait1<'a>): Trait2<'a /* not ok */>`
// * `for<'a> for<'b> Trait1<'a, 'b>: Trait2<'a /* ok */, 'b /* not ok */>`
let (lifetime_defs, _) = self.parse_late_bound_lifetime_defs()?;
// Parse type with mandatory colon and (possibly empty) bounds,
// or with mandatory equality sign and the second type.
let ty = self.parse_ty_for_where_clause()?;
if self.eat(exp!(Colon)) {
let bounds = self.parse_generic_bounds()?;
Ok(ast::WherePredicateKind::BoundPredicate(ast::WhereBoundPredicate {
bound_generic_params: lifetime_defs,
bounded_ty: ty,
bounds,
}))
// FIXME: Decide what should be used here, `=` or `==`.
// FIXME: We are just dropping the binders in lifetime_defs on the floor here.
} else if self.eat(exp!(Eq)) || self.eat(exp!(EqEq)) {
let rhs_ty = self.parse_ty()?;
Ok(ast::WherePredicateKind::EqPredicate(ast::WhereEqPredicate { lhs_ty: ty, rhs_ty }))
} else {
self.maybe_recover_bounds_doubled_colon(&ty)?;
self.unexpected_any()
}
}
pub(super) fn choose_generics_over_qpath(&self, start: usize) -> bool {
// There's an ambiguity between generic parameters and qualified paths in impls.
// If we see `<` it may start both, so we have to inspect some following tokens.
// The following combinations can only start generics,
// but not qualified paths (with one exception):
// `<` `>` - empty generic parameters
// `<` `#` - generic parameters with attributes
// `<` (LIFETIME|IDENT) `>` - single generic parameter
// `<` (LIFETIME|IDENT) `,` - first generic parameter in a list
// `<` (LIFETIME|IDENT) `:` - generic parameter with bounds
// `<` (LIFETIME|IDENT) `=` - generic parameter with a default
// `<` const - generic const parameter
// `<` IDENT `?` - RECOVERY for `impl<T ?Bound` missing a `:`, meant to
// avoid the `T?` to `Option<T>` recovery for types.
// The only truly ambiguous case is
// `<` IDENT `>` `::` IDENT ...
// we disambiguate it in favor of generics (`impl<T> ::absolute::Path<T> { ... }`)
// because this is what almost always expected in practice, qualified paths in impls
// (`impl <Type>::AssocTy { ... }`) aren't even allowed by type checker at the moment.
self.look_ahead(start, |t| t == &token::Lt)
&& (self.look_ahead(start + 1, |t| t == &token::Pound || t == &token::Gt)
|| self.look_ahead(start + 1, |t| t.is_lifetime() || t.is_ident())
&& self.look_ahead(start + 2, |t| {
matches!(t.kind, token::Gt | token::Comma | token::Colon | token::Eq)
// Recovery-only branch -- this could be removed,
// since it only affects diagnostics currently.
|| matches!(t.kind, token::Question)
})
|| self.is_keyword_ahead(start + 1, &[kw::Const]))
}
}