rust/src/libstd/sys/unix/rwlock.rs
Alex Crichton 3d28b8b98e std: Migrate to the new libc
* Delete `sys::unix::{c, sync}` as these are now all folded into libc itself
* Update all references to use `libc` as a result.
* Update all references to the new flat namespace.
* Moves all windows bindings into sys::c
2015-11-09 22:55:50 -08:00

83 lines
3.1 KiB
Rust

// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use libc;
use cell::UnsafeCell;
pub struct RWLock { inner: UnsafeCell<libc::pthread_rwlock_t> }
unsafe impl Send for RWLock {}
unsafe impl Sync for RWLock {}
impl RWLock {
pub const fn new() -> RWLock {
RWLock { inner: UnsafeCell::new(libc::PTHREAD_RWLOCK_INITIALIZER) }
}
#[inline]
pub unsafe fn read(&self) {
let r = libc::pthread_rwlock_rdlock(self.inner.get());
// According to the pthread_rwlock_rdlock spec, this function **may**
// fail with EDEADLK if a deadlock is detected. On the other hand
// pthread mutexes will *never* return EDEADLK if they are initialized
// as the "fast" kind (which ours always are). As a result, a deadlock
// situation may actually return from the call to pthread_rwlock_rdlock
// instead of blocking forever (as mutexes and Windows rwlocks do). Note
// that not all unix implementations, however, will return EDEADLK for
// their rwlocks.
//
// We roughly maintain the deadlocking behavior by panicking to ensure
// that this lock acquisition does not succeed.
if r == libc::EDEADLK {
panic!("rwlock read lock would result in deadlock");
} else {
debug_assert_eq!(r, 0);
}
}
#[inline]
pub unsafe fn try_read(&self) -> bool {
libc::pthread_rwlock_tryrdlock(self.inner.get()) == 0
}
#[inline]
pub unsafe fn write(&self) {
let r = libc::pthread_rwlock_wrlock(self.inner.get());
// see comments above for why we check for EDEADLK
if r == libc::EDEADLK {
panic!("rwlock write lock would result in deadlock");
} else {
debug_assert_eq!(r, 0);
}
}
#[inline]
pub unsafe fn try_write(&self) -> bool {
libc::pthread_rwlock_trywrlock(self.inner.get()) == 0
}
#[inline]
pub unsafe fn read_unlock(&self) {
let r = libc::pthread_rwlock_unlock(self.inner.get());
debug_assert_eq!(r, 0);
}
#[inline]
pub unsafe fn write_unlock(&self) { self.read_unlock() }
#[inline]
pub unsafe fn destroy(&self) {
let r = libc::pthread_rwlock_destroy(self.inner.get());
// On DragonFly pthread_rwlock_destroy() returns EINVAL if called on a
// rwlock that was just initialized with
// libc::PTHREAD_RWLOCK_INITIALIZER. Once it is used (locked/unlocked)
// or pthread_rwlock_init() is called, this behaviour no longer occurs.
if cfg!(target_os = "dragonfly") {
debug_assert!(r == 0 || r == libc::EINVAL);
} else {
debug_assert_eq!(r, 0);
}
}
}