rust/clippy_lints/src/ptr.rs
2024-03-22 20:48:36 +01:00

755 lines
28 KiB
Rust

//! Checks for usage of `&Vec[_]` and `&String`.
use clippy_utils::diagnostics::{span_lint, span_lint_and_sugg, span_lint_and_then, span_lint_hir_and_then};
use clippy_utils::source::snippet_opt;
use clippy_utils::ty::expr_sig;
use clippy_utils::visitors::contains_unsafe_block;
use clippy_utils::{get_expr_use_or_unification_node, is_lint_allowed, path_def_id, path_to_local};
use hir::LifetimeName;
use rustc_errors::{Applicability, MultiSpan};
use rustc_hir::def_id::DefId;
use rustc_hir::hir_id::HirIdMap;
use rustc_hir::intravisit::{walk_expr, Visitor};
use rustc_hir::{
self as hir, AnonConst, BinOpKind, BindingAnnotation, Body, Expr, ExprKind, FnRetTy, FnSig, GenericArg,
ImplItemKind, ItemKind, Lifetime, Mutability, Node, Param, PatKind, QPath, TraitFn, TraitItem, TraitItemKind,
TyKind, Unsafety,
};
use rustc_infer::infer::TyCtxtInferExt;
use rustc_infer::traits::{Obligation, ObligationCause};
use rustc_lint::{LateContext, LateLintPass};
use rustc_middle::hir::nested_filter;
use rustc_middle::ty::{self, Binder, ClauseKind, ExistentialPredicate, List, PredicateKind, Ty};
use rustc_session::declare_lint_pass;
use rustc_span::symbol::Symbol;
use rustc_span::{sym, Span};
use rustc_target::spec::abi::Abi;
use rustc_trait_selection::infer::InferCtxtExt as _;
use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt as _;
use std::{fmt, iter};
use crate::vec::is_allowed_vec_method;
declare_clippy_lint! {
/// ### What it does
/// This lint checks for function arguments of type `&String`, `&Vec`,
/// `&PathBuf`, and `Cow<_>`. It will also suggest you replace `.clone()` calls
/// with the appropriate `.to_owned()`/`to_string()` calls.
///
/// ### Why is this bad?
/// Requiring the argument to be of the specific size
/// makes the function less useful for no benefit; slices in the form of `&[T]`
/// or `&str` usually suffice and can be obtained from other types, too.
///
/// ### Known problems
/// There may be `fn(&Vec)`-typed references pointing to your function.
/// If you have them, you will get a compiler error after applying this lint's
/// suggestions. You then have the choice to undo your changes or change the
/// type of the reference.
///
/// Note that if the function is part of your public interface, there may be
/// other crates referencing it, of which you may not be aware. Carefully
/// deprecate the function before applying the lint suggestions in this case.
///
/// ### Example
/// ```ignore
/// fn foo(&Vec<u32>) { .. }
/// ```
///
/// Use instead:
/// ```ignore
/// fn foo(&[u32]) { .. }
/// ```
#[clippy::version = "pre 1.29.0"]
pub PTR_ARG,
style,
"fn arguments of the type `&Vec<...>` or `&String`, suggesting to use `&[...]` or `&str` instead, respectively"
}
declare_clippy_lint! {
/// ### What it does
/// This lint checks for equality comparisons with `ptr::null`
///
/// ### Why is this bad?
/// It's easier and more readable to use the inherent
/// `.is_null()`
/// method instead
///
/// ### Example
/// ```rust,ignore
/// use std::ptr;
///
/// if x == ptr::null {
/// // ..
/// }
/// ```
///
/// Use instead:
/// ```rust,ignore
/// if x.is_null() {
/// // ..
/// }
/// ```
#[clippy::version = "pre 1.29.0"]
pub CMP_NULL,
style,
"comparing a pointer to a null pointer, suggesting to use `.is_null()` instead"
}
declare_clippy_lint! {
/// ### What it does
/// This lint checks for functions that take immutable references and return
/// mutable ones. This will not trigger if no unsafe code exists as there
/// are multiple safe functions which will do this transformation
///
/// To be on the conservative side, if there's at least one mutable
/// reference with the output lifetime, this lint will not trigger.
///
/// ### Why is this bad?
