mirror of
https://github.com/rust-lang/rust.git
synced 2025-05-14 02:49:40 +00:00
1794 lines
55 KiB
Rust
1794 lines
55 KiB
Rust
//! Utilities for comparing and ordering values.
|
||
//!
|
||
//! This module contains various tools for comparing and ordering values. In
|
||
//! summary:
|
||
//!
|
||
//! * [`PartialEq<Rhs>`] overloads the `==` and `!=` operators. In cases where
|
||
//! `Rhs` (the right hand side's type) is `Self`, this trait corresponds to a
|
||
//! partial equivalence relation.
|
||
//! * [`Eq`] indicates that the overloaded `==` operator corresponds to an
|
||
//! equivalence relation.
|
||
//! * [`Ord`] and [`PartialOrd`] are traits that allow you to define total and
|
||
//! partial orderings between values, respectively. Implementing them overloads
|
||
//! the `<`, `<=`, `>`, and `>=` operators.
|
||
//! * [`Ordering`] is an enum returned by the main functions of [`Ord`] and
|
||
//! [`PartialOrd`], and describes an ordering of two values (less, equal, or
|
||
//! greater).
|
||
//! * [`Reverse`] is a struct that allows you to easily reverse an ordering.
|
||
//! * [`max`] and [`min`] are functions that build off of [`Ord`] and allow you
|
||
//! to find the maximum or minimum of two values.
|
||
//!
|
||
//! For more details, see the respective documentation of each item in the list.
|
||
//!
|
||
//! [`max`]: Ord::max
|
||
//! [`min`]: Ord::min
|
||
|
||
#![stable(feature = "rust1", since = "1.0.0")]
|
||
|
||
mod bytewise;
|
||
pub(crate) use bytewise::BytewiseEq;
|
||
|
||
use self::Ordering::*;
|
||
|
||
/// Trait for comparisons using the equality operator.
|
||
///
|
||
/// Implementing this trait for types provides the `==` and `!=` operators for
|
||
/// those types.
|
||
///
|
||
/// `x.eq(y)` can also be written `x == y`, and `x.ne(y)` can be written `x != y`.
|
||
/// We use the easier-to-read infix notation in the remainder of this documentation.
|
||
///
|
||
/// This trait allows for comparisons using the equality operator, for types
|
||
/// that do not have a full equivalence relation. For example, in floating point
|
||
/// numbers `NaN != NaN`, so floating point types implement `PartialEq` but not
|
||
/// [`trait@Eq`]. Formally speaking, when `Rhs == Self`, this trait corresponds
|
||
/// to a [partial equivalence relation].
|
||
///
|
||
/// [partial equivalence relation]: https://en.wikipedia.org/wiki/Partial_equivalence_relation
|
||
///
|
||
/// Implementations must ensure that `eq` and `ne` are consistent with each other:
|
||
///
|
||
/// - `a != b` if and only if `!(a == b)`.
|
||
///
|
||
/// The default implementation of `ne` provides this consistency and is almost
|
||
/// always sufficient. It should not be overridden without very good reason.
|
||
///
|
||
/// If [`PartialOrd`] or [`Ord`] are also implemented for `Self` and `Rhs`, their methods must also
|
||
/// be consistent with `PartialEq` (see the documentation of those traits for the exact
|
||
/// requirements). It's easy to accidentally make them disagree by deriving some of the traits and
|
||
/// manually implementing others.
|
||
///
|
||
/// The equality relation `==` must satisfy the following conditions
|
||
/// (for all `a`, `b`, `c` of type `A`, `B`, `C`):
|
||
///
|
||
/// - **Symmetry**: if `A: PartialEq<B>` and `B: PartialEq<A>`, then **`a == b`
|
||
/// implies `b == a`**; and
|
||
///
|
||
/// - **Transitivity**: if `A: PartialEq<B>` and `B: PartialEq<C>` and `A:
|
||
/// PartialEq<C>`, then **`a == b` and `b == c` implies `a == c`**.
|
||
/// This must also work for longer chains, such as when `A: PartialEq<B>`, `B: PartialEq<C>`,
|
||
/// `C: PartialEq<D>`, and `A: PartialEq<D>` all exist.
|
||
///
|
||
/// Note that the `B: PartialEq<A>` (symmetric) and `A: PartialEq<C>`
|
||
/// (transitive) impls are not forced to exist, but these requirements apply
|
||
/// whenever they do exist.
|
||
///
|
||
/// Violating these requirements is a logic error. The behavior resulting from a logic error is not
|
||
/// specified, but users of the trait must ensure that such logic errors do *not* result in
|
||
/// undefined behavior. This means that `unsafe` code **must not** rely on the correctness of these
|
||
/// methods.
|
||
///
|
||
/// ## Cross-crate considerations
|
||
///
|
||
/// Upholding the requirements stated above can become tricky when one crate implements `PartialEq`
|
||
/// for a type of another crate (i.e., to allow comparing one of its own types with a type from the
|
||
/// standard library). The recommendation is to never implement this trait for a foreign type. In
|
||
/// other words, such a crate should do `impl PartialEq<ForeignType> for LocalType`, but it should
|
||
/// *not* do `impl PartialEq<LocalType> for ForeignType`.
|
||
///
|
||
/// This avoids the problem of transitive chains that criss-cross crate boundaries: for all local
|
||
/// types `T`, you may assume that no other crate will add `impl`s that allow comparing `T == U`. In
|
||
/// other words, if other crates add `impl`s that allow building longer transitive chains `U1 == ...
|
||
/// == T == V1 == ...`, then all the types that appear to the right of `T` must be types that the
|
||
/// crate defining `T` already knows about. This rules out transitive chains where downstream crates
|
||
/// can add new `impl`s that "stitch together" comparisons of foreign types in ways that violate
|
||
/// transitivity.
|
||
///
|
||
/// Not having such foreign `impl`s also avoids forward compatibility issues where one crate adding
|
||
/// more `PartialEq` implementations can cause build failures in downstream crates.
|
||
///
|
||
/// ## Derivable
|
||
///
|
||
/// This trait can be used with `#[derive]`. When `derive`d on structs, two
|
||
/// instances are equal if all fields are equal, and not equal if any fields
|
||
/// are not equal. When `derive`d on enums, two instances are equal if they
|
||
/// are the same variant and all fields are equal.
|
||
///
|
||
/// ## How can I implement `PartialEq`?
|
||
///
|
||
/// An example implementation for a domain in which two books are considered
|
||
/// the same book if their ISBN matches, even if the formats differ:
|
||
///
|
||
/// ```
|
||
/// enum BookFormat {
|
||
/// Paperback,
|
||
/// Hardback,
|
||
/// Ebook,
|
||
/// }
|
||
///
|
||
/// struct Book {
|
||
/// isbn: i32,
|
||
/// format: BookFormat,
|
||
/// }
|
||
///
|
||
/// impl PartialEq for Book {
|
||
/// fn eq(&self, other: &Self) -> bool {
|
||
/// self.isbn == other.isbn
|
||
/// }
|
||
/// }
|
||
///
|
||
/// let b1 = Book { isbn: 3, format: BookFormat::Paperback };
|
||
/// let b2 = Book { isbn: 3, format: BookFormat::Ebook };
|
||
/// let b3 = Book { isbn: 10, format: BookFormat::Paperback };
|
||
///
|
||
/// assert!(b1 == b2);
|
||
/// assert!(b1 != b3);
|
||
/// ```
|
||
///
|
||
/// ## How can I compare two different types?
