mirror of
https://github.com/rust-lang/rust.git
synced 2025-05-14 02:49:40 +00:00
390 lines
16 KiB
Rust
390 lines
16 KiB
Rust
use crate::errors::DumpVTableEntries;
|
|
use crate::traits::{impossible_predicates, is_vtable_safe_method};
|
|
use rustc_hir::def_id::DefId;
|
|
use rustc_hir::lang_items::LangItem;
|
|
use rustc_infer::traits::util::PredicateSet;
|
|
use rustc_infer::traits::ImplSource;
|
|
use rustc_middle::ty::visit::TypeVisitableExt;
|
|
use rustc_middle::ty::InternalSubsts;
|
|
use rustc_middle::ty::{self, GenericParamDefKind, ToPredicate, Ty, TyCtxt, VtblEntry};
|
|
use rustc_span::{sym, Span};
|
|
use smallvec::SmallVec;
|
|
|
|
use std::fmt::Debug;
|
|
use std::ops::ControlFlow;
|
|
|
|
#[derive(Clone, Debug)]
|
|
pub(super) enum VtblSegment<'tcx> {
|
|
MetadataDSA,
|
|
TraitOwnEntries { trait_ref: ty::PolyTraitRef<'tcx>, emit_vptr: bool },
|
|
}
|
|
|
|
/// Prepare the segments for a vtable
|
|
pub(super) fn prepare_vtable_segments<'tcx, T>(
|
|
tcx: TyCtxt<'tcx>,
|
|
trait_ref: ty::PolyTraitRef<'tcx>,
|
|
mut segment_visitor: impl FnMut(VtblSegment<'tcx>) -> ControlFlow<T>,
|
|
) -> Option<T> {
|
|
// The following constraints holds for the final arrangement.
|
|
// 1. The whole virtual table of the first direct super trait is included as the
|
|
// the prefix. If this trait doesn't have any super traits, then this step
|
|
// consists of the dsa metadata.
|
|
// 2. Then comes the proper pointer metadata(vptr) and all own methods for all
|
|
// other super traits except those already included as part of the first
|
|
// direct super trait virtual table.
|
|
// 3. finally, the own methods of this trait.
|
|
|
|
// This has the advantage that trait upcasting to the first direct super trait on each level
|
|
// is zero cost, and to another trait includes only replacing the pointer with one level indirection,
|
|
// while not using too much extra memory.
|
|
|
|
// For a single inheritance relationship like this,
|
|
// D --> C --> B --> A
|
|
// The resulting vtable will consists of these segments:
|
|
// DSA, A, B, C, D
|
|
|
|
// For a multiple inheritance relationship like this,
|
|
// D --> C --> A
|
|
// \-> B
|
|
// The resulting vtable will consists of these segments:
|
|
// DSA, A, B, B-vptr, C, D
|
|
|
|
// For a diamond inheritance relationship like this,
|
|
// D --> B --> A
|
|
// \-> C -/
|
|
// The resulting vtable will consists of these segments:
|
|
// DSA, A, B, C, C-vptr, D
|
|
|
|
// For a more complex inheritance relationship like this:
|
|
// O --> G --> C --> A
|
|
// \ \ \-> B
|
|
// | |-> F --> D
|
|
// | \-> E
|
|
// |-> N --> J --> H
|
|
// \ \-> I
|
|
// |-> M --> K
|
|
// \-> L
|
|
// The resulting vtable will consists of these segments:
|
|
// DSA, A, B, B-vptr, C, D, D-vptr, E, E-vptr, F, F-vptr, G,
|
|
// H, H-vptr, I, I-vptr, J, J-vptr, K, K-vptr, L, L-vptr, M, M-vptr,
|
|
// N, N-vptr, O
|
|
|
|
// emit dsa segment first.
|
|
if let ControlFlow::Break(v) = (segment_visitor)(VtblSegment::MetadataDSA) {
|
|
return Some(v);
|
|
}
|
|
|
|
let mut emit_vptr_on_new_entry = false;
|
|
let mut visited = PredicateSet::new(tcx);
|
|
let predicate = trait_ref.without_const().to_predicate(tcx);
|
|
let mut stack: SmallVec<[(ty::PolyTraitRef<'tcx>, _, _); 5]> =
|
|
smallvec![(trait_ref, emit_vptr_on_new_entry, None)];
|
|
visited.insert(predicate);
|
|
|
|
// the main traversal loop:
|
|
// basically we want to cut the inheritance directed graph into a few non-overlapping slices of nodes
|
|
// that each node is emitted after all its descendents have been emitted.