/// Creating a mutable reference which can be repeatably derived from an
/// immutable reference is unsound as it allows creating multiple live
/// mutable references to the same object.
///
/// This [error](https://github.com/rust-lang/rust/issues/39465) actually
/// lead to an interim Rust release 1.15.1.
///
/// ### Known problems
/// This pattern is used by memory allocators to allow allocating multiple
/// objects while returning mutable references to each one. So long as
/// different mutable references are returned each time such a function may
/// be safe.
///
/// ### Example
/// ```ignore
/// fn foo(&Foo) -> &mut Bar { .. }
/// ```
#[clippy::version = "pre 1.29.0"]
pub MUT_FROM_REF,
correctness,
"fns that create mutable refs from immutable ref args"
}
declare_clippy_lint! {
/// ### What it does
/// This lint checks for invalid usages of `ptr::null`.
///
/// ### Why is this bad?
/// This causes undefined behavior.
///
/// ### Example
/// ```ignore
/// // Undefined behavior
/// unsafe { std::slice::from_raw_parts(ptr::null(), 0); }
/// ```
///
/// Use instead:
/// ```ignore
/// unsafe { std::slice::from_raw_parts(NonNull::dangling().as_ptr(), 0); }
/// ```
#[clippy::version = "1.53.0"]
pub INVALID_NULL_PTR_USAGE,
correctness,
"invalid usage of a null pointer, suggesting `NonNull::dangling()` instead"
}
declare_lint_pass!(Ptr => [PTR_ARG, CMP_NULL, MUT_FROM_REF, INVALID_NULL_PTR_USAGE]);
impl<'tcx> LateLintPass<'tcx> for Ptr {
fn check_trait_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx TraitItem<'_>) {
if let TraitItemKind::Fn(sig, trait_method) = &item.kind {
if matches!(trait_method, TraitFn::Provided(_)) {
// Handled by check body.
return;
}
check_mut_from_ref(cx, sig, None);
if !matches!(sig.header.abi, Abi::Rust) {
// Ignore `extern` functions with non-Rust calling conventions
return;
}
for arg in check_fn_args(
cx,
cx.tcx.fn_sig(item.owner_id).instantiate_identity().skip_binder(),
sig.decl.inputs,
&[],
)
.filter(|arg| arg.mutability() == Mutability::Not)
{
span_lint_hir_and_then(cx, PTR_ARG, arg.emission_id, arg.span, &arg.build_msg(), |diag| {
diag.span_suggestion(
arg.span,
"change this to",
format!("{}{}", arg.ref_prefix, arg.deref_ty.display(cx)),
Applicability::Unspecified,
);
});
}
}
}
fn check_body(&mut self, cx: &LateContext<'tcx>, body: &'tcx Body<'_>) {
let hir = cx.tcx.hir();
let mut parents = hir.parent_iter(body.value.hir_id);
let (item_id, sig, is_trait_item) = match parents.next() {
Some((_, Node::Item(i))) => {
if let ItemKind::Fn(sig, ..) = &i.kind {
(i.owner_id, sig, false)
} else {
return;
}
},
Some((_, Node::ImplItem(i))) => {
if !matches!(parents.next(),
Some((_, Node::Item(i))) if matches!(&i.kind, ItemKind::Impl(i) if i.of_trait.is_none())
) {
return;
}
if let ImplItemKind::Fn(sig, _) = &i.kind {
(i.owner_id, sig, false)
} else {
return;
}
},
Some((_, Node::TraitItem(i))) => {
if let TraitItemKind::Fn(sig, _) = &i.kind {
(i.owner_id, sig, true)
} else {
return;
}
},
_ => return,
};
check_mut_from_ref(cx, sig, Some(body));
if !matches!(sig.header.abi, Abi::Rust) {
// Ignore `extern` functions with non-Rust calling conventions
return;
}
let decl = sig.decl;
let sig = cx.tcx.fn_sig(item_id).instantiate_identity().skip_binder();
let lint_args: Vec<_> = check_fn_args(cx, sig, decl.inputs, body.params)