|
||
///
|
||
/// The type you can compare with is controlled by `PartialEq`'s type parameter.
|
||
/// For example, let's tweak our previous code a bit:
|
||
///
|
||
/// ```
|
||
/// // The derive implements <BookFormat> == <BookFormat> comparisons
|
||
/// #[derive(PartialEq)]
|
||
/// enum BookFormat {
|
||
/// Paperback,
|
||
/// Hardback,
|
||
/// Ebook,
|
||
/// }
|
||
///
|
||
/// struct Book {
|
||
/// isbn: i32,
|
||
/// format: BookFormat,
|
||
/// }
|
||
///
|
||
/// // Implement <Book> == <BookFormat> comparisons
|
||
/// impl PartialEq<BookFormat> for Book {
|
||
/// fn eq(&self, other: &BookFormat) -> bool {
|
||
/// self.format == *other
|
||
/// }
|
||
/// }
|
||
///
|
||
/// // Implement <BookFormat> == <Book> comparisons
|
||
/// impl PartialEq<Book> for BookFormat {
|
||
/// fn eq(&self, other: &Book) -> bool {
|
||
/// *self == other.format
|
||
/// }
|
||
/// }
|
||
///
|
||
/// let b1 = Book { isbn: 3, format: BookFormat::Paperback };
|
||
///
|
||
/// assert!(b1 == BookFormat::Paperback);
|
||
/// assert!(BookFormat::Ebook != b1);
|
||
/// ```
|
||
///
|
||
/// By changing `impl PartialEq for Book` to `impl PartialEq<BookFormat> for Book`,
|
||
/// we allow `BookFormat`s to be compared with `Book`s.
|
||
///
|
||
/// A comparison like the one above, which ignores some fields of the struct,
|
||
/// can be dangerous. It can easily lead to an unintended violation of the
|
||
/// requirements for a partial equivalence relation. For example, if we kept
|
||
/// the above implementation of `PartialEq<Book>` for `BookFormat` and added an
|
||
/// implementation of `PartialEq<Book>` for `Book` (either via a `#[derive]` or
|
||
/// via the manual implementation from the first example) then the result would
|
||
/// violate transitivity:
|
||
///
|
||
/// ```should_panic
|
||
/// #[derive(PartialEq)]
|
||
/// enum BookFormat {
|
||
/// Paperback,
|
||
/// Hardback,
|
||
/// Ebook,
|
||
/// }
|
||
///
|
||
/// #[derive(PartialEq)]
|
||
/// struct Book {
|
||
/// isbn: i32,
|
||
/// format: BookFormat,
|
||
/// }
|
||
///
|
||
/// impl PartialEq<BookFormat> for Book {
|
||
/// fn eq(&self, other: &BookFormat) -> bool {
|
||
/// self.format == *other
|
||
/// }
|
||
/// }
|
||
///
|
||
/// impl PartialEq<Book> for BookFormat {
|
||
/// fn eq(&self, other: &Book) -> bool {
|
||
/// *self == other.format
|
||
/// }
|
||
/// }
|
||
///
|
||
/// fn main() {
|
||
/// let b1 = Book { isbn: 1, format: BookFormat::Paperback };
|
||
/// let b2 = Book { isbn: 2, format: BookFormat::Paperback };
|
||
///
|
||
/// assert!(b1 == BookFormat::Paperback);
|
||
/// assert!(BookFormat::Paperback == b2);
|
||
///
|
||
/// // The following should hold by transitivity but doesn't.
|
||
/// assert!(b1 == b2); // <-- PANICS
|
||
/// }
|
||
/// ```
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let x: u32 = 0;
|
||
/// let y: u32 = 1;
|
||
///
|
||
/// assert_eq!(x == y, false);
|
||
/// assert_eq!(x.eq(&y), false);
|
||
/// ```
|
||
///
|
||
/// [`eq`]: PartialEq::eq
|
||
/// [`ne`]: PartialEq::ne
|
||
#[lang = "eq"]
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[doc(alias = "==")]
|
||
#[doc(alias = "!=")]
|
||
#[rustc_on_unimplemented(
|
||
message = "can't compare `{Self}` with `{Rhs}`",
|
||
label = "no implementation for `{Self} == {Rhs}`",
|
||
append_const_msg
|
||
)]
|
||
#[rustc_diagnostic_item = "PartialEq"]
|
||
#[const_trait]
|
||
pub trait PartialEq<Rhs: ?Sized = Self> {
|
||
/// This method tests for `self` and `other` values to be equal, and is used
|
||
/// by `==`.
|
||
#[must_use]
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[rustc_diagnostic_item = "cmp_partialeq_eq"]
|
||
fn eq(&self, other: &Rhs) -> bool;
|
||
|
||
/// This method tests for `!=`. The default implementation is almost always
|
||
/// sufficient, and should not be overridden without very good reason.
|
||
#[inline]
|
||
#[must_use]
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[rustc_diagnostic_item = "cmp_partialeq_ne"]
|
||
fn ne(&self, other: &Rhs) -> bool {
|
||
!self.eq(other)
|
||
}
|
||
}
|
||
|
||
/// Derive macro generating an impl of the trait [`PartialEq`].
|
||
/// The behavior of this macro is described in detail [here](PartialEq#derivable).
|
||
#[rustc_builtin_macro]
|
||
#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
|
||
#[allow_internal_unstable(core_intrinsics, structural_match)]
|
||
pub macro PartialEq($item:item) {
|
||
/* compiler built-in */
|
||
}
|
||
|
||
/// Trait for comparisons corresponding to [equivalence relations](
|
||
/// https://en.wikipedia.org/wiki/Equivalence_relation).
|
||
///
|
||
/// This means, that in addition to `a == b` and `a != b` being strict inverses,
|
||
/// the relation must be (for all `a`, `b` and `c`):
|
||
///
|
||
/// - reflexive: `a == a`;
|
||
/// - symmetric: `a == b` implies `b == a` (required by `PartialEq` as well); and
|
||
/// - transitive: `a == b` and `b == c` implies `a == c` (required by `PartialEq` as well).
|
||
///
|
||
/// This property cannot be checked by the compiler, and therefore `Eq` implies
|
||
/// [`PartialEq`], and has no extra methods.
|
||
///
|
||
/// Violating this property is a logic error. The behavior resulting from a logic error is not
|
||
/// specified, but users of the trait must ensure that such logic errors do *not* result in
|
||
/// undefined behavior. This means that `unsafe` code **must not** rely on the correctness of these
|
||
/// methods.
|
||
///
|
||
/// Implement `Eq` in addition to `PartialEq` if it's guaranteed that
|
||
/// `PartialEq::eq(a, a)` always returns `true` (reflexivity), in addition to
|
||
/// the symmetric and transitive properties already required by `PartialEq`.
|
||
///
|
||
/// ## Derivable
|
||
///
|
||
/// This trait can be used with `#[derive]`. When `derive`d, because `Eq` has
|
||
/// no extra methods, it is only informing the compiler that this is an
|
||
/// equivalence relation rather than a partial equivalence relation. Note that
|
||
/// the `derive` strategy requires all fields are `Eq`, which isn't
|
||
/// always desired.
|
||
///
|
||
/// ## How can I implement `Eq`?
