![]() Give `global_asm` a fake body to store typeck results, represent `sym fn` as a hir expr to fix `sym fn` operands with lifetimes There are a few intertwined problems with `sym fn` operands in both inline and global asm macros. Specifically, unlike other anon consts, they may evaluate to a type with free regions in them without actually having an item-level type annotation to give them a "proper" type. This is in contrast to named constants, which always have an item-level type annotation, or unnamed constants which are constrained by their position (e.g. a const arg in a turbofish, or a const array length). Today, we infer the type of the operand by looking at the HIR typeck results; however, those results are region-erased, so during borrowck we ICE since we don't expect to encounter erased regions. We can't just fill this type with something like `'static`, since we may want to use real (free) regions: ```rust fn foo<'a>() { asm!("/* ... */", sym bar::<&'a ()>); } ``` The first idea may be to represent `sym fn` operands using *inline* consts instead of anon consts. This makes sense, since inline consts can reference regions from the parent body (like the `'a` in the example above). However, this introduces a problem with `global_asm!`, which doesn't *have* a parent body; inline consts *must* be associated with a parent body since they are not a body owner of their own. In #116087, I attempted to fix this by using two separate `sym` operands for global and inline asm. However, this led to a lot of confusion and also some unattractive code duplication. In this PR, I adjust the lowering of `global_asm!` so that it's lowered in a "fake" HIR body. This body contains a single expression which is `ExprKind::InlineAsm`; we don't *use* this HIR body, but it's used in typeck and borrowck so that we can properly infer and validate the the lifetimes of `sym fn` operands. I then adjust the lowering of `sym fn` to instead be represented with a HIR expression. This is both because it's no longer necessary to represent this operand as an anon const, since it's *just* a path expression, and also more importantly to sidestep yet another ICE (https://github.com/rust-lang/rust/issues/137179), which has to do with the existing code breaking an invariant of def-id creation and anon consts. Specifically, we are not allowed to synthesize a def-id for an anon const when that anon const contains expressions with def-ids whose parent is *not* that anon const. This is somewhat related to https://github.com/rust-lang/rust/pull/130443#issuecomment-2445678945, which is also a place in the compiler where synthesizing anon consts leads to def-id parenting issue. As a side-effect, this consolidates the type checking for inline and global asm, so it allows us to simplify `InlineAsmCtxt` a bit. It also allows us to delete a bit of hacky code from anon const `type_of` which was there to detect `sym fn` operands specifically. This also could be generalized to support `const` asm operands with types with lifetimes in them. Since we specifically reject these consts today, I'm not going to change the representation of those consts (but they'd just be turned into inline consts). r? oli-obk -- mostly b/c you're patient and also understand the breadth of the code that this touches, please reassign if you don't want to review this. Fixes #111709 Fixes #96304 Fixes #137179 |
||
---|---|---|
.. | ||
.github | ||
.vscode | ||
.zed | ||
build_system | ||
docs | ||
example | ||
patches | ||
scripts | ||
src | ||
.cirrus.yml | ||
.gitattributes | ||
.gitignore | ||
Cargo.lock | ||
Cargo.toml | ||
clean_all.sh | ||
config.txt | ||
LICENSE-APACHE | ||
LICENSE-MIT | ||
Readme.md | ||
rust-toolchain | ||
rustfmt.toml | ||
test.sh | ||
y.cmd | ||
y.ps1 | ||
y.sh |
Cranelift codegen backend for rust
The goal of this project is to create an alternative codegen backend for the rust compiler based on Cranelift. This has the potential to improve compilation times in debug mode. If your project doesn't use any of the things listed under "Not yet supported", it should work fine. If not please open an issue.
Download using Rustup
The Cranelift codegen backend is distributed in nightly builds on Linux and x86_64 macOS. If you want to install it using Rustup, you can do that by running:
$ rustup component add rustc-codegen-cranelift-preview --toolchain nightly
Once it is installed, you can enable it with one of the following approaches:
CARGO_PROFILE_DEV_CODEGEN_BACKEND=cranelift cargo +nightly build -Zcodegen-backend
- Add the following to
.cargo/config.toml
:[unstable] codegen-backend = true [profile.dev] codegen-backend = "cranelift"
- Add the following to
Cargo.toml
:# This line needs to come before anything else in Cargo.toml cargo-features = ["codegen-backend"] [profile.dev] codegen-backend = "cranelift"
Precompiled builds
You can also download a pre-built version from the releases page.
Extract the dist
directory in the archive anywhere you want.
If you want to use cargo clif build
instead of having to specify the full path to the cargo-clif
executable, you can add the bin
subdirectory of the extracted dist
directory to your PATH
.
(tutorial for Windows, and for Linux/MacOS).
Building and testing
If you want to build the backend manually, you can download it from GitHub and build it yourself:
$ git clone https://github.com/rust-lang/rustc_codegen_cranelift
$ cd rustc_codegen_cranelift
$ ./y.sh prepare
$ ./y.sh build
To run the test suite replace the last command with:
$ ./test.sh
For more docs on how to build and test see build_system/usage.txt or the help message of ./y.sh
.
Platform support
OS \ architecture | x86_64 | AArch64 | Riscv64 | s390x (System-Z) |
---|---|---|---|---|
Linux | ✅ | ✅ | ✅1 | ✅1 |
FreeBSD | ✅1 | ❓ | ❓ | ❓ |
AIX | ❌2 | N/A | N/A | ❌2 |
Other unixes | ❓ | ❓ | ❓ | ❓ |
macOS | ✅ | ✅ | N/A | N/A |
Windows | ✅ | ❌ | N/A | N/A |
✅: Fully supported and tested ❓: Maybe supported, not tested ❌: Not supported at all
Not all targets are available as rustup component for nightly. See notes in the platform support matrix.
Usage
rustc_codegen_cranelift can be used as a near-drop-in replacement for cargo build
or cargo run
for existing projects.
Assuming $cg_clif_dir
is the directory you cloned this repo into and you followed the instructions (y.sh prepare
and y.sh build
or test.sh
).
In the directory with your project (where you can do the usual cargo build
), run:
$ $cg_clif_dir/dist/cargo-clif build
This will build your project with rustc_codegen_cranelift instead of the usual LLVM backend.
For additional ways to use rustc_codegen_cranelift like the JIT mode see usage.md.
Building and testing with changes in rustc code
See rustc_testing.md.
Not yet supported
- SIMD (tracked here,
std::simd
fully works,std::arch
is partially supported) - Unwinding on panics (no cranelift support,
-Cpanic=abort
is enabled by default)
License
Licensed under either of
- Apache License, Version 2.0 (LICENSE-APACHE or http://www.apache.org/licenses/LICENSE-2.0)
- MIT license (LICENSE-MIT or http://opensource.org/licenses/MIT)
at your option.
Contribution
Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you shall be dual licensed as above, without any additional terms or conditions.