rust/compiler/rustc_middle/src/thir.rs
Matthias Krüger f5a143f796
Rollup merge of #134797 - spastorino:ergonomic-ref-counting-1, r=nikomatsakis
Ergonomic ref counting

This is an experimental first version of ergonomic ref counting.

This first version implements most of the RFC but doesn't implement any of the optimizations. This was left for following iterations.

RFC: https://github.com/rust-lang/rfcs/pull/3680
Tracking issue: https://github.com/rust-lang/rust/issues/132290
Project goal: https://github.com/rust-lang/rust-project-goals/issues/107

r? ```@nikomatsakis```
2025-03-07 19:15:33 +01:00

1141 lines
36 KiB
Rust

//! THIR datatypes and definitions. See the [rustc dev guide] for more info.
//!
//! If you compare the THIR [`ExprKind`] to [`hir::ExprKind`], you will see it is
//! a good bit simpler. In fact, a number of the more straight-forward
//! MIR simplifications are already done in the lowering to THIR. For
//! example, method calls and overloaded operators are absent: they are
//! expected to be converted into [`ExprKind::Call`] instances.
//!
//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/thir.html
use std::cmp::Ordering;
use std::fmt;
use std::ops::Index;
use std::sync::Arc;
use rustc_abi::{FieldIdx, Integer, Size, VariantIdx};
use rustc_ast::{AsmMacro, InlineAsmOptions, InlineAsmTemplatePiece};
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use rustc_hir::{BindingMode, ByRef, HirId, MatchSource, RangeEnd};
use rustc_index::{IndexVec, newtype_index};
use rustc_macros::{HashStable, TyDecodable, TyEncodable, TypeVisitable};
use rustc_span::def_id::LocalDefId;
use rustc_span::{ErrorGuaranteed, Span, Symbol};
use rustc_target::asm::InlineAsmRegOrRegClass;
use tracing::instrument;
use crate::middle::region;
use crate::mir::interpret::AllocId;
use crate::mir::{self, BinOp, BorrowKind, FakeReadCause, UnOp};
use crate::ty::adjustment::PointerCoercion;
use crate::ty::layout::IntegerExt;
use crate::ty::{
self, AdtDef, CanonicalUserType, CanonicalUserTypeAnnotation, FnSig, GenericArgsRef, List, Ty,
TyCtxt, UpvarArgs,
};
pub mod visit;
macro_rules! thir_with_elements {
(
$($name:ident: $id:ty => $value:ty => $format:literal,)*
) => {
$(
newtype_index! {
#[derive(HashStable)]
#[debug_format = $format]
pub struct $id {}
}
)*
// Note: Making `Thir` implement `Clone` is useful for external tools that need access to
// THIR bodies even after the `Steal` query result has been stolen.
// One such tool is https://github.com/rust-corpus/qrates/.
/// A container for a THIR body.
///
/// This can be indexed directly by any THIR index (e.g. [`ExprId`]).
#[derive(Debug, HashStable, Clone)]
pub struct Thir<'tcx> {
pub body_type: BodyTy<'tcx>,
$(
pub $name: IndexVec<$id, $value>,
)*
}
impl<'tcx> Thir<'tcx> {
pub fn new(body_type: BodyTy<'tcx>) -> Thir<'tcx> {
Thir {
body_type,
$(
$name: IndexVec::new(),
)*
}
}
}
$(
impl<'tcx> Index<$id> for Thir<'tcx> {
type Output = $value;
fn index(&self, index: $id) -> &Self::Output {
&self.$name[index]
}
}
)*
}
}
thir_with_elements! {
arms: ArmId => Arm<'tcx> => "a{}",
blocks: BlockId => Block => "b{}",
exprs: ExprId => Expr<'tcx> => "e{}",
stmts: StmtId => Stmt<'tcx> => "s{}",
params: ParamId => Param<'tcx> => "p{}",
}
#[derive(Debug, HashStable, Clone)]
pub enum BodyTy<'tcx> {
Const(Ty<'tcx>),
Fn(FnSig<'tcx>),
GlobalAsm(Ty<'tcx>),
}
/// Description of a type-checked function parameter.
#[derive(Clone, Debug, HashStable)]
pub struct Param<'tcx> {
/// The pattern that appears in the parameter list, or None for implicit parameters.
pub pat: Option<Box<Pat<'tcx>>>,
/// The possibly inferred type.
pub ty: Ty<'tcx>,
/// Span of the explicitly provided type, or None if inferred for closures.
pub ty_span: Option<Span>,
/// Whether this param is `self`, and how it is bound.
pub self_kind: Option<hir::ImplicitSelfKind>,
/// HirId for lints.
pub hir_id: Option<HirId>,
}
#[derive(Copy, Clone, Debug, HashStable)]
pub enum LintLevel {
Inherited,
Explicit(HirId),
}
#[derive(Clone, Debug, HashStable)]
pub struct Block {
/// Whether the block itself has a label. Used by `label: {}`
/// and `try` blocks.