|
||
///
|
||
/// If you cannot use the `derive` strategy, specify that your type implements
|
||
/// `Eq`, which has no methods:
|
||
///
|
||
/// ```
|
||
/// enum BookFormat { Paperback, Hardback, Ebook }
|
||
/// struct Book {
|
||
/// isbn: i32,
|
||
/// format: BookFormat,
|
||
/// }
|
||
/// impl PartialEq for Book {
|
||
/// fn eq(&self, other: &Self) -> bool {
|
||
/// self.isbn == other.isbn
|
||
/// }
|
||
/// }
|
||
/// impl Eq for Book {}
|
||
/// ```
|
||
#[doc(alias = "==")]
|
||
#[doc(alias = "!=")]
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[rustc_diagnostic_item = "Eq"]
|
||
pub trait Eq: PartialEq<Self> {
|
||
// this method is used solely by #[derive(Eq)] to assert
|
||
// that every component of a type implements `Eq`
|
||
// itself. The current deriving infrastructure means doing this
|
||
// assertion without using a method on this trait is nearly
|
||
// impossible.
|
||
//
|
||
// This should never be implemented by hand.
|
||
#[doc(hidden)]
|
||
#[coverage(off)]
|
||
#[inline]
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
fn assert_receiver_is_total_eq(&self) {}
|
||
}
|
||
|
||
/// Derive macro generating an impl of the trait [`Eq`].
|
||
#[rustc_builtin_macro]
|
||
#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
|
||
#[allow_internal_unstable(core_intrinsics, derive_eq, structural_match)]
|
||
#[allow_internal_unstable(coverage_attribute)]
|
||
pub macro Eq($item:item) {
|
||
/* compiler built-in */
|
||
}
|
||
|
||
// FIXME: this struct is used solely by #[derive] to
|
||
// assert that every component of a type implements Eq.
|
||
//
|
||
// This struct should never appear in user code.
|
||
#[doc(hidden)]
|
||
#[allow(missing_debug_implementations)]
|
||
#[unstable(feature = "derive_eq", reason = "deriving hack, should not be public", issue = "none")]
|
||
pub struct AssertParamIsEq<T: Eq + ?Sized> {
|
||
_field: crate::marker::PhantomData<T>,
|
||
}
|
||
|
||
/// An `Ordering` is the result of a comparison between two values.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::cmp::Ordering;
|
||
///
|
||
/// assert_eq!(1.cmp(&2), Ordering::Less);
|
||
///
|
||
/// assert_eq!(1.cmp(&1), Ordering::Equal);
|
||
///
|
||
/// assert_eq!(2.cmp(&1), Ordering::Greater);
|
||
/// ```
|
||
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug, Hash)]
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[cfg_attr(not(bootstrap), lang = "Ordering")]
|
||
#[repr(i8)]
|
||
pub enum Ordering {
|
||
/// An ordering where a compared value is less than another.
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
Less = -1,
|
||
/// An ordering where a compared value is equal to another.
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
Equal = 0,
|
||
/// An ordering where a compared value is greater than another.
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
Greater = 1,
|
||
}
|
||
|
||
impl Ordering {
|
||
/// Returns `true` if the ordering is the `Equal` variant.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::cmp::Ordering;
|
||
///
|
||
/// assert_eq!(Ordering::Less.is_eq(), false);
|
||
/// assert_eq!(Ordering::Equal.is_eq(), true);
|
||
/// assert_eq!(Ordering::Greater.is_eq(), false);
|
||
/// ```
|
||
#[inline]
|
||
#[must_use]
|
||
#[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
|
||
#[stable(feature = "ordering_helpers", since = "1.53.0")]
|
||
pub const fn is_eq(self) -> bool {
|
||
matches!(self, Equal)
|
||
}
|
||
|
||
/// Returns `true` if the ordering is not the `Equal` variant.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::cmp::Ordering;
|
||
///
|
||
/// assert_eq!(Ordering::Less.is_ne(), true);
|
||
/// assert_eq!(Ordering::Equal.is_ne(), false);
|
||
/// assert_eq!(Ordering::Greater.is_ne(), true);
|
||
/// ```
|
||
#[inline]
|
||
#[must_use]
|
||
#[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
|
||
#[stable(feature = "ordering_helpers", since = "1.53.0")]
|
||
pub const fn is_ne(self) -> bool {
|
||
!matches!(self, Equal)
|
||
}
|
||
|
||
/// Returns `true` if the ordering is the `Less` variant.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::cmp::Ordering;
|
||
///
|
||
/// assert_eq!(Ordering::Less.is_lt(), true);
|
||
/// assert_eq!(Ordering::Equal.is_lt(), false);
|
||
/// assert_eq!(Ordering::Greater.is_lt(), false);
|
||
/// ```
|
||
#[inline]
|
||
#[must_use]
|
||
#[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
|
||
#[stable(feature = "ordering_helpers", since = "1.53.0")]
|
||
pub const fn is_lt(self) -> bool {
|
||
matches!(self, Less)
|
||
}
|
||
|
||
/// Returns `true` if the ordering is the `Greater` variant.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::cmp::Ordering;
|
||
///
|
||
/// assert_eq!(Ordering::Less.is_gt(), false);
|
||
/// assert_eq!(Ordering::Equal.is_gt(), false);
|
||
/// assert_eq!(Ordering::Greater.is_gt(), true);
|
||
/// ```
|
||
#[inline]
|
||
#[must_use]
|
||
#[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
|
||
#[stable(feature = "ordering_helpers", since = "1.53.0")]
|
||
pub const fn is_gt(self) -> bool {
|
||
matches!(self, Greater)
|
||
}
|
||
|
||
/// Returns `true` if the ordering is either the `Less` or `Equal` variant.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::cmp::Ordering;
|
||
///
|
||
/// assert_eq!(Ordering::Less.is_le(), true);
|
||
/// assert_eq!(Ordering::Equal.is_le(), true);
|
||
/// assert_eq!(Ordering::Greater.is_le(), false);
|
||
/// ```
|
||
#[inline]
|
||
#[must_use]
|
||
#[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
|
||
#[stable(feature = "ordering_helpers", since = "1.53.0")]
|
||
pub const fn is_le(self) -> bool {
|
||
!matches!(self, Greater)
|
||
}
|
||
|
||
/// Returns `true` if the ordering is either the `Greater` or `Equal` variant.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::cmp::Ordering;
|
||
///
|
||
/// assert_eq!(Ordering::Less.is_ge(), false);
|
||
/// assert_eq!(Ordering::Equal.is_ge(), true);
|
||
/// assert_eq!(Ordering::Greater.is_ge(), true);
|
||
/// ```
|
||
#[inline]
|
||
#[must_use]
|
||
#[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
|
||
#[stable(feature = "ordering_helpers", since = "1.53.0")]
|
||
pub const fn is_ge(self) -> bool {
|
||
!matches!(self, Less)
|
||
}
|
||
|
||
/// Reverses the `Ordering`.
|
||
///
|
||
/// * `Less` becomes `Greater`.
|
||
/// * `Greater` becomes `Less`.
|
||
/// * `Equal` becomes `Equal`.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// Basic behavior:
|
||
///
|
||
/// ```
|
||
/// use std::cmp::Ordering;
|
||
///
|
||
/// assert_eq!(Ordering::Less.reverse(), Ordering::Greater);
|
||
/// assert_eq!(Ordering::Equal.reverse(), Ordering::Equal);
|
||
/// assert_eq!(Ordering::Greater.reverse(), Ordering::Less);
|
||
/// ```
|
||
///
|
||
/// This method can be used to reverse a comparison:
|
||
///
|
||
/// ```
|
||
/// let data: &mut [_] = &mut [2, 10, 5, 8];
|
||
///
|
||
/// // sort the array from largest to smallest.