|
|
// so we convert the directed graph into a tree by skipping all previously visited nodes using a visited set.
|
|
// this is done on the fly.
|
|
// Each loop run emits a slice - it starts by find a "childless" unvisited node, backtracking upwards, and it
|
|
// stops after it finds a node that has a next-sibling node.
|
|
// This next-sibling node will used as the starting point of next slice.
|
|
|
|
// Example:
|
|
// For a diamond inheritance relationship like this,
|
|
// D#1 --> B#0 --> A#0
|
|
// \-> C#1 -/
|
|
|
|
// Starting point 0 stack [D]
|
|
// Loop run #0: Stack after diving in is [D B A], A is "childless"
|
|
// after this point, all newly visited nodes won't have a vtable that equals to a prefix of this one.
|
|
// Loop run #0: Emitting the slice [B A] (in reverse order), B has a next-sibling node, so this slice stops here.
|
|
// Loop run #0: Stack after exiting out is [D C], C is the next starting point.
|
|
// Loop run #1: Stack after diving in is [D C], C is "childless", since its child A is skipped(already emitted).
|
|
// Loop run #1: Emitting the slice [D C] (in reverse order). No one has a next-sibling node.
|
|
// Loop run #1: Stack after exiting out is []. Now the function exits.
|
|
|
|
loop {
|
|
// dive deeper into the stack, recording the path
|
|
'diving_in: loop {
|
|
if let Some((inner_most_trait_ref, _, _)) = stack.last() {
|
|
let inner_most_trait_ref = *inner_most_trait_ref;
|
|
let mut direct_super_traits_iter = tcx
|
|
.super_predicates_of(inner_most_trait_ref.def_id())
|
|
.predicates
|
|
.into_iter()
|
|
.filter_map(move |(pred, _)| {
|
|
pred.subst_supertrait(tcx, &inner_most_trait_ref).to_opt_poly_trait_pred()
|
|
});
|
|
|
|
'diving_in_skip_visited_traits: loop {
|
|
if let Some(next_super_trait) = direct_super_traits_iter.next() {
|
|
if visited.insert(next_super_trait.to_predicate(tcx)) {
|
|
// We're throwing away potential constness of super traits here.
|
|
// FIXME: handle ~const super traits
|
|
let next_super_trait = next_super_trait.map_bound(|t| t.trait_ref);
|
|
stack.push((
|
|
next_super_trait,
|
|
emit_vptr_on_new_entry,
|
|
Some(direct_super_traits_iter),
|
|
));
|
|
break 'diving_in_skip_visited_traits;
|
|
} else {
|
|
continue 'diving_in_skip_visited_traits;
|
|
}
|
|
} else {
|
|
break 'diving_in;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Other than the left-most path, vptr should be emitted for each trait.
|
|
emit_vptr_on_new_entry = true;
|
|
|
|
// emit innermost item, move to next sibling and stop there if possible, otherwise jump to outer level.
|
|
'exiting_out: loop {
|
|
if let Some((inner_most_trait_ref, emit_vptr, siblings_opt)) = stack.last_mut() {
|
|
if let ControlFlow::Break(v) = (segment_visitor)(VtblSegment::TraitOwnEntries {
|
|
trait_ref: *inner_most_trait_ref,
|
|
emit_vptr: *emit_vptr,
|
|
}) {
|
|
return Some(v);
|
|
}
|
|
|
|
'exiting_out_skip_visited_traits: loop {
|
|
if let Some(siblings) = siblings_opt {
|
|
if let Some(next_inner_most_trait_ref) = siblings.next() {
|
|
if visited.insert(next_inner_most_trait_ref.to_predicate(tcx)) {
|
|
// We're throwing away potential constness of super traits here.
|
|
// FIXME: handle ~const super traits
|
|
let next_inner_most_trait_ref =
|
|
next_inner_most_trait_ref.map_bound(|t| t.trait_ref);
|
|
*inner_most_trait_ref = next_inner_most_trait_ref;
|
|
*emit_vptr = emit_vptr_on_new_entry;
|
|
break 'exiting_out;
|
|
} else {
|
|
continue 'exiting_out_skip_visited_traits;
|
|
}
|
|
}
|
|
}
|
|
stack.pop();
|
|
continue 'exiting_out;
|
|
}
|
|
}
|
|
// all done
|
|
return None;
|
|
}
|
|
}
|
|
}
|
|
|
|
fn dump_vtable_entries<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
sp: Span,
|
|
trait_ref: ty::PolyTraitRef<'tcx>,
|
|
entries: &[VtblEntry<'tcx>],
|
|
) {
|
|
tcx.sess.emit_err(DumpVTableEntries {
|
|
span: sp,
|
|
trait_ref,
|
|
entries: format!("{:#?}", entries),
|
|
});
|
|
}
|
|
|
|
fn own_existential_vtable_entries(tcx: TyCtxt<'_>, trait_def_id: DefId) -> &[DefId] {
|
|
let trait_methods = tcx
|
|
.associated_items(trait_def_id)
|
|
.in_definition_order()
|
|
.filter(|item| item.kind == ty::AssocKind::Fn);
|
|
// Now list each method's DefId (for within its trait).
