mirror of
https://github.com/rust-lang/rust.git
synced 2025-04-29 03:27:44 +00:00
391 lines
16 KiB
Rust
391 lines
16 KiB
Rust
use std::iter;
|
|
|
|
use itertools::Itertools as _;
|
|
use rustc_abi::Align;
|
|
use rustc_codegen_ssa::traits::{
|
|
BaseTypeCodegenMethods, ConstCodegenMethods, StaticCodegenMethods,
|
|
};
|
|
use rustc_data_structures::fx::{FxHashSet, FxIndexMap, FxIndexSet};
|
|
use rustc_hir::def_id::{DefId, LocalDefId};
|
|
use rustc_index::IndexVec;
|
|
use rustc_middle::ty::{self, TyCtxt};
|
|
use rustc_middle::{bug, mir};
|
|
use rustc_session::RemapFileNameExt;
|
|
use rustc_session::config::RemapPathScopeComponents;
|
|
use rustc_span::def_id::DefIdSet;
|
|
use rustc_span::{Span, Symbol};
|
|
use tracing::debug;
|
|
|
|
use crate::common::CodegenCx;
|
|
use crate::coverageinfo::llvm_cov;
|
|
use crate::coverageinfo::map_data::FunctionCoverage;
|
|
use crate::coverageinfo::mapgen::covfun::prepare_covfun_record;
|
|
use crate::llvm;
|
|
|
|
mod covfun;
|
|
|
|
/// Generates and exports the coverage map, which is embedded in special
|
|
/// linker sections in the final binary.
|
|
///
|
|
/// Those sections are then read and understood by LLVM's `llvm-cov` tool,
|
|
/// which is distributed in the `llvm-tools` rustup component.
|
|
pub(crate) fn finalize(cx: &CodegenCx<'_, '_>) {
|
|
let tcx = cx.tcx;
|
|
|
|
// Ensure that LLVM is using a version of the coverage mapping format that
|
|
// agrees with our Rust-side code. Expected versions (encoded as n-1) are:
|
|
// - `CovMapVersion::Version7` (6) used by LLVM 18-19
|
|
let covmap_version = {
|
|
let llvm_covmap_version = llvm_cov::mapping_version();
|
|
let expected_versions = 6..=6;
|
|
assert!(
|
|
expected_versions.contains(&llvm_covmap_version),
|
|
"Coverage mapping version exposed by `llvm-wrapper` is out of sync; \
|
|
expected {expected_versions:?} but was {llvm_covmap_version}"
|
|
);
|
|
// This is the version number that we will embed in the covmap section:
|
|
llvm_covmap_version
|
|
};
|
|
|
|
debug!("Generating coverage map for CodegenUnit: `{}`", cx.codegen_unit.name());
|
|
|
|
// In order to show that unused functions have coverage counts of zero (0), LLVM requires the
|
|
// functions exist. Generate synthetic functions with a (required) single counter, and add the
|
|
// MIR `Coverage` code regions to the `function_coverage_map`, before calling
|
|
// `ctx.take_function_coverage_map()`.
|
|
if cx.codegen_unit.is_code_coverage_dead_code_cgu() {
|
|
add_unused_functions(cx);
|
|
}
|
|
|
|
// FIXME(#132395): Can this be none even when coverage is enabled?
|
|
let function_coverage_map = match cx.coverage_cx {
|
|
Some(ref cx) => cx.take_function_coverage_map(),
|
|
None => return,
|
|
};
|
|
if function_coverage_map.is_empty() {
|
|
// This CGU has no functions with coverage instrumentation.
|
|
return;
|
|
}
|
|
|
|
let all_file_names = function_coverage_map
|
|
.iter()
|
|
.map(|(_, fn_cov)| fn_cov.function_coverage_info.body_span)
|
|
.map(|span| span_file_name(tcx, span));
|
|
let global_file_table = GlobalFileTable::new(all_file_names);
|
|
|
|
// Encode all filenames referenced by coverage mappings in this CGU.