|
||
/// data.sort_by(|a, b| a.cmp(b).reverse());
|
||
///
|
||
/// let b: &mut [_] = &mut [10, 8, 5, 2];
|
||
/// assert!(data == b);
|
||
/// ```
|
||
#[inline]
|
||
#[must_use]
|
||
#[rustc_const_stable(feature = "const_ordering", since = "1.48.0")]
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub const fn reverse(self) -> Ordering {
|
||
match self {
|
||
Less => Greater,
|
||
Equal => Equal,
|
||
Greater => Less,
|
||
}
|
||
}
|
||
|
||
/// Chains two orderings.
|
||
///
|
||
/// Returns `self` when it's not `Equal`. Otherwise returns `other`.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::cmp::Ordering;
|
||
///
|
||
/// let result = Ordering::Equal.then(Ordering::Less);
|
||
/// assert_eq!(result, Ordering::Less);
|
||
///
|
||
/// let result = Ordering::Less.then(Ordering::Equal);
|
||
/// assert_eq!(result, Ordering::Less);
|
||
///
|
||
/// let result = Ordering::Less.then(Ordering::Greater);
|
||
/// assert_eq!(result, Ordering::Less);
|
||
///
|
||
/// let result = Ordering::Equal.then(Ordering::Equal);
|
||
/// assert_eq!(result, Ordering::Equal);
|
||
///
|
||
/// let x: (i64, i64, i64) = (1, 2, 7);
|
||
/// let y: (i64, i64, i64) = (1, 5, 3);
|
||
/// let result = x.0.cmp(&y.0).then(x.1.cmp(&y.1)).then(x.2.cmp(&y.2));
|
||
///
|
||
/// assert_eq!(result, Ordering::Less);
|
||
/// ```
|
||
#[inline]
|
||
#[must_use]
|
||
#[rustc_const_stable(feature = "const_ordering", since = "1.48.0")]
|
||
#[stable(feature = "ordering_chaining", since = "1.17.0")]
|
||
pub const fn then(self, other: Ordering) -> Ordering {
|
||
match self {
|
||
Equal => other,
|
||
_ => self,
|
||
}
|
||
}
|
||
|
||
/// Chains the ordering with the given function.
|
||
///
|
||
/// Returns `self` when it's not `Equal`. Otherwise calls `f` and returns
|
||
/// the result.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::cmp::Ordering;
|
||
///
|
||
/// let result = Ordering::Equal.then_with(|| Ordering::Less);
|
||
/// assert_eq!(result, Ordering::Less);
|
||
///
|
||
/// let result = Ordering::Less.then_with(|| Ordering::Equal);
|
||
/// assert_eq!(result, Ordering::Less);
|
||
///
|
||
/// let result = Ordering::Less.then_with(|| Ordering::Greater);
|
||
/// assert_eq!(result, Ordering::Less);
|
||
///
|
||
/// let result = Ordering::Equal.then_with(|| Ordering::Equal);
|
||
/// assert_eq!(result, Ordering::Equal);
|
||
///
|
||
/// let x: (i64, i64, i64) = (1, 2, 7);
|
||
/// let y: (i64, i64, i64) = (1, 5, 3);
|
||
/// let result = x.0.cmp(&y.0).then_with(|| x.1.cmp(&y.1)).then_with(|| x.2.cmp(&y.2));
|
||
///
|
||
/// assert_eq!(result, Ordering::Less);
|
||
/// ```
|
||
#[inline]
|
||
#[must_use]
|
||
#[stable(feature = "ordering_chaining", since = "1.17.0")]
|
||
pub fn then_with<F: FnOnce() -> Ordering>(self, f: F) -> Ordering {
|
||
match self {
|
||
Equal => f(),
|
||
_ => self,
|
||
}
|
||
}
|
||
}
|
||
|
||
/// A helper struct for reverse ordering.
|
||
///
|
||
/// This struct is a helper to be used with functions like [`Vec::sort_by_key`] and
|
||
/// can be used to reverse order a part of a key.
|
||
///
|
||
/// [`Vec::sort_by_key`]: ../../std/vec/struct.Vec.html#method.sort_by_key
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::cmp::Reverse;
|
||
///
|
||
/// let mut v = vec![1, 2, 3, 4, 5, 6];
|
||
/// v.sort_by_key(|&num| (num > 3, Reverse(num)));
|
||
/// assert_eq!(v, vec![3, 2, 1, 6, 5, 4]);
|
||
/// ```
|
||
#[derive(PartialEq, Eq, Debug, Copy, Default, Hash)]
|
||
#[stable(feature = "reverse_cmp_key", since = "1.19.0")]
|
||
#[repr(transparent)]
|
||
pub struct Reverse<T>(#[stable(feature = "reverse_cmp_key", since = "1.19.0")] pub T);
|
||
|
||
#[stable(feature = "reverse_cmp_key", since = "1.19.0")]
|
||
impl<T: PartialOrd> PartialOrd for Reverse<T> {
|
||
#[inline]
|
||
fn partial_cmp(&self, other: &Reverse<T>) -> Option<Ordering> {
|
||
other.0.partial_cmp(&self.0)
|
||
}
|
||
|
||
#[inline]
|
||
fn lt(&self, other: &Self) -> bool {
|
||
other.0 < self.0
|
||
}
|
||
#[inline]
|
||
fn le(&self, other: &Self) -> bool {
|
||
other.0 <= self.0
|
||
}
|
||
#[inline]
|
||
fn gt(&self, other: &Self) -> bool {
|
||
other.0 > self.0
|
||
}
|
||
#[inline]
|
||
fn ge(&self, other: &Self) -> bool {
|
||
other.0 >= self.0
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "reverse_cmp_key", since = "1.19.0")]
|
||
impl<T: Ord> Ord for Reverse<T> {
|
||
#[inline]
|
||
fn cmp(&self, other: &Reverse<T>) -> Ordering {
|
||
other.0.cmp(&self.0)
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "reverse_cmp_key", since = "1.19.0")]
|
||
impl<T: Clone> Clone for Reverse<T> {
|
||
#[inline]
|
||
fn clone(&self) -> Reverse<T> {
|
||
Reverse(self.0.clone())
|
||
}
|
||
|
||
#[inline]
|
||
fn clone_from(&mut self, other: &Self) {
|
||
self.0.clone_from(&other.0)
|
||
}
|
||
}
|
||
|
||
/// Trait for types that form a [total order](https://en.wikipedia.org/wiki/Total_order).
|
||
///
|
||
/// Implementations must be consistent with the [`PartialOrd`] implementation, and ensure
|
||
/// `max`, `min`, and `clamp` are consistent with `cmp`:
|
||
///
|
||
/// - `partial_cmp(a, b) == Some(cmp(a, b))`.
|
||
/// - `max(a, b) == max_by(a, b, cmp)` (ensured by the default implementation).
|
||
/// - `min(a, b) == min_by(a, b, cmp)` (ensured by the default implementation).
|
||
/// - For `a.clamp(min, max)`, see the [method docs](#method.clamp)
|
||
/// (ensured by the default implementation).
|
||
///
|
||
/// It's easy to accidentally make `cmp` and `partial_cmp` disagree by
|
||
/// deriving some of the traits and manually implementing others.
|
||
///
|
||
/// Violating these requirements is a logic error. The behavior resulting from a logic error is not
|
||
/// specified, but users of the trait must ensure that such logic errors do *not* result in
|
||
/// undefined behavior. This means that `unsafe` code **must not** rely on the correctness of these
|
||
/// methods.
