mirror of
https://github.com/rust-lang/rust.git
synced 2025-04-29 19:47:38 +00:00

Add a new `wide-arithmetic` feature for WebAssembly This commit adds a new rustc target feature named `wide-arithmetic` for WebAssembly targets. This corresponds to the [wide-arithmetic] proposal for WebAssembly which adds new instructions catered towards accelerating integer arithmetic larger than 64-bits. This proposal to WebAssembly is not standard yet so this new feature is flagged as an unstable target feature. Additionally Rust's LLVM version doesn't support this new feature yet since support will first be added in LLVM 20, so the feature filtering logic for LLVM is updated to handle this. I'll also note that I'm not currently planning to add wasm-specific intrinsics to `std::arch::wasm32` at this time. The currently proposed instructions are all accessible through `i128` or `u128`-based operations which Rust already supports, so intrinsic shouldn't be necessary to get access to these new instructions. [wide-arithmetic]: https://github.com/WebAssembly/wide-arithmetic
777 lines
31 KiB
Rust
777 lines
31 KiB
Rust
use std::collections::VecDeque;
|
|
use std::ffi::{CStr, CString};
|
|
use std::fmt::Write;
|
|
use std::path::Path;
|
|
use std::sync::Once;
|
|
use std::{ptr, slice, str};
|
|
|
|
use libc::c_int;
|
|
use rustc_codegen_ssa::base::wants_wasm_eh;
|
|
use rustc_codegen_ssa::codegen_attrs::check_tied_features;
|
|
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
|
|
use rustc_data_structures::small_c_str::SmallCStr;
|
|
use rustc_data_structures::unord::UnordSet;
|
|
use rustc_fs_util::path_to_c_string;
|
|
use rustc_middle::bug;
|
|
use rustc_session::Session;
|
|
use rustc_session::config::{PrintKind, PrintRequest};
|
|
use rustc_span::symbol::Symbol;
|
|
use rustc_target::spec::{MergeFunctions, PanicStrategy, SmallDataThresholdSupport};
|
|
use rustc_target::target_features::{RUSTC_SPECIAL_FEATURES, RUSTC_SPECIFIC_FEATURES, Stability};
|
|
|
|
use crate::back::write::create_informational_target_machine;
|
|
use crate::errors::{
|
|
FixedX18InvalidArch, ForbiddenCTargetFeature, InvalidTargetFeaturePrefix, PossibleFeature,
|
|
UnknownCTargetFeature, UnknownCTargetFeaturePrefix, UnstableCTargetFeature,
|
|
};
|
|
use crate::llvm;
|
|
|
|
static INIT: Once = Once::new();
|
|
|
|
pub(crate) fn init(sess: &Session) {
|
|
unsafe {
|
|
// Before we touch LLVM, make sure that multithreading is enabled.
|
|
if llvm::LLVMIsMultithreaded() != 1 {
|
|
bug!("LLVM compiled without support for threads");
|
|
}
|
|
INIT.call_once(|| {
|
|
configure_llvm(sess);
|
|
});
|
|
}
|
|
}
|
|
|
|
fn require_inited() {
|
|
if !INIT.is_completed() {
|
|
bug!("LLVM is not initialized");
|
|
}
|
|
}
|
|
|
|
unsafe fn configure_llvm(sess: &Session) {
|
|
let n_args = sess.opts.cg.llvm_args.len() + sess.target.llvm_args.len();
|
|
let mut llvm_c_strs = Vec::with_capacity(n_args + 1);
|
|
let mut llvm_args = Vec::with_capacity(n_args + 1);
|
|
|
|
unsafe {
|
|
llvm::LLVMRustInstallErrorHandlers();
|
|
}
|
|
// On Windows, an LLVM assertion will open an Abort/Retry/Ignore dialog
|
|
// box for the purpose of launching a debugger. However, on CI this will
|
|
// cause it to hang until it times out, which can take several hours.
|
|
if std::env::var_os("CI").is_some() {
|
|
unsafe {
|
|
llvm::LLVMRustDisableSystemDialogsOnCrash();
|
|
}
|
|
}
|
|
|
|
fn llvm_arg_to_arg_name(full_arg: &str) -> &str {
|
|
full_arg.trim().split(|c: char| c == '=' || c.is_whitespace()).next().unwrap_or("")
|
|
}
|
|
|
|
let cg_opts = sess.opts.cg.llvm_args.iter().map(AsRef::as_ref);
|
|
let tg_opts = sess.target.llvm_args.iter().map(AsRef::as_ref);
|
|
let sess_args = cg_opts.chain(tg_opts);
|
|
|
|
let user_specified_args: FxHashSet<_> =
|
|
sess_args.clone().map(|s| llvm_arg_to_arg_name(s)).filter(|s| !s.is_empty()).collect();
|
|
|
|
{
|
|
// This adds the given argument to LLVM. Unless `force` is true
|
|
// user specified arguments are *not* overridden.