|
|
let own_entries = trait_methods.filter_map(move |&trait_method| {
|
|
debug!("own_existential_vtable_entry: trait_method={:?}", trait_method);
|
|
let def_id = trait_method.def_id;
|
|
|
|
// Some methods cannot be called on an object; skip those.
|
|
if !is_vtable_safe_method(tcx, trait_def_id, trait_method) {
|
|
debug!("own_existential_vtable_entry: not vtable safe");
|
|
return None;
|
|
}
|
|
|
|
Some(def_id)
|
|
});
|
|
|
|
tcx.arena.alloc_from_iter(own_entries.into_iter())
|
|
}
|
|
|
|
/// Given a trait `trait_ref`, iterates the vtable entries
|
|
/// that come from `trait_ref`, including its supertraits.
|
|
fn vtable_entries<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
trait_ref: ty::PolyTraitRef<'tcx>,
|
|
) -> &'tcx [VtblEntry<'tcx>] {
|
|
debug!("vtable_entries({:?})", trait_ref);
|
|
|
|
let mut entries = vec![];
|
|
|
|
let vtable_segment_callback = |segment| -> ControlFlow<()> {
|
|
match segment {
|
|
VtblSegment::MetadataDSA => {
|
|
entries.extend(TyCtxt::COMMON_VTABLE_ENTRIES);
|
|
}
|
|
VtblSegment::TraitOwnEntries { trait_ref, emit_vptr } => {
|
|
let existential_trait_ref = trait_ref
|
|
.map_bound(|trait_ref| ty::ExistentialTraitRef::erase_self_ty(tcx, trait_ref));
|
|
|
|
// Lookup the shape of vtable for the trait.
|
|
let own_existential_entries =
|
|
tcx.own_existential_vtable_entries(existential_trait_ref.def_id());
|
|
|
|
let own_entries = own_existential_entries.iter().copied().map(|def_id| {
|
|
debug!("vtable_entries: trait_method={:?}", def_id);
|
|
|
|
// The method may have some early-bound lifetimes; add regions for those.
|
|
let substs = trait_ref.map_bound(|trait_ref| {
|
|
InternalSubsts::for_item(tcx, def_id, |param, _| match param.kind {
|
|
GenericParamDefKind::Lifetime => tcx.lifetimes.re_erased.into(),
|
|
GenericParamDefKind::Type { .. }
|
|
| GenericParamDefKind::Const { .. } => {
|
|
trait_ref.substs[param.index as usize]
|
|
}
|
|
})
|
|
});
|
|
|
|
// The trait type may have higher-ranked lifetimes in it;
|
|
// erase them if they appear, so that we get the type
|
|
// at some particular call site.
|
|
let substs = tcx
|
|
.normalize_erasing_late_bound_regions(ty::ParamEnv::reveal_all(), substs);
|
|
|
|
// It's possible that the method relies on where-clauses that
|
|
// do not hold for this particular set of type parameters.
|
|
// Note that this method could then never be called, so we
|
|
// do not want to try and codegen it, in that case (see #23435).
