rust/compiler/rustc_codegen_llvm/src/common.rs
Matthias Krüger 63c548d82c
Rollup merge of #137549 - oli-obk:llvm-ffi, r=davidtwco
Clean up various LLVM FFI things in codegen_llvm

cc ```@ZuseZ4``` I touched some autodiff parts

The major change of this PR is [bfd88ce](bfd88cead0) which makes `CodegenCx` generic just like `GenericBuilder`

The other commits mostly took advantage of the new feature of making extern functions safe, but also just used some wrappers that were already there and shrunk unsafe blocks.

best reviewed commit-by-commit
2025-03-07 19:15:34 +01:00

420 lines
16 KiB
Rust

//! Code that is useful in various codegen modules.
use std::borrow::Borrow;
use libc::{c_char, c_uint};
use rustc_abi as abi;
use rustc_abi::Primitive::Pointer;
use rustc_abi::{AddressSpace, HasDataLayout};
use rustc_ast::Mutability;
use rustc_codegen_ssa::common::TypeKind;
use rustc_codegen_ssa::traits::*;
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_hashes::Hash128;
use rustc_hir::def_id::DefId;
use rustc_middle::bug;
use rustc_middle::mir::interpret::{ConstAllocation, GlobalAlloc, Scalar};
use rustc_middle::ty::TyCtxt;
use rustc_session::cstore::DllImport;
use tracing::debug;
use crate::consts::const_alloc_to_llvm;
pub(crate) use crate::context::CodegenCx;
use crate::context::{GenericCx, SCx};
use crate::llvm::{self, BasicBlock, Bool, ConstantInt, False, Metadata, True};
use crate::type_::Type;
use crate::value::Value;
/*
* A note on nomenclature of linking: "extern", "foreign", and "upcall".
*
* An "extern" is an LLVM symbol we wind up emitting an undefined external
* reference to. This means "we don't have the thing in this compilation unit,
* please make sure you link it in at runtime". This could be a reference to
* C code found in a C library, or rust code found in a rust crate.
*
* Most "externs" are implicitly declared (automatically) as a result of a
* user declaring an extern _module_ dependency; this causes the rust driver
* to locate an extern crate, scan its compilation metadata, and emit extern
* declarations for any symbols used by the declaring crate.
*
* A "foreign" is an extern that references C (or other non-rust ABI) code.
* There is no metadata to scan for extern references so in these cases either
* a header-digester like bindgen, or manual function prototypes, have to
* serve as declarators. So these are usually given explicitly as prototype
* declarations, in rust code, with ABI attributes on them noting which ABI to
* link via.
*
* An "upcall" is a foreign call generated by the compiler (not corresponding
* to any user-written call in the code) into the runtime library, to perform
* some helper task such as bringing a task to life, allocating memory, etc.
*
*/
/// A structure representing an active landing pad for the duration of a basic
/// block.
///
/// Each `Block` may contain an instance of this, indicating whether the block
/// is part of a landing pad or not. This is used to make decision about whether
/// to emit `invoke` instructions (e.g., in a landing pad we don't continue to
/// use `invoke`) and also about various function call metadata.
///
/// For GNU exceptions (`landingpad` + `resume` instructions) this structure is
/// just a bunch of `None` instances (not too interesting), but for MSVC
/// exceptions (`cleanuppad` + `cleanupret` instructions) this contains data.
/// When inside of a landing pad, each function call in LLVM IR needs to be
/// annotated with which landing pad it's a part of. This is accomplished via
/// the `OperandBundleDef` value created for MSVC landing pads.
pub(crate) struct Funclet<'ll> {
cleanuppad: &'ll Value,
operand: llvm::OperandBundleOwned<'ll>,
}
impl<'ll> Funclet<'ll> {
pub(crate) fn new(cleanuppad: &'ll Value) -> Self {
Funclet { cleanuppad, operand: llvm::OperandBundleOwned::new("funclet", &[cleanuppad]) }
}
pub(crate) fn cleanuppad(&self) -> &'ll Value {
self.cleanuppad
}
pub(crate) fn bundle(&self) -> &llvm::OperandBundle<'ll> {
self.operand.raw()
}
}
impl<'ll, CX: Borrow<SCx<'ll>>> BackendTypes for GenericCx<'ll, CX> {
type Value = &'ll Value;
type Metadata = &'ll Metadata;
// FIXME(eddyb) replace this with a `Function` "subclass" of `Value`.
