4e510daed7
Allow instantiating object trait binder when upcasting This PR fixes two bugs (that probably need an FCP). ### We use equality rather than subtyping for upcasting dyn conversions This code should be valid: ```rust #![feature(trait_upcasting)] trait Foo: for<'h> Bar<'h> {} trait Bar<'a> {} fn foo(x: &dyn Foo) { let y: &dyn Bar<'static> = x; } ``` But instead: ``` error[E0308]: mismatched types --> src/lib.rs:7:32 | 7 | let y: &dyn Bar<'static> = x; | ^ one type is more general than the other | = note: expected existential trait ref `for<'h> Bar<'h>` found existential trait ref `Bar<'_>` ``` And so should this: ```rust #![feature(trait_upcasting)] fn foo(x: &dyn for<'h> Fn(&'h ())) { let y: &dyn FnOnce(&'static ()) = x; } ``` But instead: ``` error[E0308]: mismatched types --> src/lib.rs:4:39 | 4 | let y: &dyn FnOnce(&'static ()) = x; | ^ one type is more general than the other | = note: expected existential trait ref `for<'h> FnOnce<(&'h (),)>` found existential trait ref `FnOnce<(&(),)>` ``` Specifically, both of these fail because we use *equality* when comparing the supertrait to the *target* of the unsize goal. For the first example, since our supertrait is `for<'h> Bar<'h>` but our target is `Bar<'static>`, there's a higher-ranked type mismatch even though we *should* be able to instantiate that supertrait binder when upcasting. Similarly for the second example. ### New solver uses equality rather than subtyping for no-op (i.e. non-upcasting) dyn conversions This code should be valid in the new solver, like it is with the old solver: ```rust // -Znext-solver fn foo<'a>(x: &mut for<'h> dyn Fn(&'h ())) { let _: &mut dyn Fn(&'a ()) = x; } ``` But instead: ``` error: lifetime may not live long enough --> <source>:2:11 | 1 | fn foo<'a>(x: &mut dyn for<'h> Fn(&'h ())) { | -- lifetime `'a` defined here 2 | let _: &mut dyn Fn(&'a ()) = x; | ^^^^^^^^^^^^^^^^^^^ type annotation requires that `'a` must outlive `'static` | = note: requirement occurs because of a mutable reference to `dyn Fn(&())` ``` Specifically, this fails because we try to coerce `&mut dyn for<'h> Fn(&'h ())` to `&mut dyn Fn(&'a ())`, which registers an `dyn for<'h> Fn(&'h ()): dyn Fn(&'a ())` goal. This fails because the new solver uses *equating* rather than *subtyping* in `Unsize` goals. This is *mostly* not a problem... You may wonder why the same code passes on the new solver for immutable references: ``` // -Znext-solver fn foo<'a>(x: &dyn Fn(&())) { let _: &dyn Fn(&'a ()) = x; // works } ``` That's because in this case, we first try to coerce via `Unsize`, but due to the leak check the goal fails. Then, later in coercion, we fall back to a simple subtyping operation, which *does* work. Since `&T` is covariant over `T`, but `&mut T` is invariant, that's where the discrepancy between these two examples crops up. --- r? lcnr or reassign :D |
||
---|---|---|
.github | ||
compiler | ||
library | ||
LICENSES | ||
src | ||
tests | ||
.clang-format | ||
.editorconfig | ||
.git-blame-ignore-revs | ||
.gitattributes | ||
.gitignore | ||
.gitmodules | ||
.ignore | ||
.mailmap | ||
Cargo.lock | ||
Cargo.toml | ||
CODE_OF_CONDUCT.md | ||
config.example.toml | ||
configure | ||
CONTRIBUTING.md | ||
COPYRIGHT | ||
INSTALL.md | ||
LICENSE-APACHE | ||
LICENSE-MIT | ||
README.md | ||
RELEASES.md | ||
REUSE.toml | ||
rust-bors.toml | ||
rustfmt.toml | ||
triagebot.toml | ||
x | ||
x.ps1 | ||
x.py |
This is the main source code repository for Rust. It contains the compiler, standard library, and documentation.
Why Rust?
-
Performance: Fast and memory-efficient, suitable for critical services, embedded devices, and easily integrate with other languages.
-
Reliability: Our rich type system and ownership model ensure memory and thread safety, reducing bugs at compile-time.
-
Productivity: Comprehensive documentation, a compiler committed to providing great diagnostics, and advanced tooling including package manager and build tool (Cargo), auto-formatter (rustfmt), linter (Clippy) and editor support (rust-analyzer).
Quick Start
Read "Installation" from The Book.
Installing from Source
If you really want to install from source (though this is not recommended), see INSTALL.md.
Getting Help
See https://www.rust-lang.org/community for a list of chat platforms and forums.
Contributing
See CONTRIBUTING.md.
License
Rust is primarily distributed under the terms of both the MIT license and the Apache License (Version 2.0), with portions covered by various BSD-like licenses.
See LICENSE-APACHE, LICENSE-MIT, and COPYRIGHT for details.
Trademark
The Rust Foundation owns and protects the Rust and Cargo trademarks and logos (the "Rust Trademarks").
If you want to use these names or brands, please read the media guide.
Third-party logos may be subject to third-party copyrights and trademarks. See Licenses for details.