|
||
///
|
||
/// ## Corollaries
|
||
///
|
||
/// From the above and the requirements of `PartialOrd`, it follows that for
|
||
/// all `a`, `b` and `c`:
|
||
///
|
||
/// - exactly one of `a < b`, `a == b` or `a > b` is true; and
|
||
/// - `<` is transitive: `a < b` and `b < c` implies `a < c`. The same must hold for both `==` and `>`.
|
||
///
|
||
/// Mathematically speaking, the `<` operator defines a strict [weak order]. In
|
||
/// cases where `==` conforms to mathematical equality, it also defines a
|
||
/// strict [total order].
|
||
///
|
||
/// [weak order]: https://en.wikipedia.org/wiki/Weak_ordering
|
||
/// [total order]: https://en.wikipedia.org/wiki/Total_order
|
||
///
|
||
/// ## Derivable
|
||
///
|
||
/// This trait can be used with `#[derive]`.
|
||
///
|
||
/// When `derive`d on structs, it will produce a
|
||
/// [lexicographic](https://en.wikipedia.org/wiki/Lexicographic_order) ordering
|
||
/// based on the top-to-bottom declaration order of the struct's members.
|
||
///
|
||
/// When `derive`d on enums, variants are ordered primarily by their discriminants.
|
||
/// Secondarily, they are ordered by their fields.
|
||
/// By default, the discriminant is smallest for variants at the top, and
|
||
/// largest for variants at the bottom. Here's an example:
|
||
///
|
||
/// ```
|
||
/// #[derive(PartialEq, Eq, PartialOrd, Ord)]
|
||
/// enum E {
|
||
/// Top,
|
||
/// Bottom,
|
||
/// }
|
||
///
|
||
/// assert!(E::Top < E::Bottom);
|
||
/// ```
|
||
///
|
||
/// However, manually setting the discriminants can override this default
|
||
/// behavior:
|
||
///
|
||
/// ```
|
||
/// #[derive(PartialEq, Eq, PartialOrd, Ord)]
|
||
/// enum E {
|
||
/// Top = 2,
|
||
/// Bottom = 1,
|
||
/// }
|
||
///
|
||
/// assert!(E::Bottom < E::Top);
|
||
/// ```
|
||
///
|
||
/// ## Lexicographical comparison
|
||
///
|
||
/// Lexicographical comparison is an operation with the following properties:
|
||
/// - Two sequences are compared element by element.
|
||
/// - The first mismatching element defines which sequence is lexicographically less or greater than the other.
|
||
/// - If one sequence is a prefix of another, the shorter sequence is lexicographically less than the other.
|
||
/// - If two sequences have equivalent elements and are of the same length, then the sequences are lexicographically equal.
|
||
/// - An empty sequence is lexicographically less than any non-empty sequence.
|
||
/// - Two empty sequences are lexicographically equal.
|
||
///
|
||
/// ## How can I implement `Ord`?
|
||
///
|
||
/// `Ord` requires that the type also be [`PartialOrd`] and [`Eq`] (which requires [`PartialEq`]).
|
||
///
|
||
/// Then you must define an implementation for [`cmp`]. You may find it useful to use
|
||
/// [`cmp`] on your type's fields.
|
||
///
|
||
/// Here's an example where you want to sort people by height only, disregarding `id`
|
||
/// and `name`:
|
||
///
|
||
/// ```
|
||
/// use std::cmp::Ordering;
|
||
///
|
||
/// #[derive(Eq)]
|
||
/// struct Person {
|
||
/// id: u32,
|
||
/// name: String,
|
||
/// height: u32,
|
||
/// }
|
||
///
|
||
/// impl Ord for Person {
|
||
/// fn cmp(&self, other: &Self) -> Ordering {
|
||
/// self.height.cmp(&other.height)
|
||
/// }
|
||
/// }
|
||
///
|
||
/// impl PartialOrd for Person {
|
||
/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
|
||
/// Some(self.cmp(other))
|
||
/// }
|
||
/// }
|
||
///
|
||
/// impl PartialEq for Person {
|
||
/// fn eq(&self, other: &Self) -> bool {
|
||
/// self.height == other.height
|
||
/// }
|
||
/// }
|
||
/// ```
|
||
///
|
||
/// [`cmp`]: Ord::cmp
|
||
#[doc(alias = "<")]
|
||
#[doc(alias = ">")]
|
||
#[doc(alias = "<=")]
|
||
#[doc(alias = ">=")]
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[rustc_diagnostic_item = "Ord"]
|
||
pub trait Ord: Eq + PartialOrd<Self> {
|
||
/// This method returns an [`Ordering`] between `self` and `other`.
|
||
///
|
||
/// By convention, `self.cmp(&other)` returns the ordering matching the expression
|
||
/// `self <operator> other` if true.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::cmp::Ordering;
|
||
///
|
||
/// assert_eq!(5.cmp(&10), Ordering::Less);
|
||
/// assert_eq!(10.cmp(&5), Ordering::Greater);
|
||
/// assert_eq!(5.cmp(&5), Ordering::Equal);
|
||
/// ```
|
||
#[must_use]
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[rustc_diagnostic_item = "ord_cmp_method"]
|
||
fn cmp(&self, other: &Self) -> Ordering;
|
||
|
||
/// Compares and returns the maximum of two values.
|
||
///
|
||
/// Returns the second argument if the comparison determines them to be equal.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// assert_eq!(1.max(2), 2);
|
||
/// assert_eq!(2.max(2), 2);
|
||
/// ```
|
||
#[stable(feature = "ord_max_min", since = "1.21.0")]
|
||
#[inline]
|
||
#[must_use]
|
||
fn max(self, other: Self) -> Self
|
||
where
|
||
Self: Sized,
|
||
{
|
||
max_by(self, other, Ord::cmp)
|
||
}
|
||
|
||
/// Compares and returns the minimum of two values.
|
||
///
|
||
/// Returns the first argument if the comparison determines them to be equal.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// assert_eq!(1.min(2), 1);
|
||
/// assert_eq!(2.min(2), 2);
|
||
/// ```
|
||
#[stable(feature = "ord_max_min", since = "1.21.0")]
|
||
#[inline]
|
||
#[must_use]
|
||
fn min(self, other: Self) -> Self
|
||
where
|
||
Self: Sized,
|
||
{
|
||
min_by(self, other, Ord::cmp)
|
||
}
|
||
|
||
/// Restrict a value to a certain interval.
|
||
///
|
||
/// Returns `max` if `self` is greater than `max`, and `min` if `self` is
|
||
/// less than `min`. Otherwise this returns `self`.
|
||
///
|
||
/// # Panics
|
||
///
|
||
/// Panics if `min > max`.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// assert_eq!((-3).clamp(-2, 1), -2);
|
||
/// assert_eq!(0.clamp(-2, 1), 0);
|
||
/// assert_eq!(2.clamp(-2, 1), 1);
|
||
/// ```
|
||
#[must_use]
|
||
#[stable(feature = "clamp", since = "1.50.0")]
|
||
fn clamp(self, min: Self, max: Self) -> Self
|
||
where
|
||
Self: Sized,
|
||
Self: PartialOrd,
|
||
{
|
||
assert!(min <= max);
|
||
if self < min {
|
||
min
|
||
} else if self > max {
|
||
max
|
||
} else {
|
||
self
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Derive macro generating an impl of the trait [`Ord`].
|
||
/// The behavior of this macro is described in detail [here](Ord#derivable).