type Function = &'ll Value;
type BasicBlock = &'ll BasicBlock;
type Type = &'ll Type;
type Funclet = Funclet<'ll>;
type DIScope = &'ll llvm::debuginfo::DIScope;
type DILocation = &'ll llvm::debuginfo::DILocation;
type DIVariable = &'ll llvm::debuginfo::DIVariable;
}
impl<'ll> CodegenCx<'ll, '_> {
pub(crate) fn const_array(&self, ty: &'ll Type, elts: &[&'ll Value]) -> &'ll Value {
let len = u64::try_from(elts.len()).expect("LLVMConstArray2 elements len overflow");
unsafe { llvm::LLVMConstArray2(ty, elts.as_ptr(), len) }
}
pub(crate) fn const_bytes(&self, bytes: &[u8]) -> &'ll Value {
bytes_in_context(self.llcx, bytes)
}
pub(crate) fn const_get_elt(&self, v: &'ll Value, idx: u64) -> &'ll Value {
unsafe {
let idx = c_uint::try_from(idx).expect("LLVMGetAggregateElement index overflow");
let r = llvm::LLVMGetAggregateElement(v, idx).unwrap();
debug!("const_get_elt(v={:?}, idx={}, r={:?})", v, idx, r);
r
}
}
}
impl<'ll, 'tcx> ConstCodegenMethods for CodegenCx<'ll, 'tcx> {
fn const_null(&self, t: &'ll Type) -> &'ll Value {
unsafe { llvm::LLVMConstNull(t) }
}
fn const_undef(&self, t: &'ll Type) -> &'ll Value {
unsafe { llvm::LLVMGetUndef(t) }
}
fn const_poison(&self, t: &'ll Type) -> &'ll Value {
unsafe { llvm::LLVMGetPoison(t) }
}
fn const_bool(&self, val: bool) -> &'ll Value {
self.const_uint(self.type_i1(), val as u64)
}
fn const_i8(&self, i: i8) -> &'ll Value {
self.const_int(self.type_i8(), i as i64)
}
fn const_i16(&self, i: i16) -> &'ll Value {
self.const_int(self.type_i16(), i as i64)
}
fn const_i32(&self, i: i32) -> &'ll Value {
self.const_int(self.type_i32(), i as i64)
}
fn const_int(&self, t: &'ll Type, i: i64) -> &'ll Value {
debug_assert!(
self.type_kind(t) == TypeKind::Integer,
"only allows integer types in const_int"
);
unsafe { llvm::LLVMConstInt(t, i as u64, True) }
}
fn const_u8(&self, i: u8) -> &'ll Value {
self.const_uint(self.type_i8(), i as u64)
}
fn const_u32(&self, i: u32) -> &'ll Value {
self.const_uint(self.type_i32(), i as u64)
}
fn const_u64(&self, i: u64) -> &'ll Value {
self.const_uint(self.type_i64(), i)
}
fn const_u128(&self, i: u128) -> &'ll Value {
self.const_uint_big(self.type_i128(), i)
}
fn const_usize(&self, i: u64) -> &'ll Value {
let bit_size = self.data_layout().pointer_size.bits();
if bit_size < 64 {
// make sure it doesn't overflow
assert!(i < (1 << bit_size));
}
self.const_uint(self.isize_ty, i)
}
fn const_uint(&self, t: &'ll Type, i: u64) -> &'ll Value {
debug_assert!(
self.type_kind(t) == TypeKind::Integer,
"only allows integer types in const_uint"
);
unsafe { llvm::LLVMConstInt(t, i, False) }
}
fn const_uint_big(&self, t: &'ll Type, u: u128) -> &'ll Value {
debug_assert!(
self.type_kind(t) == TypeKind::Integer,