|
|
let mut add = |arg: &str, force: bool| {
|
|
if force || !user_specified_args.contains(llvm_arg_to_arg_name(arg)) {
|
|
let s = CString::new(arg).unwrap();
|
|
llvm_args.push(s.as_ptr());
|
|
llvm_c_strs.push(s);
|
|
}
|
|
};
|
|
// Set the llvm "program name" to make usage and invalid argument messages more clear.
|
|
add("rustc -Cllvm-args=\"...\" with", true);
|
|
if sess.opts.unstable_opts.time_llvm_passes {
|
|
add("-time-passes", false);
|
|
}
|
|
if sess.opts.unstable_opts.print_llvm_passes {
|
|
add("-debug-pass=Structure", false);
|
|
}
|
|
if sess.target.generate_arange_section
|
|
&& !sess.opts.unstable_opts.no_generate_arange_section
|
|
{
|
|
add("-generate-arange-section", false);
|
|
}
|
|
|
|
match sess.opts.unstable_opts.merge_functions.unwrap_or(sess.target.merge_functions) {
|
|
MergeFunctions::Disabled | MergeFunctions::Trampolines => {}
|
|
MergeFunctions::Aliases => {
|
|
add("-mergefunc-use-aliases", false);
|
|
}
|
|
}
|
|
|
|
if wants_wasm_eh(sess) {
|
|
add("-wasm-enable-eh", false);
|
|
}
|
|
|
|
if sess.target.os == "emscripten" && sess.panic_strategy() == PanicStrategy::Unwind {
|
|
add("-enable-emscripten-cxx-exceptions", false);
|
|
}
|
|
|
|
// HACK(eddyb) LLVM inserts `llvm.assume` calls to preserve align attributes
|
|
// during inlining. Unfortunately these may block other optimizations.
|
|
add("-preserve-alignment-assumptions-during-inlining=false", false);
|
|
|
|
// Use non-zero `import-instr-limit` multiplier for cold callsites.
|
|
add("-import-cold-multiplier=0.1", false);
|
|
|
|
if sess.print_llvm_stats() {
|
|
add("-stats", false);
|
|
}
|
|
|
|
for arg in sess_args {
|
|
add(&(*arg), true);
|
|
}
|
|
|
|
match (
|
|
sess.opts.unstable_opts.small_data_threshold,
|
|
sess.target.small_data_threshold_support(),
|
|
) {
|
|
// Set up the small-data optimization limit for architectures that use
|
|
// an LLVM argument to control this.
|
|
(Some(threshold), SmallDataThresholdSupport::LlvmArg(arg)) => {
|
|
add(&format!("--{arg}={threshold}"), false)
|
|
}
|
|
_ => (),
|
|
};
|
|
}
|
|
|
|
if sess.opts.unstable_opts.llvm_time_trace {
|
|
unsafe { llvm::LLVMRustTimeTraceProfilerInitialize() };
|
|
}
|
|
|
|
rustc_llvm::initialize_available_targets();
|
|
|
|
unsafe { llvm::LLVMRustSetLLVMOptions(llvm_args.len() as c_int, llvm_args.as_ptr()) };
|
|
}
|
|
|
|
pub(crate) fn time_trace_profiler_finish(file_name: &Path) {
|
|
unsafe {
|
|
let file_name = path_to_c_string(file_name);
|
|
llvm::LLVMRustTimeTraceProfilerFinish(file_name.as_ptr());
|
|
}
|
|
}
|
|
|
|
enum TargetFeatureFoldStrength<'a> {
|
|
// The feature is only tied when enabling the feature, disabling
|
|
// this feature shouldn't disable the tied feature.
|
|
EnableOnly(&'a str),
|
|
// The feature is tied for both enabling and disabling this feature.