.filter(|arg| !is_trait_item || arg.mutability() == Mutability::Not)
.collect();
let results = check_ptr_arg_usage(cx, body, &lint_args);
for (result, args) in results.iter().zip(lint_args.iter()).filter(|(r, _)| !r.skip) {
span_lint_hir_and_then(cx, PTR_ARG, args.emission_id, args.span, &args.build_msg(), |diag| {
diag.multipart_suggestion(
"change this to",
iter::once((args.span, format!("{}{}", args.ref_prefix, args.deref_ty.display(cx))))
.chain(result.replacements.iter().map(|r| {
(
r.expr_span,
format!("{}{}", snippet_opt(cx, r.self_span).unwrap(), r.replacement),
)
}))
.collect(),
Applicability::Unspecified,
);
});
}
}
fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
if let ExprKind::Binary(ref op, l, r) = expr.kind {
if (op.node == BinOpKind::Eq || op.node == BinOpKind::Ne) && (is_null_path(cx, l) || is_null_path(cx, r)) {
span_lint(
cx,
CMP_NULL,
expr.span,
"comparing with null is better expressed by the `.is_null()` method",
);
}
} else {
check_invalid_ptr_usage(cx, expr);
}
}
}
fn check_invalid_ptr_usage<'tcx>(cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
if let ExprKind::Call(fun, args) = expr.kind
&& let ExprKind::Path(ref qpath) = fun.kind
&& let Some(fun_def_id) = cx.qpath_res(qpath, fun.hir_id).opt_def_id()
&& let Some(name) = cx.tcx.get_diagnostic_name(fun_def_id)
{
// `arg` positions where null would cause U.B.
let arg_indices: &[_] = match name {
sym::ptr_read
| sym::ptr_read_unaligned
| sym::ptr_read_volatile
| sym::ptr_replace
| sym::ptr_slice_from_raw_parts
| sym::ptr_slice_from_raw_parts_mut
| sym::ptr_write
| sym::ptr_write_bytes
| sym::ptr_write_unaligned
| sym::ptr_write_volatile
| sym::slice_from_raw_parts
| sym::slice_from_raw_parts_mut => &[0],
sym::ptr_copy | sym::ptr_copy_nonoverlapping | sym::ptr_swap | sym::ptr_swap_nonoverlapping => &[0, 1],
_ => return,
};
for &arg_idx in arg_indices {
if let Some(arg) = args.get(arg_idx).filter(|arg| is_null_path(cx, arg)) {
span_lint_and_sugg(
cx,
INVALID_NULL_PTR_USAGE,
arg.span,
"pointer must be non-null",
"change this to",
"core::ptr::NonNull::dangling().as_ptr()".to_string(),
Applicability::MachineApplicable,
);
}
}
}
}
#[derive(Default)]
struct PtrArgResult {
skip: bool,
replacements: Vec<PtrArgReplacement>,
}
struct PtrArgReplacement {
expr_span: Span,
self_span: Span,
replacement: &'static str,
}
struct PtrArg<'tcx> {
idx: usize,
emission_id: hir::HirId,
span: Span,
ty_did: DefId,
ty_name: Symbol,
method_renames: &'static [(&'static str, &'static str)],
ref_prefix: RefPrefix,
deref_ty: DerefTy<'tcx>,
}
impl PtrArg<'_> {
fn build_msg(&self) -> String {
format!(
"writing `&{}{}` instead of `&{}{}` involves a new object where a slice will do",
self.ref_prefix.mutability.prefix_str(),
self.ty_name,
self.ref_prefix.mutability.prefix_str(),
self.deref_ty.argless_str(),
)
}
fn mutability(&self) -> Mutability {
self.ref_prefix.mutability
}
}
struct RefPrefix {
lt: Lifetime,
mutability: Mutability,
}
impl fmt::Display for RefPrefix {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
use fmt::Write;
f.write_char('&')?;
if !self.lt.is_anonymous() {
self.lt.ident.fmt(f)?;
f.write_char(' ')?;
}
f.write_str(self.mutability.prefix_str())
}
}
struct DerefTyDisplay<'a, 'tcx>(&'a LateContext<'tcx>, &'a DerefTy<'tcx>);