"only allows integer types in const_uint_big"
);
unsafe {
let words = [u as u64, (u >> 64) as u64];
llvm::LLVMConstIntOfArbitraryPrecision(t, 2, words.as_ptr())
}
}
fn const_real(&self, t: &'ll Type, val: f64) -> &'ll Value {
unsafe { llvm::LLVMConstReal(t, val) }
}
fn const_str(&self, s: &str) -> (&'ll Value, &'ll Value) {
let mut const_str_cache = self.const_str_cache.borrow_mut();
let str_global = const_str_cache.get(s).copied().unwrap_or_else(|| {
let sc = self.const_bytes(s.as_bytes());
let sym = self.generate_local_symbol_name("str");
let g = self.define_global(&sym, self.val_ty(sc)).unwrap_or_else(|| {
bug!("symbol `{}` is already defined", sym);
});
llvm::set_initializer(g, sc);
unsafe {
llvm::LLVMSetGlobalConstant(g, True);
llvm::LLVMSetUnnamedAddress(g, llvm::UnnamedAddr::Global);
}
llvm::set_linkage(g, llvm::Linkage::InternalLinkage);
// Cast to default address space if globals are in a different addrspace
let g = self.const_pointercast(g, self.type_ptr());
const_str_cache.insert(s.to_owned(), g);
g
});
let len = s.len();
(str_global, self.const_usize(len as u64))
}
fn const_struct(&self, elts: &[&'ll Value], packed: bool) -> &'ll Value {
struct_in_context(self.llcx, elts, packed)
}
fn const_vector(&self, elts: &[&'ll Value]) -> &'ll Value {
let len = c_uint::try_from(elts.len()).expect("LLVMConstVector elements len overflow");
unsafe { llvm::LLVMConstVector(elts.as_ptr(), len) }
}
fn const_to_opt_uint(&self, v: &'ll Value) -> Option<u64> {
try_as_const_integral(v).and_then(|v| unsafe {
let mut i = 0u64;
let success = llvm::LLVMRustConstIntGetZExtValue(v, &mut i);
success.then_some(i)
})
}
fn const_to_opt_u128(&self, v: &'ll Value, sign_ext: bool) -> Option<u128> {
try_as_const_integral(v).and_then(|v| unsafe {
let (mut lo, mut hi) = (0u64, 0u64);
let success = llvm::LLVMRustConstInt128Get(v, sign_ext, &mut hi, &mut lo);
success.then_some(hi_lo_to_u128(lo, hi))
})
}
fn scalar_to_backend(&self, cv: Scalar, layout: abi::Scalar, llty: &'ll Type) -> &'ll Value {
let bitsize = if layout.is_bool() { 1 } else { layout.size(self).bits() };
match cv {
Scalar::Int(int) => {
let data = int.to_bits(layout.size(self));
let llval = self.const_uint_big(self.type_ix(bitsize), data);
if matches!(layout.primitive(), Pointer(_)) {
unsafe { llvm::LLVMConstIntToPtr(llval, llty) }
} else {
self.const_bitcast(llval, llty)
}
}
Scalar::Ptr(ptr, _size) => {
let (prov, offset) = ptr.into_parts();
let (base_addr, base_addr_space) = match self.tcx.global_alloc(prov.alloc_id()) {
GlobalAlloc::Memory(alloc) => {
// For ZSTs directly codegen an aligned pointer.
// This avoids generating a zero-sized constant value and actually needing a
// real address at runtime.