|
|
Both(&'a str),
|
|
}
|
|
|
|
impl<'a> TargetFeatureFoldStrength<'a> {
|
|
fn as_str(&self) -> &'a str {
|
|
match self {
|
|
TargetFeatureFoldStrength::EnableOnly(feat) => feat,
|
|
TargetFeatureFoldStrength::Both(feat) => feat,
|
|
}
|
|
}
|
|
}
|
|
|
|
pub(crate) struct LLVMFeature<'a> {
|
|
llvm_feature_name: &'a str,
|
|
dependency: Option<TargetFeatureFoldStrength<'a>>,
|
|
}
|
|
|
|
impl<'a> LLVMFeature<'a> {
|
|
fn new(llvm_feature_name: &'a str) -> Self {
|
|
Self { llvm_feature_name, dependency: None }
|
|
}
|
|
|
|
fn with_dependency(
|
|
llvm_feature_name: &'a str,
|
|
dependency: TargetFeatureFoldStrength<'a>,
|
|
) -> Self {
|
|
Self { llvm_feature_name, dependency: Some(dependency) }
|
|
}
|
|
|
|
fn contains(&self, feat: &str) -> bool {
|
|
self.iter().any(|dep| dep == feat)
|
|
}
|
|
|
|
fn iter(&'a self) -> impl Iterator<Item = &'a str> {
|
|
let dependencies = self.dependency.iter().map(|feat| feat.as_str());
|
|
std::iter::once(self.llvm_feature_name).chain(dependencies)
|
|
}
|
|
}
|
|
|
|
impl<'a> IntoIterator for LLVMFeature<'a> {
|
|
type Item = &'a str;
|
|
type IntoIter = impl Iterator<Item = &'a str>;
|
|
|
|
fn into_iter(self) -> Self::IntoIter {
|
|
let dependencies = self.dependency.into_iter().map(|feat| feat.as_str());
|
|
std::iter::once(self.llvm_feature_name).chain(dependencies)
|
|
}
|
|
}
|
|
|
|
// WARNING: the features after applying `to_llvm_features` must be known
|
|
// to LLVM or the feature detection code will walk past the end of the feature
|
|
// array, leading to crashes.
|
|
//
|
|
// To find a list of LLVM's names, see llvm-project/llvm/lib/Target/{ARCH}/*.td
|
|
// where `{ARCH}` is the architecture name. Look for instances of `SubtargetFeature`.
|
|
//
|
|
// Check the current rustc fork of LLVM in the repo at https://github.com/rust-lang/llvm-project/.
|
|
// The commit in use can be found via the `llvm-project` submodule in
|
|
// https://github.com/rust-lang/rust/tree/master/src Though note that Rust can also be build with
|
|
// an external precompiled version of LLVM which might lead to failures if the oldest tested /
|
|
// supported LLVM version doesn't yet support the relevant intrinsics.
|
|
pub(crate) fn to_llvm_features<'a>(sess: &Session, s: &'a str) -> Option<LLVMFeature<'a>> {
|
|
let arch = if sess.target.arch == "x86_64" {
|
|
"x86"
|
|
} else if sess.target.arch == "arm64ec" {
|
|
"aarch64"
|
|
} else {
|
|
&*sess.target.arch
|
|
};
|
|
match (arch, s) {
|
|
("x86", "sse4.2") => Some(LLVMFeature::with_dependency(
|
|
"sse4.2",
|
|
TargetFeatureFoldStrength::EnableOnly("crc32"),
|
|
)),
|
|
("x86", "pclmulqdq") => Some(LLVMFeature::new("pclmul")),
|
|
("x86", "rdrand") => Some(LLVMFeature::new("rdrnd")),
|
|
("x86", "bmi1") => Some(LLVMFeature::new("bmi")),
|
|
("x86", "cmpxchg16b") => Some(LLVMFeature::new("cx16")),
|
|
("x86", "lahfsahf") => Some(LLVMFeature::new("sahf")),
|
|
("aarch64", "rcpc2") => Some(LLVMFeature::new("rcpc-immo")),
|
|
("aarch64", "dpb") => Some(LLVMFeature::new("ccpp")),
|
|
("aarch64", "dpb2") => Some(LLVMFeature::new("ccdp")),
|
|
("aarch64", "frintts") => Some(LLVMFeature::new("fptoint")),
|
|
("aarch64", "fcma") => Some(LLVMFeature::new("complxnum")),
|
|
("aarch64", "pmuv3") => Some(LLVMFeature::new("perfmon")),
|
|
("aarch64", "paca") => Some(LLVMFeature::new("pauth")),
|
|
("aarch64", "pacg") => Some(LLVMFeature::new("pauth")),
|
|
("aarch64", "pauth-lr") if get_version().0 < 19 => None,
|
|
// Before LLVM 20 those two features were packaged together as b16b16
|
|
("aarch64", "sve-b16b16") if get_version().0 < 20 => Some(LLVMFeature::new("b16b16")),
|
|
("aarch64", "sme-b16b16") if get_version().0 < 20 => Some(LLVMFeature::new("b16b16")),
|
|
("aarch64", "flagm2") => Some(LLVMFeature::new("altnzcv")),
|
|
// Rust ties fp and neon together.