///
/// This does *not* include labels on loops, e.g. `'label: loop {}`.
pub targeted_by_break: bool,
pub region_scope: region::Scope,
/// The span of the block, including the opening braces,
/// the label, and the `unsafe` keyword, if present.
pub span: Span,
/// The statements in the blocK.
pub stmts: Box<[StmtId]>,
/// The trailing expression of the block, if any.
pub expr: Option<ExprId>,
pub safety_mode: BlockSafety,
}
type UserTy<'tcx> = Option<Box<CanonicalUserType<'tcx>>>;
#[derive(Clone, Debug, HashStable)]
pub struct AdtExpr<'tcx> {
/// The ADT we're constructing.
pub adt_def: AdtDef<'tcx>,
/// The variant of the ADT.
pub variant_index: VariantIdx,
pub args: GenericArgsRef<'tcx>,
/// Optional user-given args: for something like `let x =
/// Bar::<T> { ... }`.
pub user_ty: UserTy<'tcx>,
pub fields: Box<[FieldExpr]>,
/// The base, e.g. `Foo {x: 1, ..base}`.
pub base: AdtExprBase<'tcx>,
}
#[derive(Clone, Debug, HashStable)]
pub enum AdtExprBase<'tcx> {
/// A struct expression where all the fields are explicitly enumerated: `Foo { a, b }`.
None,
/// A struct expression with a "base", an expression of the same type as the outer struct that
/// will be used to populate any fields not explicitly mentioned: `Foo { ..base }`
Base(FruInfo<'tcx>),
/// A struct expression with a `..` tail but no "base" expression. The values from the struct
/// fields' default values will be used to populate any fields not explicitly mentioned:
/// `Foo { .. }`.
DefaultFields(Box<[Ty<'tcx>]>),
}
#[derive(Clone, Debug, HashStable)]
pub struct ClosureExpr<'tcx> {
pub closure_id: LocalDefId,
pub args: UpvarArgs<'tcx>,
pub upvars: Box<[ExprId]>,
pub movability: Option<hir::Movability>,
pub fake_reads: Vec<(ExprId, FakeReadCause, HirId)>,
}
#[derive(Clone, Debug, HashStable)]
pub struct InlineAsmExpr<'tcx> {
pub asm_macro: AsmMacro,
pub template: &'tcx [InlineAsmTemplatePiece],
pub operands: Box<[InlineAsmOperand<'tcx>]>,
pub options: InlineAsmOptions,
pub line_spans: &'tcx [Span],
}
#[derive(Copy, Clone, Debug, HashStable)]
pub enum BlockSafety {
Safe,
/// A compiler-generated unsafe block
BuiltinUnsafe,
/// An `unsafe` block. The `HirId` is the ID of the block.
ExplicitUnsafe(HirId),
}
#[derive(Clone, Debug, HashStable)]
pub struct Stmt<'tcx> {
pub kind: StmtKind<'tcx>,
}
#[derive(Clone, Debug, HashStable)]
pub enum StmtKind<'tcx> {
/// An expression with a trailing semicolon.
Expr {
/// The scope for this statement; may be used as lifetime of temporaries.
scope: region::Scope,
/// The expression being evaluated in this statement.
expr: ExprId,
},
/// A `let` binding.
Let {
/// The scope for variables bound in this `let`; it covers this and
/// all the remaining statements in the block.
remainder_scope: region::Scope,
/// The scope for the initialization itself; might be used as
/// lifetime of temporaries.
init_scope: region::Scope,
/// `let <PAT> = ...`
///
/// If a type annotation is included, it is added as an ascription pattern.
pattern: Box<Pat<'tcx>>,
/// `let pat: ty = <INIT>`
initializer: Option<ExprId>,
/// `let pat: ty = <INIT> else { <ELSE> }`
else_block: Option<BlockId>,
/// The lint level for this `let` statement.
lint_level: LintLevel,
/// Span of the `let <PAT> = <INIT>` part.
span: Span,
},
}
#[derive(Clone, Debug, Copy, PartialEq, Eq, Hash, HashStable, TyEncodable, TyDecodable)]
pub struct LocalVarId(pub HirId);
/// A THIR expression.