|
||
#[rustc_builtin_macro]
|
||
#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
|
||
#[allow_internal_unstable(core_intrinsics)]
|
||
pub macro Ord($item:item) {
|
||
/* compiler built-in */
|
||
}
|
||
|
||
/// Trait for types that form a [partial order](https://en.wikipedia.org/wiki/Partial_order).
|
||
///
|
||
/// The `lt`, `le`, `gt`, and `ge` methods of this trait can be called using
|
||
/// the `<`, `<=`, `>`, and `>=` operators, respectively.
|
||
///
|
||
/// The methods of this trait must be consistent with each other and with those of [`PartialEq`].
|
||
/// The following conditions must hold:
|
||
///
|
||
/// 1. `a == b` if and only if `partial_cmp(a, b) == Some(Equal)`.
|
||
/// 2. `a < b` if and only if `partial_cmp(a, b) == Some(Less)`
|
||
/// 3. `a > b` if and only if `partial_cmp(a, b) == Some(Greater)`
|
||
/// 4. `a <= b` if and only if `a < b || a == b`
|
||
/// 5. `a >= b` if and only if `a > b || a == b`
|
||
/// 6. `a != b` if and only if `!(a == b)`.
|
||
///
|
||
/// Conditions 2–5 above are ensured by the default implementation.
|
||
/// Condition 6 is already ensured by [`PartialEq`].
|
||
///
|
||
/// If [`Ord`] is also implemented for `Self` and `Rhs`, it must also be consistent with
|
||
/// `partial_cmp` (see the documentation of that trait for the exact requirements). It's
|
||
/// easy to accidentally make them disagree by deriving some of the traits and manually
|
||
/// implementing others.
|
||
///
|
||
/// The comparison relations must satisfy the following conditions
|
||
/// (for all `a`, `b`, `c` of type `A`, `B`, `C`):
|
||
///
|
||
/// - **Transitivity**: if `A: PartialOrd<B>` and `B: PartialOrd<C>` and `A:
|
||
/// PartialOrd<C>`, then `a < b` and `b < c` implies `a < c`. The same must hold for both `==` and `>`.
|
||
/// This must also work for longer chains, such as when `A: PartialOrd<B>`, `B: PartialOrd<C>`,
|
||
/// `C: PartialOrd<D>`, and `A: PartialOrd<D>` all exist.
|
||
/// - **Duality**: if `A: PartialOrd<B>` and `B: PartialOrd<A>`, then `a < b` if and only if `b > a`.
|
||
///
|
||
/// Note that the `B: PartialOrd<A>` (dual) and `A: PartialOrd<C>`
|
||
/// (transitive) impls are not forced to exist, but these requirements apply
|
||
/// whenever they do exist.
|
||
///
|
||
/// Violating these requirements is a logic error. The behavior resulting from a logic error is not
|
||
/// specified, but users of the trait must ensure that such logic errors do *not* result in
|
||
/// undefined behavior. This means that `unsafe` code **must not** rely on the correctness of these
|
||
/// methods.
|
||
///
|
||
/// ## Cross-crate considerations
|
||
///
|
||
/// Upholding the requirements stated above can become tricky when one crate implements `PartialOrd`
|
||
/// for a type of another crate (i.e., to allow comparing one of its own types with a type from the
|
||
/// standard library). The recommendation is to never implement this trait for a foreign type. In
|
||
/// other words, such a crate should do `impl PartialOrd<ForeignType> for LocalType`, but it should
|
||
/// *not* do `impl PartialOrd<LocalType> for ForeignType`.
|
||
///
|
||
/// This avoids the problem of transitive chains that criss-cross crate boundaries: for all local
|
||
/// types `T`, you may assume that no other crate will add `impl`s that allow comparing `T < U`. In
|
||
/// other words, if other crates add `impl`s that allow building longer transitive chains `U1 < ...
|
||
/// < T < V1 < ...`, then all the types that appear to the right of `T` must be types that the crate
|
||
/// defining `T` already knows about. This rules out transitive chains where downstream crates can
|
||
/// add new `impl`s that "stitch together" comparisons of foreign types in ways that violate
|
||
/// transitivity.
|
||
///
|
||
/// Not having such foreign `impl`s also avoids forward compatibility issues where one crate adding
|
||
/// more `PartialOrd` implementations can cause build failures in downstream crates.
|
||
///
|
||
/// ## Corollaries
|
||
///
|
||
/// The following corollaries follow from the above requirements:
|
||
///
|
||
/// - irreflexivity of `<` and `>`: `!(a < a)`, `!(a > a)`
|
||
/// - transitivity of `>`: if `a > b` and `b > c` then `a > c`
|
||
/// - duality of `partial_cmp`: `partial_cmp(a, b) == partial_cmp(b, a).map(Ordering::reverse)`
|
||
///
|
||
/// ## Strict and non-strict partial orders
|
||
///
|
||
/// The `<` and `>` operators behave according to a *strict* partial order.
|
||
/// However, `<=` and `>=` do **not** behave according to a *non-strict*
|
||
/// partial order.
|
||
/// That is because mathematically, a non-strict partial order would require
|
||
/// reflexivity, i.e. `a <= a` would need to be true for every `a`. This isn't
|
||
/// always the case for types that implement `PartialOrd`, for example:
|
||
///
|
||
/// ```
|
||
/// let a = f64::sqrt(-1.0);
|
||
/// assert_eq!(a <= a, false);
|
||
/// ```
|
||
///
|
||
/// ## Derivable
|
||
///
|
||
/// This trait can be used with `#[derive]`.
|
||
///
|
||
/// When `derive`d on structs, it will produce a
|
||
/// [lexicographic](https://en.wikipedia.org/wiki/Lexicographic_order) ordering
|
||
/// based on the top-to-bottom declaration order of the struct's members.
|
||
///
|
||
/// When `derive`d on enums, variants are primarily ordered by their discriminants.
|
||
/// Secondarily, they are ordered by their fields.
|
||
/// By default, the discriminant is smallest for variants at the top, and
|
||
/// largest for variants at the bottom. Here's an example:
|
||
///
|
||
/// ```
|
||
/// #[derive(PartialEq, PartialOrd)]
|
||
/// enum E {
|
||
/// Top,
|
||
/// Bottom,
|
||
/// }
|
||
///
|
||
/// assert!(E::Top < E::Bottom);
|
||
/// ```
|
||
///
|
||
/// However, manually setting the discriminants can override this default
|
||
/// behavior:
|
||
///
|
||
/// ```
|
||
/// #[derive(PartialEq, PartialOrd)]
|
||
/// enum E {
|
||
/// Top = 2,
|
||
/// Bottom = 1,
|
||
/// }
|
||
///
|
||
/// assert!(E::Bottom < E::Top);
|
||
/// ```
|
||
///
|
||
/// ## How can I implement `PartialOrd`?
|
||
///
|
||
/// `PartialOrd` only requires implementation of the [`partial_cmp`] method, with the others
|
||
/// generated from default implementations.
|
||
///
|
||
/// However it remains possible to implement the others separately for types which do not have a
|
||
/// total order. For example, for floating point numbers, `NaN < 0 == false` and `NaN >= 0 ==
|
||
/// false` (cf. IEEE 754-2008 section 5.11).
|
||
///
|
||
/// `PartialOrd` requires your type to be [`PartialEq`].