|
|
("aarch64", "neon") => {
|
|
Some(LLVMFeature::with_dependency("neon", TargetFeatureFoldStrength::Both("fp-armv8")))
|
|
}
|
|
// In LLVM neon implicitly enables fp, but we manually enable
|
|
// neon when a feature only implicitly enables fp
|
|
("aarch64", "fhm") => Some(LLVMFeature::new("fp16fml")),
|
|
("aarch64", "fp16") => Some(LLVMFeature::new("fullfp16")),
|
|
// Filter out features that are not supported by the current LLVM version
|
|
("aarch64", "fpmr") if get_version().0 != 18 => None,
|
|
// In LLVM 18, `unaligned-scalar-mem` was merged with `unaligned-vector-mem` into a single
|
|
// feature called `fast-unaligned-access`. In LLVM 19, it was split back out.
|
|
("riscv32" | "riscv64", "unaligned-scalar-mem") if get_version().0 == 18 => {
|
|
Some(LLVMFeature::new("fast-unaligned-access"))
|
|
}
|
|
// Filter out features that are not supported by the current LLVM version
|
|
("riscv32" | "riscv64", "zaamo") if get_version().0 < 19 => None,
|
|
("riscv32" | "riscv64", "zabha") if get_version().0 < 19 => None,
|
|
("riscv32" | "riscv64", "zalrsc") if get_version().0 < 19 => None,
|
|
// Enable the evex512 target feature if an avx512 target feature is enabled.
|
|
("x86", s) if s.starts_with("avx512") => {
|
|
Some(LLVMFeature::with_dependency(s, TargetFeatureFoldStrength::EnableOnly("evex512")))
|
|
}
|
|
// Support for `wide-arithmetic` will first land in LLVM 20 as part of
|
|
// llvm/llvm-project#111598
|
|
("wasm32" | "wasm64", "wide-arithmetic") if get_version() < (20, 0, 0) => None,
|
|
(_, s) => Some(LLVMFeature::new(s)),
|
|
}
|
|
}
|
|
|
|
/// Used to generate cfg variables and apply features.
|
|
/// Must express features in the way Rust understands them.
|
|
///
|
|
/// We do not have to worry about RUSTC_SPECIFIC_FEATURES here, those are handled outside codegen.
|
|
pub fn target_features(sess: &Session, allow_unstable: bool) -> Vec<Symbol> {
|
|
let mut features: FxHashSet<Symbol> = Default::default();
|
|
|
|
// Add base features for the target.
|
|
// We do *not* add the -Ctarget-features there, and instead duplicate the logic for that below.
|
|
// The reason is that if LLVM considers a feature implied but we do not, we don't want that to
|
|
// show up in `cfg`. That way, `cfg` is entirely under our control -- except for the handling of
|
|
// the target CPU, that is still expanded to target features (with all their implied features) by
|
|
// LLVM.
|
|
let target_machine = create_informational_target_machine(sess, true);
|
|
// Compute which of the known target features are enabled in the 'base' target machine.
|
|
// We only consider "supported" features; "forbidden" features are not reflected in `cfg` as of now.
|
|
features.extend(
|
|
sess.target
|
|
.rust_target_features()
|
|
.iter()
|
|
.filter(|(_, gate, _)| gate.is_supported())
|
|
.filter(|(feature, _, _)| {
|
|
// skip checking special features, as LLVM may not understand them
|
|
if RUSTC_SPECIAL_FEATURES.contains(feature) {
|
|
return true;
|
|
}
|
|
// check that all features in a given smallvec are enabled
|
|
if let Some(feat) = to_llvm_features(sess, feature) {
|
|
for llvm_feature in feat {
|
|
let cstr = SmallCStr::new(llvm_feature);
|
|
if !unsafe { llvm::LLVMRustHasFeature(&target_machine, cstr.as_ptr()) } {
|
|
return false;
|
|
}
|
|
}
|
|
true
|
|
} else {
|
|
false
|
|
}
|
|
})
|
|
.map(|(feature, _, _)| Symbol::intern(feature)),
|
|
);
|
|
|
|
// Add enabled features
|
|
for (enabled, feature) in
|
|
sess.opts.cg.target_feature.split(',').filter_map(|s| match s.chars().next() {
|
|
Some('+') => Some((true, Symbol::intern(&s[1..]))),
|
|
Some('-') => Some((false, Symbol::intern(&s[1..]))),
|
|
_ => None,
|
|
})
|
|
{
|
|
if enabled {
|
|
features.extend(sess.target.implied_target_features(std::iter::once(feature)));
|
|
} else {
|
|
// We don't care about the order in `features` since the only thing we use it for is the
|
|
// `features.contains` below.
|
|
#[allow(rustc::potential_query_instability)]
|
|
features.retain(|f| {
|
|
// Keep a feature if it does not imply `feature`. Or, equivalently,
|
|
// remove the reverse-dependencies of `feature`.