if alloc.inner().len() == 0 {
assert_eq!(offset.bytes(), 0);
let llval = self.const_usize(alloc.inner().align.bytes());
return if matches!(layout.primitive(), Pointer(_)) {
unsafe { llvm::LLVMConstIntToPtr(llval, llty) }
} else {
self.const_bitcast(llval, llty)
};
} else {
let init = const_alloc_to_llvm(self, alloc, /*static*/ false);
let alloc = alloc.inner();
let value = match alloc.mutability {
Mutability::Mut => self.static_addr_of_mut(init, alloc.align, None),
_ => self.static_addr_of_impl(init, alloc.align, None),
};
if !self.sess().fewer_names() && llvm::get_value_name(value).is_empty()
{
let hash = self.tcx.with_stable_hashing_context(|mut hcx| {
let mut hasher = StableHasher::new();
alloc.hash_stable(&mut hcx, &mut hasher);
hasher.finish::<Hash128>()
});
llvm::set_value_name(
value,
format!("alloc_{hash:032x}").as_bytes(),
);
}
(value, AddressSpace::DATA)
}
}
GlobalAlloc::Function { instance, .. } => {
(self.get_fn_addr(instance), self.data_layout().instruction_address_space)
}
GlobalAlloc::VTable(ty, dyn_ty) => {
let alloc = self
.tcx
.global_alloc(self.tcx.vtable_allocation((
ty,
dyn_ty.principal().map(|principal| {
self.tcx.instantiate_bound_regions_with_erased(principal)
}),
)))
.unwrap_memory();
let init = const_alloc_to_llvm(self, alloc, /*static*/ false);
let value = self.static_addr_of_impl(init, alloc.inner().align, None);
(value, AddressSpace::DATA)
}
GlobalAlloc::Static(def_id) => {
assert!(self.tcx.is_static(def_id));
assert!(!self.tcx.is_thread_local_static(def_id));
(self.get_static(def_id), AddressSpace::DATA)
}
};
let llval = unsafe {
llvm::LLVMConstInBoundsGEP2(
self.type_i8(),
// Cast to the required address space if necessary
self.const_pointercast(base_addr, self.type_ptr_ext(base_addr_space)),
&self.const_usize(offset.bytes()),
1,
)
};
if !matches!(layout.primitive(), Pointer(_)) {
unsafe { llvm::LLVMConstPtrToInt(llval, llty) }
} else {
self.const_bitcast(llval, llty)
}
}
}
}
fn const_data_from_alloc(&self, alloc: ConstAllocation<'_>) -> Self::Value {
const_alloc_to_llvm(self, alloc, /*static*/ false)
}
fn const_ptr_byte_offset(&self, base_addr: Self::Value, offset: abi::Size) -> Self::Value {
unsafe {
llvm::LLVMConstInBoundsGEP2(
self.type_i8(),
base_addr,
&self.const_usize(offset.bytes()),
1,
)
}
}
}
/// Get the [LLVM type][Type] of a [`Value`].
pub(crate) fn val_ty(v: &Value) -> &Type {
unsafe { llvm::LLVMTypeOf(v) }
}
pub(crate) fn bytes_in_context<'ll>(llcx: &'ll llvm::Context, bytes: &[u8]) -> &'ll Value {
unsafe {
let ptr = bytes.as_ptr() as *const c_char;
llvm::LLVMConstStringInContext2(llcx, ptr, bytes.len(), True)
}
}
fn struct_in_context<'ll>(
llcx: &'ll llvm::Context,
elts: &[&'ll Value],
packed: bool,
) -> &'ll Value {
let len = c_uint::try_from(elts.len()).expect("LLVMConstStructInContext elements len overflow");
unsafe { llvm::LLVMConstStructInContext(llcx, elts.as_ptr(), len, packed as Bool) }
}
#[inline]
fn hi_lo_to_u128(lo: u64, hi: u64) -> u128 {
((hi as u128) << 64) | (lo as u128)
}
fn try_as_const_integral(v: &Value) -> Option<&ConstantInt> {
unsafe { llvm::LLVMIsAConstantInt(v) }
}
pub(crate) fn get_dllimport<'tcx>(
tcx: TyCtxt<'tcx>,
id: DefId,
name: &str,
) -> Option<&'tcx DllImport> {
tcx.native_library(id)
.and_then(|lib| lib.dll_imports.iter().find(|di| di.name.as_str() == name))
}
/// Extension trait for explicit casts to `*const c_char`.
pub(crate) trait AsCCharPtr {
/// Equivalent to `self.as_ptr().cast()`, but only casts to `*const c_char`.
fn as_c_char_ptr(&self) -> *const c_char;
}
impl AsCCharPtr for str {
fn as_c_char_ptr(&self) -> *const c_char {
self.as_ptr().cast()
}
}
impl AsCCharPtr for [u8] {
fn as_c_char_ptr(&self) -> *const c_char {
self.as_ptr().cast()
}
}