|
|
let predicates = tcx.predicates_of(def_id).instantiate_own(tcx, substs);
|
|
if impossible_predicates(
|
|
tcx,
|
|
predicates.map(|(predicate, _)| predicate).collect(),
|
|
) {
|
|
debug!("vtable_entries: predicates do not hold");
|
|
return VtblEntry::Vacant;
|
|
}
|
|
|
|
let instance = ty::Instance::resolve_for_vtable(
|
|
tcx,
|
|
ty::ParamEnv::reveal_all(),
|
|
def_id,
|
|
substs,
|
|
)
|
|
.expect("resolution failed during building vtable representation");
|
|
VtblEntry::Method(instance)
|
|
});
|
|
|
|
entries.extend(own_entries);
|
|
|
|
if emit_vptr {
|
|
entries.push(VtblEntry::TraitVPtr(trait_ref));
|
|
}
|
|
}
|
|
}
|
|
|
|
ControlFlow::Continue(())
|
|
};
|
|
|
|
let _ = prepare_vtable_segments(tcx, trait_ref, vtable_segment_callback);
|
|
|
|
if tcx.has_attr(trait_ref.def_id(), sym::rustc_dump_vtable) {
|
|
let sp = tcx.def_span(trait_ref.def_id());
|
|
dump_vtable_entries(tcx, sp, trait_ref, &entries);
|
|
}
|
|
|
|
tcx.arena.alloc_from_iter(entries.into_iter())
|
|
}
|
|
|
|
/// Find slot base for trait methods within vtable entries of another trait
|
|
pub(super) fn vtable_trait_first_method_offset<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
key: (
|
|
ty::PolyTraitRef<'tcx>, // trait_to_be_found
|
|
ty::PolyTraitRef<'tcx>, // trait_owning_vtable
|
|
),
|
|
) -> usize {
|
|
let (trait_to_be_found, trait_owning_vtable) = key;
|
|
|
|
// #90177
|
|
let trait_to_be_found_erased = tcx.erase_regions(trait_to_be_found);
|
|
|
|
let vtable_segment_callback = {
|
|
let mut vtable_base = 0;
|
|
|
|
move |segment| {
|
|
match segment {
|
|
VtblSegment::MetadataDSA => {
|
|
vtable_base += TyCtxt::COMMON_VTABLE_ENTRIES.len();
|
|
}
|
|
VtblSegment::TraitOwnEntries { trait_ref, emit_vptr } => {
|
|
if tcx.erase_regions(trait_ref) == trait_to_be_found_erased {
|
|
return ControlFlow::Break(vtable_base);
|
|
}
|
|
vtable_base += count_own_vtable_entries(tcx, trait_ref);
|
|
if emit_vptr {
|
|
vtable_base += 1;
|
|
}
|
|
}
|
|
}
|
|
ControlFlow::Continue(())
|
|
}
|
|
};
|
|
|
|
if let Some(vtable_base) =
|
|
prepare_vtable_segments(tcx, trait_owning_vtable, vtable_segment_callback)
|
|
{
|
|
vtable_base
|
|
} else {
|
|
bug!("Failed to find info for expected trait in vtable");
|
|
}
|
|
}
|
|
|
|
/// Find slot offset for trait vptr within vtable entries of another trait
|
|
pub(crate) fn vtable_trait_upcasting_coercion_new_vptr_slot<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
key: (
|
|
Ty<'tcx>, // trait object type whose trait owning vtable
|
|
Ty<'tcx>, // trait object for supertrait
|
|
),
|
|
) -> Option<usize> {
|
|
let (source, target) = key;
|
|
assert!(matches!(&source.kind(), &ty::Dynamic(..)) && !source.needs_infer());
|
|
assert!(matches!(&target.kind(), &ty::Dynamic(..)) && !target.needs_infer());
|
|
|
|
// this has been typecked-before, so diagnostics is not really needed.
|
|
let unsize_trait_did = tcx.require_lang_item(LangItem::Unsize, None);
|
|
|
|
let trait_ref = tcx.mk_trait_ref(unsize_trait_did, [source, target]);
|
|
|
|
match tcx.codegen_select_candidate((ty::ParamEnv::reveal_all(), ty::Binder::dummy(trait_ref))) {
|
|
Ok(ImplSource::TraitUpcasting(implsrc_traitcasting)) => {
|
|
implsrc_traitcasting.vtable_vptr_slot
|
|
}
|
|
otherwise => bug!("expected TraitUpcasting candidate, got {otherwise:?}"),
|
|
}
|
|
}
|
|
|
|
/// Given a trait `trait_ref`, returns the number of vtable entries
|
|
/// that come from `trait_ref`, excluding its supertraits. Used in
|
|
/// computing the vtable base for an upcast trait of a trait object.
|
|
pub(crate) fn count_own_vtable_entries<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
trait_ref: ty::PolyTraitRef<'tcx>,
|
|
) -> usize {
|
|
tcx.own_existential_vtable_entries(trait_ref.def_id()).len()
|
|
}
|
|
|
|
pub(super) fn provide(providers: &mut ty::query::Providers) {
|
|
*providers = ty::query::Providers {
|
|
own_existential_vtable_entries,
|
|
vtable_entries,
|
|
vtable_trait_upcasting_coercion_new_vptr_slot,
|
|
..*providers
|
|
};
|
|
}
|