|
|
!sess.target.implied_target_features(std::iter::once(*f)).contains(&feature)
|
|
});
|
|
}
|
|
}
|
|
|
|
// Filter enabled features based on feature gates
|
|
sess.target
|
|
.rust_target_features()
|
|
.iter()
|
|
.filter(|(_, gate, _)| gate.is_supported())
|
|
.filter_map(|&(feature, gate, _)| {
|
|
if sess.is_nightly_build() || allow_unstable || gate.is_stable() {
|
|
Some(feature)
|
|
} else {
|
|
None
|
|
}
|
|
})
|
|
.filter(|feature| features.contains(&Symbol::intern(feature)))
|
|
.map(|feature| Symbol::intern(feature))
|
|
.collect()
|
|
}
|
|
|
|
pub(crate) fn print_version() {
|
|
let (major, minor, patch) = get_version();
|
|
println!("LLVM version: {major}.{minor}.{patch}");
|
|
}
|
|
|
|
pub(crate) fn get_version() -> (u32, u32, u32) {
|
|
// Can be called without initializing LLVM
|
|
unsafe {
|
|
(llvm::LLVMRustVersionMajor(), llvm::LLVMRustVersionMinor(), llvm::LLVMRustVersionPatch())
|
|
}
|
|
}
|
|
|
|
pub(crate) fn print_passes() {
|
|
// Can be called without initializing LLVM
|
|
unsafe {
|
|
llvm::LLVMRustPrintPasses();
|
|
}
|
|
}
|
|
|
|
fn llvm_target_features(tm: &llvm::TargetMachine) -> Vec<(&str, &str)> {
|
|
let len = unsafe { llvm::LLVMRustGetTargetFeaturesCount(tm) };
|
|
let mut ret = Vec::with_capacity(len);
|
|
for i in 0..len {
|
|
unsafe {
|
|
let mut feature = ptr::null();
|
|
let mut desc = ptr::null();
|
|
llvm::LLVMRustGetTargetFeature(tm, i, &mut feature, &mut desc);
|
|
if feature.is_null() || desc.is_null() {
|
|
bug!("LLVM returned a `null` target feature string");
|
|
}
|
|
let feature = CStr::from_ptr(feature).to_str().unwrap_or_else(|e| {
|
|
bug!("LLVM returned a non-utf8 feature string: {}", e);
|
|
});
|
|
let desc = CStr::from_ptr(desc).to_str().unwrap_or_else(|e| {
|
|
bug!("LLVM returned a non-utf8 feature string: {}", e);
|
|
});
|
|
ret.push((feature, desc));
|
|
}
|
|
}
|
|
ret
|
|
}
|
|
|
|
pub(crate) fn print(req: &PrintRequest, out: &mut String, sess: &Session) {
|
|
require_inited();
|
|
let tm = create_informational_target_machine(sess, false);
|
|
match req.kind {
|
|
PrintKind::TargetCPUs => print_target_cpus(sess, &tm, out),
|
|
PrintKind::TargetFeatures => print_target_features(sess, &tm, out),
|
|
_ => bug!("rustc_codegen_llvm can't handle print request: {:?}", req),
|
|
}
|
|
}
|
|
|
|
fn print_target_cpus(sess: &Session, tm: &llvm::TargetMachine, out: &mut String) {
|
|
let cpu_names = llvm::build_string(|s| unsafe {
|
|
llvm::LLVMRustPrintTargetCPUs(&tm, s);
|
|
})
|
|
.unwrap();
|
|
|
|
struct Cpu<'a> {
|
|
cpu_name: &'a str,
|
|
remark: String,
|
|
}
|
|
// Compare CPU against current target to label the default.
|
|
let target_cpu = handle_native(&sess.target.cpu);
|
|
let make_remark = |cpu_name| {
|
|
if cpu_name == target_cpu {
|
|
// FIXME(#132514): This prints the LLVM target string, which can be
|
|
// different from the Rust target string. Is that intended?
|
|
let target = &sess.target.llvm_target;
|
|
format!(
|
|
" - This is the default target CPU for the current build target (currently {target})."
|
|
)
|
|
} else {
|
|
"".to_owned()
|
|
}
|
|
};
|
|
let mut cpus = cpu_names
|
|
.lines()
|
|
.map(|cpu_name| Cpu { cpu_name, remark: make_remark(cpu_name) })
|
|
.collect::<VecDeque<_>>();
|
|
|
|
// Only print the "native" entry when host and target are the same arch,
|
|
// since otherwise it could be wrong or misleading.
|
|
if sess.host.arch == sess.target.arch {
|
|
let host = get_host_cpu_name();
|
|
cpus.push_front(Cpu {
|
|
cpu_name: "native",
|
|
remark: format!(" - Select the CPU of the current host (currently {host})."),
|
|
});
|
|
}
|
|
|
|
let max_name_width = cpus.iter().map(|cpu| cpu.cpu_name.len()).max().unwrap_or(0);
|
|
writeln!(out, "Available CPUs for this target:").unwrap();
|
|
for Cpu { cpu_name, remark } in cpus {
|
|
// Only pad the CPU name if there's a remark to print after it.