|
|
let filenames_buffer = global_file_table.make_filenames_buffer(tcx);
|
|
|
|
let filenames_size = filenames_buffer.len();
|
|
let filenames_val = cx.const_bytes(&filenames_buffer);
|
|
let filenames_ref = llvm_cov::hash_bytes(&filenames_buffer);
|
|
|
|
let mut unused_function_names = Vec::new();
|
|
|
|
let covfun_records = function_coverage_map
|
|
.into_iter()
|
|
.filter_map(|(instance, function_coverage)| {
|
|
prepare_covfun_record(tcx, &global_file_table, instance, &function_coverage)
|
|
})
|
|
.collect::<Vec<_>>();
|
|
|
|
// If there are no covfun records for this CGU, don't generate a covmap record.
|
|
// Emitting a covmap record without any covfun records causes `llvm-cov` to
|
|
// fail when generating coverage reports, and if there are no covfun records
|
|
// then the covmap record isn't useful anyway.
|
|
// This should prevent a repeat of <https://github.com/rust-lang/rust/issues/133606>.
|
|
if covfun_records.is_empty() {
|
|
return;
|
|
}
|
|
|
|
for covfun in &covfun_records {
|
|
unused_function_names.extend(covfun.mangled_function_name_if_unused());
|
|
|
|
covfun::generate_covfun_record(cx, filenames_ref, covfun)
|
|
}
|
|
|
|
// For unused functions, we need to take their mangled names and store them
|
|
// in a specially-named global array. LLVM's `InstrProfiling` pass will
|
|
// detect this global and include those names in its `__llvm_prf_names`
|
|
// section. (See `llvm/lib/Transforms/Instrumentation/InstrProfiling.cpp`.)
|
|
if !unused_function_names.is_empty() {
|
|
assert!(cx.codegen_unit.is_code_coverage_dead_code_cgu());
|
|
|
|
let name_globals = unused_function_names
|
|
.into_iter()
|
|
.map(|mangled_function_name| cx.const_str(mangled_function_name).0)
|
|
.collect::<Vec<_>>();
|
|
let initializer = cx.const_array(cx.type_ptr(), &name_globals);
|
|
|
|
let array = llvm::add_global(cx.llmod, cx.val_ty(initializer), c"__llvm_coverage_names");
|
|
llvm::set_global_constant(array, true);
|
|
llvm::set_linkage(array, llvm::Linkage::InternalLinkage);
|
|
llvm::set_initializer(array, initializer);
|
|
}
|
|
|
|
// Generate the coverage map header, which contains the filenames used by
|
|
// this CGU's coverage mappings, and store it in a well-known global.
|
|
// (This is skipped if we returned early due to having no covfun records.)
|
|
generate_covmap_record(cx, covmap_version, filenames_size, filenames_val);
|
|
}
|
|
|
|
/// Maps "global" (per-CGU) file ID numbers to their underlying filenames.
|
|
struct GlobalFileTable {
|
|
/// This "raw" table doesn't include the working dir, so a filename's
|
|
/// global ID is its index in this set **plus one**.
|
|
raw_file_table: FxIndexSet<Symbol>,
|
|
}
|
|
|
|
impl GlobalFileTable {
|
|
fn new(all_file_names: impl IntoIterator<Item = Symbol>) -> Self {
|
|
// Collect all of the filenames into a set. Filenames usually come in
|
|
// contiguous runs, so we can dedup adjacent ones to save work.
|
|
let mut raw_file_table = all_file_names.into_iter().dedup().collect::<FxIndexSet<Symbol>>();
|
|
|
|
// Sort the file table by its actual string values, not the arbitrary
|
|
// ordering of its symbols.
|
|
raw_file_table.sort_unstable_by(|a, b| a.as_str().cmp(b.as_str()));
|
|
|
|
Self { raw_file_table }
|
|
}
|
|
|
|
fn global_file_id_for_file_name(&self, file_name: Symbol) -> GlobalFileId {
|
|
let raw_id = self.raw_file_table.get_index_of(&file_name).unwrap_or_else(|| {
|
|
bug!("file name not found in prepared global file table: {file_name}");
|
|
});
|
|
// The raw file table doesn't include an entry for the working dir
|
|
// (which has ID 0), so add 1 to get the correct ID.