impl fmt::Display for DerefTyDisplay<'_, '_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
use std::fmt::Write;
match self.1 {
DerefTy::Str => f.write_str("str"),
DerefTy::Path => f.write_str("Path"),
DerefTy::Slice(hir_ty, ty) => {
f.write_char('[')?;
match hir_ty.and_then(|s| snippet_opt(self.0, s)) {
Some(s) => f.write_str(&s)?,
None => ty.fmt(f)?,
}
f.write_char(']')
},
}
}
}
enum DerefTy<'tcx> {
Str,
Path,
Slice(Option<Span>, Ty<'tcx>),
}
impl<'tcx> DerefTy<'tcx> {
fn ty(&self, cx: &LateContext<'tcx>) -> Ty<'tcx> {
match *self {
Self::Str => cx.tcx.types.str_,
Self::Path => Ty::new_adt(
cx.tcx,
cx.tcx.adt_def(cx.tcx.get_diagnostic_item(sym::Path).unwrap()),
List::empty(),
),
Self::Slice(_, ty) => Ty::new_slice(cx.tcx, ty),
}
}
fn argless_str(&self) -> &'static str {
match *self {
Self::Str => "str",
Self::Path => "Path",
Self::Slice(..) => "[_]",
}
}
fn display<'a>(&'a self, cx: &'a LateContext<'tcx>) -> DerefTyDisplay<'a, 'tcx> {
DerefTyDisplay(cx, self)
}
}
fn check_fn_args<'cx, 'tcx: 'cx>(
cx: &'cx LateContext<'tcx>,
fn_sig: ty::FnSig<'tcx>,
hir_tys: &'tcx [hir::Ty<'tcx>],
params: &'tcx [Param<'tcx>],
) -> impl Iterator<Item = PtrArg<'tcx>> + 'cx {
fn_sig
.inputs()
.iter()
.zip(hir_tys.iter())
.enumerate()
.filter_map(move |(i, (ty, hir_ty))| {
if let ty::Ref(_, ty, mutability) = *ty.kind()
&& let ty::Adt(adt, args) = *ty.kind()
&& let TyKind::Ref(lt, ref ty) = hir_ty.kind
&& let TyKind::Path(QPath::Resolved(None, path)) = ty.ty.kind
// Check that the name as typed matches the actual name of the type.
// e.g. `fn foo(_: &Foo)` shouldn't trigger the lint when `Foo` is an alias for `Vec`
&& let [.., name] = path.segments
&& cx.tcx.item_name(adt.did()) == name.ident.name
{
let emission_id = params.get(i).map_or(hir_ty.hir_id, |param| param.hir_id);
let (method_renames, deref_ty) = match cx.tcx.get_diagnostic_name(adt.did()) {
Some(sym::Vec) => (
[("clone", ".to_owned()")].as_slice(),
DerefTy::Slice(
name.args.and_then(|args| args.args.first()).and_then(|arg| {
if let GenericArg::Type(ty) = arg {
Some(ty.span)
} else {
None
}
}),
args.type_at(0),
),
),
_ if Some(adt.did()) == cx.tcx.lang_items().string() => {
([("clone", ".to_owned()"), ("as_str", "")].as_slice(), DerefTy::Str)
},
Some(sym::PathBuf) => ([("clone", ".to_path_buf()"), ("as_path", "")].as_slice(), DerefTy::Path),
Some(sym::Cow) if mutability == Mutability::Not => {
if let Some((lifetime, ty)) = name.args.and_then(|args| {
if let [GenericArg::Lifetime(lifetime), ty] = args.args {
return Some((lifetime, ty));
}
None
}) {
if !lifetime.is_anonymous()
&& fn_sig
.output()
.walk()
.filter_map(|arg| {
arg.as_region().and_then(|lifetime| match lifetime.kind() {
ty::ReEarlyParam(r) => Some(r.def_id),
ty::ReBound(_, r) => r.kind.get_id(),
ty::ReLateParam(r) => r.bound_region.get_id(),
ty::ReStatic
| ty::ReVar(_)
| ty::RePlaceholder(_)
| ty::ReErased
| ty::ReError(_) => None,
})
})
.any(|def_id| {
matches!(
lifetime.res,
LifetimeName::Param(param_def_id) if def_id
.as_local()
.is_some_and(|def_id| def_id == param_def_id),
)
})
{
// `&Cow<'a, T>` when the return type uses 'a is okay
return None;
}
let ty_name = snippet_opt(cx, ty.span()).unwrap_or_else(|| args.type_at(1).to_string());
span_lint_hir_and_then(
cx,
PTR_ARG,
emission_id,
hir_ty.span,
"using a reference to `Cow` is not recommended",
|diag| {