|
|
let width = if remark.is_empty() { 0 } else { max_name_width };
|
|
writeln!(out, " {cpu_name:<width$}{remark}").unwrap();
|
|
}
|
|
}
|
|
|
|
fn print_target_features(sess: &Session, tm: &llvm::TargetMachine, out: &mut String) {
|
|
let mut llvm_target_features = llvm_target_features(tm);
|
|
let mut known_llvm_target_features = FxHashSet::<&'static str>::default();
|
|
let mut rustc_target_features = sess
|
|
.target
|
|
.rust_target_features()
|
|
.iter()
|
|
.filter_map(|(feature, gate, _implied)| {
|
|
if !gate.is_supported() {
|
|
// Only list (experimentally) supported features.
|
|
return None;
|
|
}
|
|
// LLVM asserts that these are sorted. LLVM and Rust both use byte comparison for these
|
|
// strings.
|
|
let llvm_feature = to_llvm_features(sess, *feature)?.llvm_feature_name;
|
|
let desc =
|
|
match llvm_target_features.binary_search_by_key(&llvm_feature, |(f, _d)| f).ok() {
|
|
Some(index) => {
|
|
known_llvm_target_features.insert(llvm_feature);
|
|
llvm_target_features[index].1
|
|
}
|
|
None => "",
|
|
};
|
|
|
|
Some((*feature, desc))
|
|
})
|
|
.collect::<Vec<_>>();
|
|
|
|
// Since we add this at the end ...
|
|
rustc_target_features.extend_from_slice(&[(
|
|
"crt-static",
|
|
"Enables C Run-time Libraries to be statically linked",
|
|
)]);
|
|
// ... we need to sort the list again.
|
|
rustc_target_features.sort();
|
|
|
|
llvm_target_features.retain(|(f, _d)| !known_llvm_target_features.contains(f));
|
|
|
|
let max_feature_len = llvm_target_features
|
|
.iter()
|
|
.chain(rustc_target_features.iter())
|
|
.map(|(feature, _desc)| feature.len())
|
|
.max()
|
|
.unwrap_or(0);
|
|
|
|
writeln!(out, "Features supported by rustc for this target:").unwrap();
|
|
for (feature, desc) in &rustc_target_features {
|
|
writeln!(out, " {feature:max_feature_len$} - {desc}.").unwrap();
|
|
}
|
|
writeln!(out, "\nCode-generation features supported by LLVM for this target:").unwrap();
|
|
for (feature, desc) in &llvm_target_features {
|
|
writeln!(out, " {feature:max_feature_len$} - {desc}.").unwrap();
|
|
}
|
|
if llvm_target_features.is_empty() {
|
|
writeln!(out, " Target features listing is not supported by this LLVM version.")
|
|
.unwrap();
|
|
}
|
|
writeln!(out, "\nUse +feature to enable a feature, or -feature to disable it.").unwrap();
|
|
writeln!(out, "For example, rustc -C target-cpu=mycpu -C target-feature=+feature1,-feature2\n")
|
|
.unwrap();
|
|
writeln!(out, "Code-generation features cannot be used in cfg or #[target_feature],").unwrap();
|
|
writeln!(out, "and may be renamed or removed in a future version of LLVM or rustc.\n").unwrap();
|
|
}
|
|
|
|
/// Returns the host CPU name, according to LLVM.
|
|
fn get_host_cpu_name() -> &'static str {
|
|
let mut len = 0;
|
|
// SAFETY: The underlying C++ global function returns a `StringRef` that
|
|
// isn't tied to any particular backing buffer, so it must be 'static.
|
|
let slice: &'static [u8] = unsafe {
|
|
let ptr = llvm::LLVMRustGetHostCPUName(&mut len);
|
|
assert!(!ptr.is_null());
|
|
slice::from_raw_parts(ptr, len)
|
|
};
|
|
str::from_utf8(slice).expect("host CPU name should be UTF-8")
|
|
}
|
|
|
|
/// If the given string is `"native"`, returns the host CPU name according to
|
|
/// LLVM. Otherwise, the string is returned as-is.
|
|
fn handle_native(cpu_name: &str) -> &str {
|
|
match cpu_name {
|
|
"native" => get_host_cpu_name(),
|
|
_ => cpu_name,
|
|
}
|
|
}
|
|
|
|
pub(crate) fn target_cpu(sess: &Session) -> &str {
|
|
let cpu_name = sess.opts.cg.target_cpu.as_deref().unwrap_or_else(|| &sess.target.cpu);
|
|
handle_native(cpu_name)
|
|
}
|
|
|
|
/// The list of LLVM features computed from CLI flags (`-Ctarget-cpu`, `-Ctarget-feature`,
|
|
/// `--target` and similar).