|
|
GlobalFileId::from_usize(raw_id + 1)
|
|
}
|
|
|
|
fn make_filenames_buffer(&self, tcx: TyCtxt<'_>) -> Vec<u8> {
|
|
// LLVM Coverage Mapping Format version 6 (zero-based encoded as 5)
|
|
// requires setting the first filename to the compilation directory.
|
|
// Since rustc generates coverage maps with relative paths, the
|
|
// compilation directory can be combined with the relative paths
|
|
// to get absolute paths, if needed.
|
|
use rustc_session::RemapFileNameExt;
|
|
use rustc_session::config::RemapPathScopeComponents;
|
|
let working_dir: &str = &tcx
|
|
.sess
|
|
.opts
|
|
.working_dir
|
|
.for_scope(tcx.sess, RemapPathScopeComponents::MACRO)
|
|
.to_string_lossy();
|
|
|
|
// Insert the working dir at index 0, before the other filenames.
|
|
let filenames =
|
|
iter::once(working_dir).chain(self.raw_file_table.iter().map(Symbol::as_str));
|
|
llvm_cov::write_filenames_to_buffer(filenames)
|
|
}
|
|
}
|
|
|
|
rustc_index::newtype_index! {
|
|
/// An index into the CGU's overall list of file paths. The underlying paths
|
|
/// will be embedded in the `__llvm_covmap` linker section.
|
|
struct GlobalFileId {}
|
|
}
|
|
rustc_index::newtype_index! {
|
|
/// An index into a function's list of global file IDs. That underlying list
|
|
/// of local-to-global mappings will be embedded in the function's record in
|
|
/// the `__llvm_covfun` linker section.
|
|
pub(crate) struct LocalFileId {}
|
|
}
|
|
|
|
/// Holds a mapping from "local" (per-function) file IDs to "global" (per-CGU)
|
|
/// file IDs.
|
|
#[derive(Default)]
|
|
struct VirtualFileMapping {
|
|
local_to_global: IndexVec<LocalFileId, GlobalFileId>,
|
|
global_to_local: FxIndexMap<GlobalFileId, LocalFileId>,
|
|
}
|
|
|
|
impl VirtualFileMapping {
|
|
fn local_id_for_global(&mut self, global_file_id: GlobalFileId) -> LocalFileId {
|
|
*self
|
|
.global_to_local
|
|
.entry(global_file_id)
|
|
.or_insert_with(|| self.local_to_global.push(global_file_id))
|
|
}
|
|
|
|
fn into_vec(self) -> Vec<u32> {
|
|
// This conversion should be optimized away to ~zero overhead.
|
|
// In any case, it's probably not hot enough to worry about.
|
|
self.local_to_global.into_iter().map(|global| global.as_u32()).collect()
|
|
}
|
|
}
|
|
|
|
fn span_file_name(tcx: TyCtxt<'_>, span: Span) -> Symbol {
|
|
let source_file = tcx.sess.source_map().lookup_source_file(span.lo());
|
|
let name =
|
|
source_file.name.for_scope(tcx.sess, RemapPathScopeComponents::MACRO).to_string_lossy();
|
|
Symbol::intern(&name)
|
|
}
|
|
|
|
/// Generates the contents of the covmap record for this CGU, which mostly
|
|
/// consists of a header and a list of filenames. The record is then stored
|
|
/// as a global variable in the `__llvm_covmap` section.
|
|
fn generate_covmap_record<'ll>(
|
|
cx: &CodegenCx<'ll, '_>,
|
|
version: u32,
|
|
filenames_size: usize,
|
|
filenames_val: &'ll llvm::Value,
|
|
) {
|
|
debug!("cov map: filenames_size = {}, 0-based version = {}", filenames_size, version);
|
|
|
|
// Create the coverage data header (Note, fields 0 and 2 are now always zero,
|
|
// as of `llvm::coverage::CovMapVersion::Version4`.)