|
||
///
|
||
/// If your type is [`Ord`], you can implement [`partial_cmp`] by using [`cmp`]:
|
||
///
|
||
/// ```
|
||
/// use std::cmp::Ordering;
|
||
///
|
||
/// #[derive(Eq)]
|
||
/// struct Person {
|
||
/// id: u32,
|
||
/// name: String,
|
||
/// height: u32,
|
||
/// }
|
||
///
|
||
/// impl PartialOrd for Person {
|
||
/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
|
||
/// Some(self.cmp(other))
|
||
/// }
|
||
/// }
|
||
///
|
||
/// impl Ord for Person {
|
||
/// fn cmp(&self, other: &Self) -> Ordering {
|
||
/// self.height.cmp(&other.height)
|
||
/// }
|
||
/// }
|
||
///
|
||
/// impl PartialEq for Person {
|
||
/// fn eq(&self, other: &Self) -> bool {
|
||
/// self.height == other.height
|
||
/// }
|
||
/// }
|
||
/// ```
|
||
///
|
||
/// You may also find it useful to use [`partial_cmp`] on your type's fields. Here
|
||
/// is an example of `Person` types who have a floating-point `height` field that
|
||
/// is the only field to be used for sorting:
|
||
///
|
||
/// ```
|
||
/// use std::cmp::Ordering;
|
||
///
|
||
/// struct Person {
|
||
/// id: u32,
|
||
/// name: String,
|
||
/// height: f64,
|
||
/// }
|
||
///
|
||
/// impl PartialOrd for Person {
|
||
/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
|
||
/// self.height.partial_cmp(&other.height)
|
||
/// }
|
||
/// }
|
||
///
|
||
/// impl PartialEq for Person {
|
||
/// fn eq(&self, other: &Self) -> bool {
|
||
/// self.height == other.height
|
||
/// }
|
||
/// }
|
||
/// ```
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let x: u32 = 0;
|
||
/// let y: u32 = 1;
|
||
///
|
||
/// assert_eq!(x < y, true);
|
||
/// assert_eq!(x.lt(&y), true);
|
||
/// ```
|
||
///
|
||
/// [`partial_cmp`]: PartialOrd::partial_cmp
|
||
/// [`cmp`]: Ord::cmp
|
||
#[lang = "partial_ord"]
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[doc(alias = ">")]
|
||
#[doc(alias = "<")]
|
||
#[doc(alias = "<=")]
|
||
#[doc(alias = ">=")]
|
||
#[rustc_on_unimplemented(
|
||
message = "can't compare `{Self}` with `{Rhs}`",
|
||
label = "no implementation for `{Self} < {Rhs}` and `{Self} > {Rhs}`",
|
||
append_const_msg
|
||
)]
|
||
#[rustc_diagnostic_item = "PartialOrd"]
|
||
pub trait PartialOrd<Rhs: ?Sized = Self>: PartialEq<Rhs> {
|
||
/// This method returns an ordering between `self` and `other` values if one exists.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::cmp::Ordering;
|
||
///
|
||
/// let result = 1.0.partial_cmp(&2.0);
|
||
/// assert_eq!(result, Some(Ordering::Less));
|
||
///
|
||
/// let result = 1.0.partial_cmp(&1.0);
|
||
/// assert_eq!(result, Some(Ordering::Equal));
|
||
///
|
||
/// let result = 2.0.partial_cmp(&1.0);
|
||
/// assert_eq!(result, Some(Ordering::Greater));
|
||
/// ```
|
||
///
|
||
/// When comparison is impossible:
|
||
///
|
||
/// ```
|
||
/// let result = f64::NAN.partial_cmp(&1.0);
|
||
/// assert_eq!(result, None);
|
||
/// ```
|
||
#[must_use]
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
fn partial_cmp(&self, other: &Rhs) -> Option<Ordering>;
|
||
|
||
/// This method tests less than (for `self` and `other`) and is used by the `<` operator.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// assert_eq!(1.0 < 1.0, false);
|
||
/// assert_eq!(1.0 < 2.0, true);
|
||
/// assert_eq!(2.0 < 1.0, false);
|
||
/// ```
|
||
#[inline]
|
||
#[must_use]
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
fn lt(&self, other: &Rhs) -> bool {
|
||
matches!(self.partial_cmp(other), Some(Less))
|
||
}
|
||
|
||
/// This method tests less than or equal to (for `self` and `other`) and is used by the `<=`
|
||
/// operator.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// assert_eq!(1.0 <= 1.0, true);
|
||
/// assert_eq!(1.0 <= 2.0, true);
|
||
/// assert_eq!(2.0 <= 1.0, false);
|
||
/// ```
|
||
#[inline]
|
||
#[must_use]
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
fn le(&self, other: &Rhs) -> bool {
|
||
matches!(self.partial_cmp(other), Some(Less | Equal))
|
||
}
|
||
|
||
/// This method tests greater than (for `self` and `other`) and is used by the `>` operator.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// assert_eq!(1.0 > 1.0, false);
|
||
/// assert_eq!(1.0 > 2.0, false);
|
||
/// assert_eq!(2.0 > 1.0, true);
|
||
/// ```
|
||
#[inline]
|
||
#[must_use]
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
fn gt(&self, other: &Rhs) -> bool {
|
||
matches!(self.partial_cmp(other), Some(Greater))
|
||
}
|
||
|
||
/// This method tests greater than or equal to (for `self` and `other`) and is used by the `>=`
|
||
/// operator.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// assert_eq!(1.0 >= 1.0, true);
|
||
/// assert_eq!(1.0 >= 2.0, false);
|
||
/// assert_eq!(2.0 >= 1.0, true);
|
||
/// ```
|
||
#[inline]
|
||
#[must_use]
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
fn ge(&self, other: &Rhs) -> bool {
|
||
matches!(self.partial_cmp(other), Some(Greater | Equal))
|
||
}
|
||
}
|
||
|
||
/// Derive macro generating an impl of the trait [`PartialOrd`].
|
||
/// The behavior of this macro is described in detail [here](PartialOrd#derivable).
|
||
#[rustc_builtin_macro]
|
||
#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
|
||
#[allow_internal_unstable(core_intrinsics)]
|
||
pub macro PartialOrd($item:item) {
|
||
/* compiler built-in */
|
||
}
|
||
|
||
/// Compares and returns the minimum of two values.
|
||
///
|
||
/// Returns the first argument if the comparison determines them to be equal.
|
||
///
|
||
/// Internally uses an alias to [`Ord::min`].
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::cmp;
|
||
///
|
||
/// assert_eq!(cmp::min(1, 2), 1);
|
||
/// assert_eq!(cmp::min(2, 2), 2);
|
||
/// ```
|
||
#[inline]
|
||
#[must_use]
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[cfg_attr(not(test), rustc_diagnostic_item = "cmp_min")]
|
||
pub fn min<T: Ord>(v1: T, v2: T) -> T {
|
||
v1.min(v2)
|
||
}
|
||
|
||
/// Returns the minimum of two values with respect to the specified comparison function.
|
||
///
|
||
/// Returns the first argument if the comparison determines them to be equal.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::cmp;
|
||
///
|
||
/// let result = cmp::min_by(-2, 1, |x: &i32, y: &i32| x.abs().cmp(&y.abs()));
|
||
/// assert_eq!(result, 1);
|
||
///
|
||
/// let result = cmp::min_by(-2, 3, |x: &i32, y: &i32| x.abs().cmp(&y.abs()));
|
||
/// assert_eq!(result, -2);
|
||
/// ```
|
||
#[inline]
|
||
#[must_use]
|
||
#[stable(feature = "cmp_min_max_by", since = "1.53.0")]
|
||
pub fn min_by<T, F: FnOnce(&T, &T) -> Ordering>(v1: T, v2: T, compare: F) -> T {
|
||
match compare(&v1, &v2) {
|
||
Ordering::Less | Ordering::Equal => v1,
|
||
Ordering::Greater => v2,
|
||
}
|
||
}
|
||
|
||
/// Returns the element that gives the minimum value from the specified function.