|
|
pub(crate) fn global_llvm_features(
|
|
sess: &Session,
|
|
diagnostics: bool,
|
|
only_base_features: bool,
|
|
) -> Vec<String> {
|
|
// Features that come earlier are overridden by conflicting features later in the string.
|
|
// Typically we'll want more explicit settings to override the implicit ones, so:
|
|
//
|
|
// * Features from -Ctarget-cpu=*; are overridden by [^1]
|
|
// * Features implied by --target; are overridden by
|
|
// * Features from -Ctarget-feature; are overridden by
|
|
// * function specific features.
|
|
//
|
|
// [^1]: target-cpu=native is handled here, other target-cpu values are handled implicitly
|
|
// through LLVM TargetMachine implementation.
|
|
//
|
|
// FIXME(nagisa): it isn't clear what's the best interaction between features implied by
|
|
// `-Ctarget-cpu` and `--target` are. On one hand, you'd expect CLI arguments to always
|
|
// override anything that's implicit, so e.g. when there's no `--target` flag, features implied
|
|
// the host target are overridden by `-Ctarget-cpu=*`. On the other hand, what about when both
|
|
// `--target` and `-Ctarget-cpu=*` are specified? Both then imply some target features and both
|
|
// flags are specified by the user on the CLI. It isn't as clear-cut which order of precedence
|
|
// should be taken in cases like these.
|
|
let mut features = vec![];
|
|
|
|
// -Ctarget-cpu=native
|
|
match sess.opts.cg.target_cpu {
|
|
Some(ref s) if s == "native" => {
|
|
// We have already figured out the actual CPU name with `LLVMRustGetHostCPUName` and set
|
|
// that for LLVM, so the features implied by that CPU name will be available everywhere.
|
|
// However, that is not sufficient: e.g. `skylake` alone is not sufficient to tell if
|
|
// some of the instructions are available or not. So we have to also explicitly ask for
|
|
// the exact set of features available on the host, and enable all of them.
|
|
let features_string = unsafe {
|
|
let ptr = llvm::LLVMGetHostCPUFeatures();
|
|
let features_string = if !ptr.is_null() {
|
|
CStr::from_ptr(ptr)
|
|
.to_str()
|
|
.unwrap_or_else(|e| {
|
|
bug!("LLVM returned a non-utf8 features string: {}", e);
|
|
})
|
|
.to_owned()
|
|
} else {
|
|
bug!("could not allocate host CPU features, LLVM returned a `null` string");
|
|
};
|
|
|
|
llvm::LLVMDisposeMessage(ptr);
|
|
|
|
features_string
|
|
};
|
|
features.extend(features_string.split(',').map(String::from));
|
|
}
|
|
Some(_) | None => {}
|
|
};
|
|
|
|
// Features implied by an implicit or explicit `--target`.
|
|
features.extend(
|
|
sess.target
|
|
.features
|
|
.split(',')
|
|
.filter(|v| !v.is_empty() && backend_feature_name(sess, v).is_some())
|
|
.map(String::from),
|
|
);
|
|
|
|
if wants_wasm_eh(sess) && sess.panic_strategy() == PanicStrategy::Unwind {
|
|
features.push("+exception-handling".into());
|
|
}
|
|
|
|
// -Ctarget-features
|
|
if !only_base_features {
|
|
let known_features = sess.target.rust_target_features();
|
|
let mut featsmap = FxHashMap::default();
|
|
|
|
// insert implied features
|
|
let mut all_rust_features = vec![];
|
|
for feature in sess.opts.cg.target_feature.split(',') {
|
|
match feature.strip_prefix('+') {
|
|
Some(feature) => all_rust_features.extend(
|
|
UnordSet::from(
|
|
sess.target
|
|
.implied_target_features(std::iter::once(Symbol::intern(feature))),
|
|
)
|
|
.to_sorted_stable_ord()
|
|
.iter()
|
|
.map(|s| format!("+{}", s.as_str())),
|
|
),
|
|
_ => all_rust_features.push(feature.to_string()),
|
|
}
|
|
}
|
|
|
|
let feats = all_rust_features
|
|
.iter()
|
|
.filter_map(|s| {
|
|
let enable_disable = match s.chars().next() {
|
|
None => return None,
|
|
Some(c @ ('+' | '-')) => c,
|
|
Some(_) => {
|
|
if diagnostics {
|
|
sess.dcx().emit_warn(UnknownCTargetFeaturePrefix { feature: s });
|
|
}
|
|
return None;
|
|
}
|
|
};
|
|
|
|
// Get the backend feature name, if any.
|
|
// This excludes rustc-specific features, which do not get passed to LLVM.