|
|
let zero_was_n_records_val = cx.const_u32(0);
|
|
let filenames_size_val = cx.const_u32(filenames_size as u32);
|
|
let zero_was_coverage_size_val = cx.const_u32(0);
|
|
let version_val = cx.const_u32(version);
|
|
let cov_data_header_val = cx.const_struct(
|
|
&[zero_was_n_records_val, filenames_size_val, zero_was_coverage_size_val, version_val],
|
|
/*packed=*/ false,
|
|
);
|
|
|
|
// Create the complete LLVM coverage data value to add to the LLVM IR
|
|
let covmap_data =
|
|
cx.const_struct(&[cov_data_header_val, filenames_val], /*packed=*/ false);
|
|
|
|
let llglobal = llvm::add_global(cx.llmod, cx.val_ty(covmap_data), &llvm_cov::covmap_var_name());
|
|
llvm::set_initializer(llglobal, covmap_data);
|
|
llvm::set_global_constant(llglobal, true);
|
|
llvm::set_linkage(llglobal, llvm::Linkage::PrivateLinkage);
|
|
llvm::set_section(llglobal, &llvm_cov::covmap_section_name(cx.llmod));
|
|
// LLVM's coverage mapping format specifies 8-byte alignment for items in this section.
|
|
// <https://llvm.org/docs/CoverageMappingFormat.html>
|
|
llvm::set_alignment(llglobal, Align::EIGHT);
|
|
cx.add_used_global(llglobal);
|
|
}
|
|
|
|
/// Each CGU will normally only emit coverage metadata for the functions that it actually generates.
|
|
/// But since we don't want unused functions to disappear from coverage reports, we also scan for
|
|
/// functions that were instrumented but are not participating in codegen.
|
|
///
|
|
/// These unused functions don't need to be codegenned, but we do need to add them to the function
|
|
/// coverage map (in a single designated CGU) so that we still emit coverage mappings for them.
|
|
/// We also end up adding their symbol names to a special global array that LLVM will include in
|
|
/// its embedded coverage data.
|
|
fn add_unused_functions(cx: &CodegenCx<'_, '_>) {
|
|
assert!(cx.codegen_unit.is_code_coverage_dead_code_cgu());
|
|
|
|
let tcx = cx.tcx;
|
|
let usage = prepare_usage_sets(tcx);
|
|
|
|
let is_unused_fn = |def_id: LocalDefId| -> bool {
|
|
let def_id = def_id.to_def_id();
|
|
|
|
// To be eligible for "unused function" mappings, a definition must:
|
|
// - Be function-like
|
|
// - Not participate directly in codegen (or have lost all its coverage statements)
|
|
// - Not have any coverage statements inlined into codegenned functions
|
|
tcx.def_kind(def_id).is_fn_like()
|
|
&& (!usage.all_mono_items.contains(&def_id)
|
|
|| usage.missing_own_coverage.contains(&def_id))
|
|
&& !usage.used_via_inlining.contains(&def_id)
|
|
};
|
|
|
|
// Scan for unused functions that were instrumented for coverage.
|
|
for def_id in tcx.mir_keys(()).iter().copied().filter(|&def_id| is_unused_fn(def_id)) {
|
|
// Get the coverage info from MIR, skipping functions that were never instrumented.
|
|
let body = tcx.optimized_mir(def_id);
|
|
let Some(function_coverage_info) = body.function_coverage_info.as_deref() else { continue };
|
|
|
|
// FIXME(79651): Consider trying to filter out dummy instantiations of
|
|
// unused generic functions from library crates, because they can produce
|
|
// "unused instantiation" in coverage reports even when they are actually
|
|
// used by some downstream crate in the same binary.
|
|
|
|
debug!("generating unused fn: {def_id:?}");
|
|
add_unused_function_coverage(cx, def_id, function_coverage_info);
|
|
}
|
|
}
|
|
|
|
struct UsageSets<'tcx> {
|
|
all_mono_items: &'tcx DefIdSet,
|
|
used_via_inlining: FxHashSet<DefId>,
|
|
missing_own_coverage: FxHashSet<DefId>,
|
|
}
|
|
|
|
/// Prepare sets of definitions that are relevant to deciding whether something
|
|
/// is an "unused function" for coverage purposes.