#[derive(Clone, Debug, HashStable)]
pub struct Expr<'tcx> {
/// kind of expression
pub kind: ExprKind<'tcx>,
/// The type of this expression
pub ty: Ty<'tcx>,
/// The lifetime of this expression if it should be spilled into a
/// temporary
pub temp_lifetime: TempLifetime,
/// span of the expression in the source
pub span: Span,
}
/// Temporary lifetime information for THIR expressions
#[derive(Clone, Copy, Debug, HashStable)]
pub struct TempLifetime {
/// Lifetime for temporaries as expected.
/// This should be `None` in a constant context.
pub temp_lifetime: Option<region::Scope>,
/// If `Some(lt)`, indicates that the lifetime of this temporary will change to `lt` in a future edition.
/// If `None`, then no changes are expected, or lints are disabled.
pub backwards_incompatible: Option<region::Scope>,
}
#[derive(Clone, Debug, HashStable)]
pub enum ExprKind<'tcx> {
/// `Scope`s are used to explicitly mark destruction scopes,
/// and to track the `HirId` of the expressions within the scope.
Scope {
region_scope: region::Scope,
lint_level: LintLevel,
value: ExprId,
},
/// A `box <value>` expression.
Box {
value: ExprId,
},
/// An `if` expression.
If {
if_then_scope: region::Scope,
cond: ExprId,
then: ExprId,
else_opt: Option<ExprId>,
},
/// A function call. Method calls and overloaded operators are converted to plain function calls.
Call {
/// The type of the function. This is often a [`FnDef`] or a [`FnPtr`].
///
/// [`FnDef`]: ty::TyKind::FnDef
/// [`FnPtr`]: ty::TyKind::FnPtr
ty: Ty<'tcx>,
/// The function itself.
fun: ExprId,
/// The arguments passed to the function.
///
/// Note: in some cases (like calling a closure), the function call `f(...args)` gets
/// rewritten as a call to a function trait method (e.g. `FnOnce::call_once(f, (...args))`).
args: Box<[ExprId]>,
/// Whether this is from an overloaded operator rather than a
/// function call from HIR. `true` for overloaded function call.
from_hir_call: bool,
/// The span of the function, without the dot and receiver
/// (e.g. `foo(a, b)` in `x.foo(a, b)`).
fn_span: Span,
},
/// A use expression `x.use`.
ByUse {
/// The expression on which use is applied.
expr: ExprId,
/// The span of use, without the dot and receiver
/// (e.g. `use` in `x.use`).
span: Span,
},
/// A *non-overloaded* dereference.
Deref {
arg: ExprId,
},
/// A *non-overloaded* binary operation.
Binary {
op: BinOp,
lhs: ExprId,
rhs: ExprId,
},
/// A logical operation. This is distinct from `BinaryOp` because
/// the operands need to be lazily evaluated.
LogicalOp {
op: LogicalOp,
lhs: ExprId,
rhs: ExprId,
},
/// A *non-overloaded* unary operation. Note that here the deref (`*`)
/// operator is represented by `ExprKind::Deref`.
Unary {
op: UnOp,
arg: ExprId,
},
/// A cast: `<source> as <type>`. The type we cast to is the type of
/// the parent expression.
Cast {
source: ExprId,
},
/// Forces its contents to be treated as a value expression, not a place
/// expression. This is inserted in some places where an operation would
/// otherwise be erased completely (e.g. some no-op casts), but we still
/// need to ensure that its operand is treated as a value and not a place.
Use {
source: ExprId,
},
/// A coercion from `!` to any type.
NeverToAny {
source: ExprId,
},
/// A pointer coercion. More information can be found in [`PointerCoercion`].
/// Pointer casts that cannot be done by coercions are represented by [`ExprKind::Cast`].
PointerCoercion {
cast: PointerCoercion,
source: ExprId,
/// Whether this coercion is written with an `as` cast in the source code.
is_from_as_cast: bool,
},
/// A `loop` expression.
Loop {
body: ExprId,
},
/// Special expression representing the `let` part of an `if let` or similar construct
/// (including `if let` guards in match arms, and let-chains formed by `&&`).
///
/// This isn't considered a real expression in surface Rust syntax, so it can
/// only appear in specific situations, such as within the condition of an `if`.
///
/// (Not to be confused with [`StmtKind::Let`], which is a normal `let` statement.)
Let {
expr: ExprId,
pat: Box<Pat<'tcx>>,
},
/// A `match` expression.
Match {
scrutinee: ExprId,
arms: Box<[ArmId]>,
match_source: MatchSource,
},
/// A block.
Block {
block: BlockId,
},
/// An assignment: `lhs = rhs`.
Assign {
lhs: ExprId,
rhs: ExprId,
},
/// A *non-overloaded* operation assignment, e.g. `lhs += rhs`.
AssignOp {
op: BinOp,
lhs: ExprId,
rhs: ExprId,
},
/// Access to a field of a struct, a tuple, an union, or an enum.