|
|
let feature = backend_feature_name(sess, s)?;
|
|
// Warn against use of LLVM specific feature names and unstable features on the CLI.
|
|
if diagnostics {
|
|
let feature_state = known_features.iter().find(|&&(v, _, _)| v == feature);
|
|
match feature_state {
|
|
None => {
|
|
let rust_feature =
|
|
known_features.iter().find_map(|&(rust_feature, _, _)| {
|
|
let llvm_features = to_llvm_features(sess, rust_feature)?;
|
|
if llvm_features.contains(feature)
|
|
&& !llvm_features.contains(rust_feature)
|
|
{
|
|
Some(rust_feature)
|
|
} else {
|
|
None
|
|
}
|
|
});
|
|
let unknown_feature = if let Some(rust_feature) = rust_feature {
|
|
UnknownCTargetFeature {
|
|
feature,
|
|
rust_feature: PossibleFeature::Some { rust_feature },
|
|
}
|
|
} else {
|
|
UnknownCTargetFeature {
|
|
feature,
|
|
rust_feature: PossibleFeature::None,
|
|
}
|
|
};
|
|
sess.dcx().emit_warn(unknown_feature);
|
|
}
|
|
Some((_, Stability::Stable, _)) => {}
|
|
Some((_, Stability::Unstable(_), _)) => {
|
|
// An unstable feature. Warn about using it.
|
|
sess.dcx().emit_warn(UnstableCTargetFeature { feature });
|
|
}
|
|
Some((_, Stability::Forbidden { reason }, _)) => {
|
|
sess.dcx().emit_warn(ForbiddenCTargetFeature { feature, reason });
|
|
}
|
|
}
|
|
|
|
// FIXME(nagisa): figure out how to not allocate a full hashset here.
|
|
featsmap.insert(feature, enable_disable == '+');
|
|
}
|
|
|
|
// We run through `to_llvm_features` when
|
|
// passing requests down to LLVM. This means that all in-language
|
|
// features also work on the command line instead of having two
|
|
// different names when the LLVM name and the Rust name differ.
|
|
let llvm_feature = to_llvm_features(sess, feature)?;
|
|
|
|
Some(
|
|
std::iter::once(format!(
|
|
"{}{}",
|
|
enable_disable, llvm_feature.llvm_feature_name
|
|
))
|
|
.chain(llvm_feature.dependency.into_iter().filter_map(
|
|
move |feat| match (enable_disable, feat) {
|
|
('-' | '+', TargetFeatureFoldStrength::Both(f))
|
|
| ('+', TargetFeatureFoldStrength::EnableOnly(f)) => {
|
|
Some(format!("{enable_disable}{f}"))
|
|
}
|
|
_ => None,
|
|
},
|
|
)),
|
|
)
|
|
})
|
|
.flatten();
|
|
features.extend(feats);
|
|
|
|
if diagnostics && let Some(f) = check_tied_features(sess, &featsmap) {
|
|
sess.dcx().emit_err(rustc_codegen_ssa::errors::TargetFeatureDisableOrEnable {
|
|
features: f,
|
|
span: None,
|
|
missing_features: None,
|
|
});
|
|
}
|
|
}
|
|
|
|
// -Zfixed-x18
|
|
if sess.opts.unstable_opts.fixed_x18 {
|
|
if sess.target.arch != "aarch64" {
|
|
sess.dcx().emit_fatal(FixedX18InvalidArch { arch: &sess.target.arch });
|
|
} else {
|
|
features.push("+reserve-x18".into());
|
|
}
|
|
}
|
|
|
|
features
|
|
}
|
|
|
|
/// Returns a feature name for the given `+feature` or `-feature` string.
|
|
///
|
|
/// Only allows features that are backend specific (i.e. not [`RUSTC_SPECIFIC_FEATURES`].)
|
|
fn backend_feature_name<'a>(sess: &Session, s: &'a str) -> Option<&'a str> {
|
|
// features must start with a `+` or `-`.
|
|
let feature = s
|
|
.strip_prefix(&['+', '-'][..])
|
|
.unwrap_or_else(|| sess.dcx().emit_fatal(InvalidTargetFeaturePrefix { feature: s }));
|
|
// Rustc-specific feature requests like `+crt-static` or `-crt-static`
|
|
// are not passed down to LLVM.
|
|
if s.is_empty() || RUSTC_SPECIFIC_FEATURES.contains(&feature) {
|
|
return None;
|
|
}
|
|
Some(feature)
|
|
}
|
|
|
|
pub(crate) fn tune_cpu(sess: &Session) -> Option<&str> {
|
|
let name = sess.opts.unstable_opts.tune_cpu.as_ref()?;
|
|
Some(handle_native(name))
|
|
}
|