diag.span_suggestion(
hir_ty.span,
"change this to",
format!("&{}{ty_name}", mutability.prefix_str()),
Applicability::Unspecified,
);
},
);
}
return None;
},
_ => return None,
};
return Some(PtrArg {
idx: i,
emission_id,
span: hir_ty.span,
ty_did: adt.did(),
ty_name: name.ident.name,
method_renames,
ref_prefix: RefPrefix { lt: *lt, mutability },
deref_ty,
});
}
None
})
}
fn check_mut_from_ref<'tcx>(cx: &LateContext<'tcx>, sig: &FnSig<'_>, body: Option<&'tcx Body<'_>>) {
if let FnRetTy::Return(ty) = sig.decl.output
&& let Some((out, Mutability::Mut, _)) = get_ref_lm(ty)
{
let out_region = cx.tcx.named_bound_var(out.hir_id);
let args: Option<Vec<_>> = sig
.decl
.inputs
.iter()
.filter_map(get_ref_lm)
.filter(|&(lt, _, _)| cx.tcx.named_bound_var(lt.hir_id) == out_region)
.map(|(_, mutability, span)| (mutability == Mutability::Not).then_some(span))
.collect();
if let Some(args) = args
&& !args.is_empty()
&& body.map_or(true, |body| {
sig.header.unsafety == Unsafety::Unsafe || contains_unsafe_block(cx, body.value)
})
{
span_lint_and_then(
cx,
MUT_FROM_REF,
ty.span,
"mutable borrow from immutable input(s)",
|diag| {
let ms = MultiSpan::from_spans(args);
diag.span_note(ms, "immutable borrow here");
},
);
}
}
}
#[expect(clippy::too_many_lines)]
fn check_ptr_arg_usage<'tcx>(cx: &LateContext<'tcx>, body: &'tcx Body<'_>, args: &[PtrArg<'tcx>]) -> Vec<PtrArgResult> {
struct V<'cx, 'tcx> {
cx: &'cx LateContext<'tcx>,
/// Map from a local id to which argument it came from (index into `Self::args` and
/// `Self::results`)
bindings: HirIdMap<usize>,
/// The arguments being checked.
args: &'cx [PtrArg<'tcx>],
/// The results for each argument (len should match args.len)
results: Vec<PtrArgResult>,
/// The number of arguments which can't be linted. Used to return early.
skip_count: usize,
}
impl<'tcx> Visitor<'tcx> for V<'_, 'tcx> {
type NestedFilter = nested_filter::OnlyBodies;
fn nested_visit_map(&mut self) -> Self::Map {
self.cx.tcx.hir()
}
fn visit_anon_const(&mut self, _: &'tcx AnonConst) {}
fn visit_expr(&mut self, e: &'tcx Expr<'_>) {
if self.skip_count == self.args.len() {
return;
}
// Check if this is local we care about
let Some(&args_idx) = path_to_local(e).and_then(|id| self.bindings.get(&id)) else {
return walk_expr(self, e);
};
let args = &self.args[args_idx];
let result = &mut self.results[args_idx];
// Helper function to handle early returns.
let mut set_skip_flag = || {
if !result.skip {
self.skip_count += 1;
}
result.skip = true;
};
match get_expr_use_or_unification_node(self.cx.tcx, e) {
Some((Node::Stmt(_), _)) => (),
Some((Node::LetStmt(l), _)) => {
// Only trace simple bindings. e.g `let x = y;`
if let PatKind::Binding(BindingAnnotation::NONE, id, _, None) = l.pat.kind {
self.bindings.insert(id, args_idx);
} else {
set_skip_flag();
}
},
Some((Node::Expr(e), child_id)) => match e.kind {
ExprKind::Call(f, expr_args) => {
let i = expr_args.iter().position(|arg| arg.hir_id == child_id).unwrap_or(0);
if expr_sig(self.cx, f).and_then(|sig| sig.input(i)).map_or(true, |ty| {
match *ty.skip_binder().peel_refs().kind() {
ty::Dynamic(preds, _, _) => !matches_preds(self.cx, args.deref_ty.ty(self.cx), preds),
ty::Param(_) => true,
ty::Adt(def, _) => def.did() == args.ty_did,
_ => false,
}
}) {
// Passed to a function taking the non-dereferenced type.