Field {
lhs: ExprId,
/// Variant containing the field.
variant_index: VariantIdx,
/// This can be a named (`.foo`) or unnamed (`.0`) field.
name: FieldIdx,
},
/// A *non-overloaded* indexing operation.
Index {
lhs: ExprId,
index: ExprId,
},
/// A local variable.
VarRef {
id: LocalVarId,
},
/// Used to represent upvars mentioned in a closure/coroutine
UpvarRef {
/// DefId of the closure/coroutine
closure_def_id: DefId,
/// HirId of the root variable
var_hir_id: LocalVarId,
},
/// A borrow, e.g. `&arg`.
Borrow {
borrow_kind: BorrowKind,
arg: ExprId,
},
/// A `&raw [const|mut] $place_expr` raw borrow resulting in type `*[const|mut] T`.
RawBorrow {
mutability: hir::Mutability,
arg: ExprId,
},
/// A `break` expression.
Break {
label: region::Scope,
value: Option<ExprId>,
},
/// A `continue` expression.
Continue {
label: region::Scope,
},
/// A `return` expression.
Return {
value: Option<ExprId>,
},
/// A `become` expression.
Become {
value: ExprId,
},
/// An inline `const` block, e.g. `const {}`.
ConstBlock {
did: DefId,
args: GenericArgsRef<'tcx>,
},
/// An array literal constructed from one repeated element, e.g. `[1; 5]`.
Repeat {
value: ExprId,
count: ty::Const<'tcx>,
},
/// An array, e.g. `[a, b, c, d]`.
Array {
fields: Box<[ExprId]>,
},
/// A tuple, e.g. `(a, b, c, d)`.
Tuple {
fields: Box<[ExprId]>,
},
/// An ADT constructor, e.g. `Foo {x: 1, y: 2}`.
Adt(Box<AdtExpr<'tcx>>),
/// A type ascription on a place.
PlaceTypeAscription {
source: ExprId,
/// Type that the user gave to this expression
user_ty: UserTy<'tcx>,
user_ty_span: Span,
},
/// A type ascription on a value, e.g. `type_ascribe!(42, i32)` or `42 as i32`.
ValueTypeAscription {
source: ExprId,
/// Type that the user gave to this expression
user_ty: UserTy<'tcx>,
user_ty_span: Span,
},
/// An unsafe binder cast on a place, e.g. `unwrap_binder!(*ptr)`.
PlaceUnwrapUnsafeBinder {
source: ExprId,
},
/// An unsafe binder cast on a value, e.g. `unwrap_binder!(rvalue())`,
/// which makes a temporary.
ValueUnwrapUnsafeBinder {
source: ExprId,
},
/// Construct an unsafe binder, e.g. `wrap_binder(&ref)`.
WrapUnsafeBinder {
source: ExprId,
},
/// A closure definition.
Closure(Box<ClosureExpr<'tcx>>),
/// A literal.
Literal {
lit: &'tcx hir::Lit,
neg: bool,
},
/// For literals that don't correspond to anything in the HIR
NonHirLiteral {
lit: ty::ScalarInt,
user_ty: UserTy<'tcx>,
},
/// A literal of a ZST type.
ZstLiteral {
user_ty: UserTy<'tcx>,
},
/// Associated constants and named constants
NamedConst {
def_id: DefId,
args: GenericArgsRef<'tcx>,
user_ty: UserTy<'tcx>,
},
ConstParam {
param: ty::ParamConst,
def_id: DefId,
},
// FIXME improve docs for `StaticRef` by distinguishing it from `NamedConst`
/// A literal containing the address of a `static`.
///
/// This is only distinguished from `Literal` so that we can register some
/// info for diagnostics.
StaticRef {
alloc_id: AllocId,
ty: Ty<'tcx>,
def_id: DefId,
},
/// Inline assembly, i.e. `asm!()`.
InlineAsm(Box<InlineAsmExpr<'tcx>>),
/// Field offset (`offset_of!`)
OffsetOf {
container: Ty<'tcx>,
fields: &'tcx List<(VariantIdx, FieldIdx)>,
},
/// An expression taking a reference to a thread local.
ThreadLocalRef(DefId),
/// A `yield` expression.
Yield {
value: ExprId,
},
}
/// Represents the association of a field identifier and an expression.
///
/// This is used in struct constructors.
#[derive(Clone, Debug, HashStable)]
pub struct FieldExpr {
pub name: FieldIdx,
pub expr: ExprId,
}
#[derive(Clone, Debug, HashStable)]
pub struct FruInfo<'tcx> {
pub base: ExprId,
pub field_types: Box<[Ty<'tcx>]>,
}
/// A `match` arm.