|
|
fn prepare_usage_sets<'tcx>(tcx: TyCtxt<'tcx>) -> UsageSets<'tcx> {
|
|
let (all_mono_items, cgus) = tcx.collect_and_partition_mono_items(());
|
|
|
|
// Obtain a MIR body for each function participating in codegen, via an
|
|
// arbitrary instance.
|
|
let mut def_ids_seen = FxHashSet::default();
|
|
let def_and_mir_for_all_mono_fns = cgus
|
|
.iter()
|
|
.flat_map(|cgu| cgu.items().keys())
|
|
.filter_map(|item| match item {
|
|
mir::mono::MonoItem::Fn(instance) => Some(instance),
|
|
mir::mono::MonoItem::Static(_) | mir::mono::MonoItem::GlobalAsm(_) => None,
|
|
})
|
|
// We only need one arbitrary instance per definition.
|
|
.filter(move |instance| def_ids_seen.insert(instance.def_id()))
|
|
.map(|instance| {
|
|
// We don't care about the instance, just its underlying MIR.
|
|
let body = tcx.instance_mir(instance.def);
|
|
(instance.def_id(), body)
|
|
});
|
|
|
|
// Functions whose coverage statements were found inlined into other functions.
|
|
let mut used_via_inlining = FxHashSet::default();
|
|
// Functions that were instrumented, but had all of their coverage statements
|
|
// removed by later MIR transforms (e.g. UnreachablePropagation).
|
|
let mut missing_own_coverage = FxHashSet::default();
|
|
|
|
for (def_id, body) in def_and_mir_for_all_mono_fns {
|
|
let mut saw_own_coverage = false;
|
|
|
|
// Inspect every coverage statement in the function's MIR.
|
|
for stmt in body
|
|
.basic_blocks
|
|
.iter()
|
|
.flat_map(|block| &block.statements)
|
|
.filter(|stmt| matches!(stmt.kind, mir::StatementKind::Coverage(_)))
|
|
{
|
|
if let Some(inlined) = stmt.source_info.scope.inlined_instance(&body.source_scopes) {
|
|
// This coverage statement was inlined from another function.
|
|
used_via_inlining.insert(inlined.def_id());
|
|
} else {
|
|
// Non-inlined coverage statements belong to the enclosing function.
|
|
saw_own_coverage = true;
|
|
}
|
|
}
|
|
|
|
if !saw_own_coverage && body.function_coverage_info.is_some() {
|
|
missing_own_coverage.insert(def_id);
|
|
}
|
|
}
|
|
|
|
UsageSets { all_mono_items, used_via_inlining, missing_own_coverage }
|
|
}
|
|
|
|
fn add_unused_function_coverage<'tcx>(
|
|
cx: &CodegenCx<'_, 'tcx>,
|
|
def_id: LocalDefId,
|
|
function_coverage_info: &'tcx mir::coverage::FunctionCoverageInfo,
|
|
) {
|
|
let tcx = cx.tcx;
|
|
let def_id = def_id.to_def_id();
|
|
|
|
// Make a dummy instance that fills in all generics with placeholders.
|
|
let instance = ty::Instance::new(
|
|
def_id,
|
|
ty::GenericArgs::for_item(tcx, def_id, |param, _| {
|
|
if let ty::GenericParamDefKind::Lifetime = param.kind {
|
|
tcx.lifetimes.re_erased.into()
|
|
} else {
|
|
tcx.mk_param_from_def(param)
|
|
}
|
|
}),
|
|
);
|
|
|
|
// An unused function's mappings will all be rewritten to map to zero.
|
|
let function_coverage = FunctionCoverage::new_unused(function_coverage_info);
|
|
cx.coverage_cx().function_coverage_map.borrow_mut().insert(instance, function_coverage);
|
|
}
|