set_skip_flag();
}
},
ExprKind::MethodCall(name, self_arg, expr_args, _) => {
let i = std::iter::once(self_arg)
.chain(expr_args.iter())
.position(|arg| arg.hir_id == child_id)
.unwrap_or(0);
if i == 0 {
// Check if the method can be renamed.
let name = name.ident.as_str();
if let Some((_, replacement)) = args.method_renames.iter().find(|&&(x, _)| x == name) {
result.replacements.push(PtrArgReplacement {
expr_span: e.span,
self_span: self_arg.span,
replacement,
});
return;
}
}
let Some(id) = self.cx.typeck_results().type_dependent_def_id(e.hir_id) else {
set_skip_flag();
return;
};
match *self.cx.tcx.fn_sig(id).instantiate_identity().skip_binder().inputs()[i]
.peel_refs()
.kind()
{
ty::Dynamic(preds, _, _) if !matches_preds(self.cx, args.deref_ty.ty(self.cx), preds) => {
set_skip_flag();
},
ty::Param(_) => {
set_skip_flag();
},
// If the types match check for methods which exist on both types. e.g. `Vec::len` and
// `slice::len`
ty::Adt(def, _) if def.did() == args.ty_did && !is_allowed_vec_method(self.cx, e) => {
set_skip_flag();
},
_ => (),
}
},
// Indexing is fine for currently supported types.
ExprKind::Index(e, _, _) if e.hir_id == child_id => (),
_ => set_skip_flag(),
},
_ => set_skip_flag(),
}
}
}
let mut skip_count = 0;
let mut results = args.iter().map(|_| PtrArgResult::default()).collect::<Vec<_>>();
let mut v = V {
cx,
bindings: args
.iter()
.enumerate()
.filter_map(|(i, arg)| {
let param = &body.params[arg.idx];
match param.pat.kind {
PatKind::Binding(BindingAnnotation::NONE, id, _, None)
if !is_lint_allowed(cx, PTR_ARG, param.hir_id) =>
{
Some((id, i))
},
_ => {
skip_count += 1;
results[i].skip = true;
None
},
}
})
.collect(),
args,
results,
skip_count,
};
v.visit_expr(body.value);
v.results
}
fn matches_preds<'tcx>(
cx: &LateContext<'tcx>,
ty: Ty<'tcx>,
preds: &'tcx [ty::PolyExistentialPredicate<'tcx>],
) -> bool {
let infcx = cx.tcx.infer_ctxt().build();
preds
.iter()
.all(|&p| match cx.tcx.instantiate_bound_regions_with_erased(p) {
ExistentialPredicate::Trait(p) => infcx
.type_implements_trait(p.def_id, [ty.into()].into_iter().chain(p.args.iter()), cx.param_env)
.must_apply_modulo_regions(),
ExistentialPredicate::Projection(p) => infcx.predicate_must_hold_modulo_regions(&Obligation::new(
cx.tcx,
ObligationCause::dummy(),
cx.param_env,
cx.tcx
.mk_predicate(Binder::dummy(PredicateKind::Clause(ClauseKind::Projection(
p.with_self_ty(cx.tcx, ty),
)))),
)),
ExistentialPredicate::AutoTrait(p) => infcx
.type_implements_trait(p, [ty], cx.param_env)
.must_apply_modulo_regions(),
})
}
fn get_ref_lm<'tcx>(ty: &'tcx hir::Ty<'tcx>) -> Option<(&'tcx Lifetime, Mutability, Span)> {
if let TyKind::Ref(lt, ref m) = ty.kind {
Some((lt, m.mutbl, ty.span))
} else {
None
}
}
fn is_null_path(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool {
if let ExprKind::Call(pathexp, []) = expr.kind {
path_def_id(cx, pathexp).map_or(false, |id| {
matches!(cx.tcx.get_diagnostic_name(id), Some(sym::ptr_null | sym::ptr_null_mut))
})
} else {
false
}
}