#[derive(Clone, Debug, HashStable)]
pub struct Arm<'tcx> {
pub pattern: Box<Pat<'tcx>>,
pub guard: Option<ExprId>,
pub body: ExprId,
pub lint_level: LintLevel,
pub scope: region::Scope,
pub span: Span,
}
#[derive(Copy, Clone, Debug, HashStable)]
pub enum LogicalOp {
/// The `&&` operator.
And,
/// The `||` operator.
Or,
}
#[derive(Clone, Debug, HashStable)]
pub enum InlineAsmOperand<'tcx> {
In {
reg: InlineAsmRegOrRegClass,
expr: ExprId,
},
Out {
reg: InlineAsmRegOrRegClass,
late: bool,
expr: Option<ExprId>,
},
InOut {
reg: InlineAsmRegOrRegClass,
late: bool,
expr: ExprId,
},
SplitInOut {
reg: InlineAsmRegOrRegClass,
late: bool,
in_expr: ExprId,
out_expr: Option<ExprId>,
},
Const {
value: mir::Const<'tcx>,
span: Span,
},
SymFn {
value: ExprId,
},
SymStatic {
def_id: DefId,
},
Label {
block: BlockId,
},
}
#[derive(Clone, Debug, HashStable, TypeVisitable)]
pub struct FieldPat<'tcx> {
pub field: FieldIdx,
pub pattern: Pat<'tcx>,
}
#[derive(Clone, Debug, HashStable, TypeVisitable)]
pub struct Pat<'tcx> {
pub ty: Ty<'tcx>,
pub span: Span,
pub kind: PatKind<'tcx>,
}
impl<'tcx> Pat<'tcx> {
pub fn simple_ident(&self) -> Option<Symbol> {
match self.kind {
PatKind::Binding {
name, mode: BindingMode(ByRef::No, _), subpattern: None, ..
} => Some(name),
_ => None,
}
}
/// Call `f` on every "binding" in a pattern, e.g., on `a` in
/// `match foo() { Some(a) => (), None => () }`
pub fn each_binding(&self, mut f: impl FnMut(Symbol, ByRef, Ty<'tcx>, Span)) {
self.walk_always(|p| {
if let PatKind::Binding { name, mode, ty, .. } = p.kind {
f(name, mode.0, ty, p.span);
}
});
}
/// Walk the pattern in left-to-right order.
///
/// If `it(pat)` returns `false`, the children are not visited.
pub fn walk(&self, mut it: impl FnMut(&Pat<'tcx>) -> bool) {
self.walk_(&mut it)
}
fn walk_(&self, it: &mut impl FnMut(&Pat<'tcx>) -> bool) {
if !it(self) {
return;
}
use PatKind::*;
match &self.kind {
Wild
| Never
| Range(..)
| Binding { subpattern: None, .. }
| Constant { .. }
| Error(_) => {}
AscribeUserType { subpattern, .. }
| Binding { subpattern: Some(subpattern), .. }
| Deref { subpattern }
| DerefPattern { subpattern, .. }
| ExpandedConstant { subpattern, .. } => subpattern.walk_(it),
Leaf { subpatterns } | Variant { subpatterns, .. } => {
subpatterns.iter().for_each(|field| field.pattern.walk_(it))
}
Or { pats } => pats.iter().for_each(|p| p.walk_(it)),
Array { box prefix, slice, box suffix } | Slice { box prefix, slice, box suffix } => {
prefix.iter().chain(slice.as_deref()).chain(suffix.iter()).for_each(|p| p.walk_(it))
}
}
}
/// Whether the pattern has a `PatKind::Error` nested within.
pub fn pat_error_reported(&self) -> Result<(), ErrorGuaranteed> {
let mut error = None;
self.walk(|pat| {
if let PatKind::Error(e) = pat.kind
&& error.is_none()
{
error = Some(e);
}
error.is_none()
});
match error {
None => Ok(()),
Some(e) => Err(e),
}
}
/// Walk the pattern in left-to-right order.
///
/// If you always want to recurse, prefer this method over `walk`.
pub fn walk_always(&self, mut it: impl FnMut(&Pat<'tcx>)) {
self.walk(|p| {
it(p);
true
})
}
/// Whether this a never pattern.
pub fn is_never_pattern(&self) -> bool {
let mut is_never_pattern = false;
self.walk(|pat| match &pat.kind {
PatKind::Never => {
is_never_pattern = true;
false
}
PatKind::Or { pats } => {
is_never_pattern = pats.iter().all(|p| p.is_never_pattern());
false
}
_ => true,
});
is_never_pattern
}
}
#[derive(Clone, Debug, HashStable, TypeVisitable)]
pub struct Ascription<'tcx> {
pub annotation: CanonicalUserTypeAnnotation<'tcx>,
/// Variance to use when relating the `user_ty` to the **type of the value being
/// matched**. Typically, this is `Variance::Covariant`, since the value being matched must
/// have a type that is some subtype of the ascribed type.
///
/// Note that this variance does not apply for any bindings within subpatterns. The type
/// assigned to those bindings must be exactly equal to the `user_ty` given here.
///
/// The only place where this field is not `Covariant` is when matching constants, where
/// we currently use `Contravariant` -- this is because the constant type just needs to
/// be "comparable" to the type of the input value. So, for example:
///
/// ```text
/// match x { "foo" => .. }
/// ```
///
/// requires that `&'static str <: T_x`, where `T_x` is the type of `x`. Really, we should
/// probably be checking for a `PartialEq` impl instead, but this preserves the behavior
/// of the old type-check for now. See #57280 for details.
pub variance: ty::Variance,
}
#[derive(Clone, Debug, HashStable, TypeVisitable)]
pub enum PatKind<'tcx> {
/// A wildcard pattern: `_`.
Wild,
AscribeUserType {
ascription: Ascription<'tcx>,
subpattern: Box<Pat<'tcx>>,
},
/// `x`, `ref x`, `x @ P`, etc.
Binding {
name: Symbol,
#[type_visitable(ignore)]
mode: BindingMode,
#[type_visitable(ignore)]
var: LocalVarId,
ty: Ty<'tcx>,
subpattern: Option<Box<Pat<'tcx>>>,
/// Is this the leftmost occurrence of the binding, i.e., is `var` the
/// `HirId` of this pattern?
is_primary: bool,
},
/// `Foo(...)` or `Foo{...}` or `Foo`, where `Foo` is a variant name from an ADT with
/// multiple variants.
Variant {
adt_def: AdtDef<'tcx>,
args: GenericArgsRef<'tcx>,
variant_index: VariantIdx,
subpatterns: Vec<FieldPat<'tcx>>,
},
/// `(...)`, `Foo(...)`, `Foo{...}`, or `Foo`, where `Foo` is a variant name from an ADT with
/// a single variant.
Leaf {
subpatterns: Vec<FieldPat<'tcx>>,
},
/// `box P`, `&P`, `&mut P`, etc.
Deref {
subpattern: Box<Pat<'tcx>>,
},
/// Deref pattern, written `box P` for now.
DerefPattern {
subpattern: Box<Pat<'tcx>>,
mutability: hir::Mutability,
},
/// One of the following:
/// * `&str`/`&[u8]` (represented as a valtree), which will be handled as a string/slice pattern
/// and thus exhaustiveness checking will detect if you use the same string/slice twice in
/// different patterns.
/// * integer, bool, char or float (represented as a valtree), which will be handled by
/// exhaustiveness to cover exactly its own value, similar to `&str`, but these values are
/// much simpler.
/// * `String`, if `string_deref_patterns` is enabled.
Constant {
value: mir::Const<'tcx>,
},
/// Pattern obtained by converting a constant (inline or named) to its pattern
/// representation using `const_to_pat`.
ExpandedConstant {
/// [DefId] of the constant, we need this so that we have a
/// reference that can be used by unsafety checking to visit nested
/// unevaluated constants and for diagnostics. If the `DefId` doesn't
/// correspond to a local crate, it points at the `const` item.
def_id: DefId,
/// If `false`, then `def_id` points at a `const` item, otherwise it
/// corresponds to a local inline const.
is_inline: bool,
/// If the inline constant is used in a range pattern, this subpattern
/// represents the range (if both ends are inline constants, there will
/// be multiple InlineConstant wrappers).
///
/// Otherwise, the actual pattern that the constant lowered to. As with
/// other constants, inline constants are matched structurally where
/// possible.
subpattern: Box<Pat<'tcx>>,
},
Range(Arc<PatRange<'tcx>>),
/// Matches against a slice, checking the length and extracting elements.
/// irrefutable when there is a slice pattern and both `prefix` and `suffix` are empty.
/// e.g., `&[ref xs @ ..]`.
Slice {
prefix: Box<[Pat<'tcx>]>,
slice: Option<Box<Pat<'tcx>>>,
suffix: Box<[Pat<'tcx>]>,
},
/// Fixed match against an array; irrefutable.
Array {
prefix: Box<[Pat<'tcx>]>,
slice: Option<Box<Pat<'tcx>>>,
suffix: Box<[Pat<'tcx>]>,
},
/// An or-pattern, e.g. `p | q`.
/// Invariant: `pats.len() >= 2`.
Or {
pats: Box<[Pat<'tcx>]>,
},
/// A never pattern `!`.
Never,
/// An error has been encountered during lowering. We probably shouldn't report more lints
/// related to this pattern.
Error(ErrorGuaranteed),
}
/// A range pattern.
/// The boundaries must be of the same type and that type must be numeric.
#[derive(Clone, Debug, PartialEq, HashStable, TypeVisitable)]
pub struct PatRange<'tcx> {
/// Must not be `PosInfinity`.
pub lo: PatRangeBoundary<'tcx>,
/// Must not be `NegInfinity`.
pub hi: PatRangeBoundary<'tcx>,
#[type_visitable(ignore)]
pub end: RangeEnd,
pub ty: Ty<'tcx>,
}
impl<'tcx> PatRange<'tcx> {
/// Whether this range covers the full extent of possible values (best-effort, we ignore floats).
#[inline]
pub fn is_full_range(&self, tcx: TyCtxt<'tcx>) -> Option<bool> {
let (min, max, size, bias) = match *self.ty.kind() {
ty::Char => (0, std::char::MAX as u128, Size::from_bits(32), 0),
ty::Int(ity) => {
let size = Integer::from_int_ty(&tcx, ity).size();
let max = size.truncate(u128::MAX);
let bias = 1u128 << (size.bits() - 1);
(0, max, size, bias)
}
ty::Uint(uty) => {
let size = Integer::from_uint_ty(&tcx, uty).size();
let max = size.unsigned_int_max();
(0, max, size, 0)
}
_ => return None,
};
// We want to compare ranges numerically, but the order of the bitwise representation of
// signed integers does not match their numeric order. Thus, to correct the ordering, we
// need to shift the range of signed integers to correct the comparison. This is achieved by
// XORing with a bias (see pattern/deconstruct_pat.rs for another pertinent example of this
// pattern).
//
// Also, for performance, it's important to only do the second `try_to_bits` if necessary.
let lo_is_min = match self.lo {
PatRangeBoundary::NegInfinity => true,
PatRangeBoundary::Finite(value) => {
let lo = value.try_to_bits(size).unwrap() ^ bias;
lo <= min
}
PatRangeBoundary::PosInfinity => false,
};
if lo_is_min {
let hi_is_max = match self.hi {
PatRangeBoundary::NegInfinity => false,
PatRangeBoundary::Finite(value) => {
let hi = value.try_to_bits(size).unwrap() ^ bias;
hi > max || hi == max && self.end == RangeEnd::Included
}
PatRangeBoundary::PosInfinity => true,
};
if hi_is_max {
return Some(true);
}
}
Some(false)
}
#[inline]
pub fn contains(
&self,
value: mir::Const<'tcx>,
tcx: TyCtxt<'tcx>,
typing_env: ty::TypingEnv<'tcx>,
) -> Option<bool> {
use Ordering::*;
debug_assert_eq!(self.ty, value.ty());
let ty = self.ty;
let value = PatRangeBoundary::Finite(value);
// For performance, it's important to only do the second comparison if necessary.
Some(
match self.lo.compare_with(value, ty, tcx, typing_env)? {
Less | Equal => true,
Greater => false,
} && match value.compare_with(self.hi, ty, tcx, typing_env)? {
Less => true,
Equal => self.end == RangeEnd::Included,
Greater => false,
},
)
}
#[inline]
pub fn overlaps(
&self,
other: &Self,
tcx: TyCtxt<'tcx>,
typing_env: ty::TypingEnv<'tcx>,
) -> Option<bool> {
use Ordering::*;
debug_assert_eq!(self.ty, other.ty);
// For performance, it's important to only do the second comparison if necessary.
Some(
match other.lo.compare_with(self.hi, self.ty, tcx, typing_env)? {
Less => true,
Equal => self.end == RangeEnd::Included,
Greater => false,
} && match self.lo.compare_with(other.hi, self.ty, tcx, typing_env)? {
Less => true,
Equal => other.end == RangeEnd::Included,
Greater => false,
},
)
}
}
impl<'tcx> fmt::Display for PatRange<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if let PatRangeBoundary::Finite(value) = &self.lo {
write!(f, "{value}")?;
}
if let PatRangeBoundary::Finite(value) = &self.hi {
write!(f, "{}", self.end)?;
write!(f, "{value}")?;
} else {
// `0..` is parsed as an inclusive range, we must display it correctly.
write!(f, "..")?;
}
Ok(())
}
}
/// A (possibly open) boundary of a range pattern.
/// If present, the const must be of a numeric type.
#[derive(Copy, Clone, Debug, PartialEq, HashStable, TypeVisitable)]
pub enum PatRangeBoundary<'tcx> {
Finite(mir::Const<'tcx>),
NegInfinity,
PosInfinity,
}
impl<'tcx> PatRangeBoundary<'tcx> {
#[inline]
pub fn is_finite(self) -> bool {
matches!(self, Self::Finite(..))
}
#[inline]
pub fn as_finite(self) -> Option<mir::Const<'tcx>> {
match self {
Self::Finite(value) => Some(value),
Self::NegInfinity | Self::PosInfinity => None,
}
}
pub fn eval_bits(
self,
ty: Ty<'tcx>,
tcx: TyCtxt<'tcx>,
typing_env: ty::TypingEnv<'tcx>,
) -> u128 {
match self {
Self::Finite(value) => value.eval_bits(tcx, typing_env),
Self::NegInfinity => {
// Unwrap is ok because the type is known to be numeric.
ty.numeric_min_and_max_as_bits(tcx).unwrap().0
}
Self::PosInfinity => {
// Unwrap is ok because the type is known to be numeric.
ty.numeric_min_and_max_as_bits(tcx).unwrap().1
}
}
}
#[instrument(skip(tcx, typing_env), level = "debug", ret)]
pub fn compare_with(
self,
other: Self,
ty: Ty<'tcx>,
tcx: TyCtxt<'tcx>,
typing_env: ty::TypingEnv<'tcx>,
) -> Option<Ordering> {
use PatRangeBoundary::*;
match (self, other) {
// When comparing with infinities, we must remember that `0u8..` and `0u8..=255`
// describe the same range. These two shortcuts are ok, but for the rest we must check
// bit values.
(PosInfinity, PosInfinity) => return Some(Ordering::Equal),
(NegInfinity, NegInfinity) => return Some(Ordering::Equal),
// This code is hot when compiling matches with many ranges. So we
// special-case extraction of evaluated scalars for speed, for types where
// we can do scalar comparisons. E.g. `unicode-normalization` has
// many ranges such as '\u{037A}'..='\u{037F}', and chars can be compared
// in this way.
(Finite(a), Finite(b)) if matches!(ty.kind(), ty::Int(_) | ty::Uint(_) | ty::Char) => {
if let (Some(a), Some(b)) = (a.try_to_scalar_int(), b.try_to_scalar_int()) {
let sz = ty.primitive_size(tcx);
let cmp = match ty.kind() {
ty::Uint(_) | ty::Char => a.to_uint(sz).cmp(&b.to_uint(sz)),
ty::Int(_) => a.to_int(sz).cmp(&b.to_int(sz)),
_ => unreachable!(),
};
return Some(cmp);
}
}
_ => {}
}
let a = self.eval_bits(ty, tcx, typing_env);
let b = other.eval_bits(ty, tcx, typing_env);
match ty.kind() {
ty::Float(ty::FloatTy::F16) => {
use rustc_apfloat::Float;
let a = rustc_apfloat::ieee::Half::from_bits(a);
let b = rustc_apfloat::ieee::Half::from_bits(b);
a.partial_cmp(&b)
}
ty::Float(ty::FloatTy::F32) => {
use rustc_apfloat::Float;
let a = rustc_apfloat::ieee::Single::from_bits(a);
let b = rustc_apfloat::ieee::Single::from_bits(b);
a.partial_cmp(&b)
}
ty::Float(ty::FloatTy::F64) => {
use rustc_apfloat::Float;
let a = rustc_apfloat::ieee::Double::from_bits(a);
let b = rustc_apfloat::ieee::Double::from_bits(b);
a.partial_cmp(&b)
}
ty::Float(ty::FloatTy::F128) => {
use rustc_apfloat::Float;
let a = rustc_apfloat::ieee::Quad::from_bits(a);
let b = rustc_apfloat::ieee::Quad::from_bits(b);
a.partial_cmp(&b)
}
ty::Int(ity) => {
let size = rustc_abi::Integer::from_int_ty(&tcx, *ity).size();
let a = size.sign_extend(a) as i128;
let b = size.sign_extend(b) as i128;
Some(a.cmp(&b))
}
ty::Uint(_) | ty::Char => Some(a.cmp(&b)),
_ => bug!(),
}
}
}
// Some nodes are used a lot. Make sure they don't unintentionally get bigger.
#[cfg(target_pointer_width = "64")]
mod size_asserts {
use rustc_data_structures::static_assert_size;
use super::*;
// tidy-alphabetical-start
static_assert_size!(Block, 48);
static_assert_size!(Expr<'_>, 72);
static_assert_size!(ExprKind<'_>, 40);
static_assert_size!(Pat<'_>, 64);
static_assert_size!(PatKind<'_>, 48);
static_assert_size!(Stmt<'_>, 48);
static_assert_size!(StmtKind<'_>, 48);
// tidy-alphabetical-end
}