|
||
///
|
||
/// Returns the first argument if the comparison determines them to be equal.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::cmp;
|
||
///
|
||
/// let result = cmp::min_by_key(-2, 1, |x: &i32| x.abs());
|
||
/// assert_eq!(result, 1);
|
||
///
|
||
/// let result = cmp::min_by_key(-2, 2, |x: &i32| x.abs());
|
||
/// assert_eq!(result, -2);
|
||
/// ```
|
||
#[inline]
|
||
#[must_use]
|
||
#[stable(feature = "cmp_min_max_by", since = "1.53.0")]
|
||
pub fn min_by_key<T, F: FnMut(&T) -> K, K: Ord>(v1: T, v2: T, mut f: F) -> T {
|
||
min_by(v1, v2, |v1, v2| f(v1).cmp(&f(v2)))
|
||
}
|
||
|
||
/// Compares and returns the maximum of two values.
|
||
///
|
||
/// Returns the second argument if the comparison determines them to be equal.
|
||
///
|
||
/// Internally uses an alias to [`Ord::max`].
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::cmp;
|
||
///
|
||
/// assert_eq!(cmp::max(1, 2), 2);
|
||
/// assert_eq!(cmp::max(2, 2), 2);
|
||
/// ```
|
||
#[inline]
|
||
#[must_use]
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[cfg_attr(not(test), rustc_diagnostic_item = "cmp_max")]
|
||
pub fn max<T: Ord>(v1: T, v2: T) -> T {
|
||
v1.max(v2)
|
||
}
|
||
|
||
/// Returns the maximum of two values with respect to the specified comparison function.
|
||
///
|
||
/// Returns the second argument if the comparison determines them to be equal.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::cmp;
|
||
///
|
||
/// let result = cmp::max_by(-2, 1, |x: &i32, y: &i32| x.abs().cmp(&y.abs()));
|
||
/// assert_eq!(result, -2);
|
||
///
|
||
/// let result = cmp::max_by(-2, 2, |x: &i32, y: &i32| x.abs().cmp(&y.abs())) ;
|
||
/// assert_eq!(result, 2);
|
||
/// ```
|
||
#[inline]
|
||
#[must_use]
|
||
#[stable(feature = "cmp_min_max_by", since = "1.53.0")]
|
||
pub fn max_by<T, F: FnOnce(&T, &T) -> Ordering>(v1: T, v2: T, compare: F) -> T {
|
||
match compare(&v1, &v2) {
|
||
Ordering::Less | Ordering::Equal => v2,
|
||
Ordering::Greater => v1,
|
||
}
|
||
}
|
||
|
||
/// Returns the element that gives the maximum value from the specified function.
|
||
///
|
||
/// Returns the second argument if the comparison determines them to be equal.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::cmp;
|
||
///
|
||
/// let result = cmp::max_by_key(-2, 1, |x: &i32| x.abs());
|
||
/// assert_eq!(result, -2);
|
||
///
|
||
/// let result = cmp::max_by_key(-2, 2, |x: &i32| x.abs());
|
||
/// assert_eq!(result, 2);
|
||
/// ```
|
||
#[inline]
|
||
#[must_use]
|
||
#[stable(feature = "cmp_min_max_by", since = "1.53.0")]
|
||
pub fn max_by_key<T, F: FnMut(&T) -> K, K: Ord>(v1: T, v2: T, mut f: F) -> T {
|
||
max_by(v1, v2, |v1, v2| f(v1).cmp(&f(v2)))
|
||
}
|
||
|
||
/// Compares and sorts two values, returning minimum and maximum.
|
||
///
|
||
/// Returns `[v1, v2]` if the comparison determines them to be equal.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(cmp_minmax)]
|
||
/// use std::cmp;
|
||
///
|
||
/// assert_eq!(cmp::minmax(1, 2), [1, 2]);
|
||
/// assert_eq!(cmp::minmax(2, 2), [2, 2]);
|
||
///
|
||
/// // You can destructure the result using array patterns
|
||
/// let [min, max] = cmp::minmax(42, 17);
|
||
/// assert_eq!(min, 17);
|
||
/// assert_eq!(max, 42);
|
||
/// ```
|
||
#[inline]
|
||
#[must_use]
|
||
#[unstable(feature = "cmp_minmax", issue = "115939")]
|
||
pub fn minmax<T>(v1: T, v2: T) -> [T; 2]
|
||
where
|
||
T: Ord,
|
||
{
|
||
if v1 <= v2 { [v1, v2] } else { [v2, v1] }
|
||
}
|
||
|
||
/// Returns minimum and maximum values with respect to the specified comparison function.
|
||
///
|
||
/// Returns `[v1, v2]` if the comparison determines them to be equal.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(cmp_minmax)]
|
||
/// use std::cmp;
|
||
///
|
||
/// assert_eq!(cmp::minmax_by(-2, 1, |x: &i32, y: &i32| x.abs().cmp(&y.abs())), [1, -2]);
|
||
/// assert_eq!(cmp::minmax_by(-2, 2, |x: &i32, y: &i32| x.abs().cmp(&y.abs())), [-2, 2]);
|
||
///
|
||
/// // You can destructure the result using array patterns
|
||
/// let [min, max] = cmp::minmax_by(-42, 17, |x: &i32, y: &i32| x.abs().cmp(&y.abs()));
|
||
/// assert_eq!(min, 17);
|
||
/// assert_eq!(max, -42);
|
||
/// ```
|
||
#[inline]
|
||
#[must_use]
|
||
#[unstable(feature = "cmp_minmax", issue = "115939")]
|
||
pub fn minmax_by<T, F>(v1: T, v2: T, compare: F) -> [T; 2]
|
||
where
|
||
F: FnOnce(&T, &T) -> Ordering,
|
||
{
|
||
if compare(&v1, &v2).is_le() { [v1, v2] } else { [v2, v1] }
|
||
}
|
||
|
||
/// Returns minimum and maximum values with respect to the specified key function.
|
||
///
|
||
/// Returns `[v1, v2]` if the comparison determines them to be equal.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(cmp_minmax)]
|
||
/// use std::cmp;
|
||
///
|
||
/// assert_eq!(cmp::minmax_by_key(-2, 1, |x: &i32| x.abs()), [1, -2]);
|
||
/// assert_eq!(cmp::minmax_by_key(-2, 2, |x: &i32| x.abs()), [-2, 2]);
|
||
///
|
||
/// // You can destructure the result using array patterns
|
||
/// let [min, max] = cmp::minmax_by_key(-42, 17, |x: &i32| x.abs());
|
||
/// assert_eq!(min, 17);
|
||
/// assert_eq!(max, -42);
|
||
/// ```
|
||
#[inline]
|
||
#[must_use]
|
||
#[unstable(feature = "cmp_minmax", issue = "115939")]
|
||
pub fn minmax_by_key<T, F, K>(v1: T, v2: T, mut f: F) -> [T; 2]
|
||
where
|
||
F: FnMut(&T) -> K,
|
||
K: Ord,
|
||
{
|
||
minmax_by(v1, v2, |v1, v2| f(v1).cmp(&f(v2)))
|
||
}
|
||
|
||
// Implementation of PartialEq, Eq, PartialOrd and Ord for primitive types
|
||
mod impls {
|
||
use crate::cmp::Ordering::{self, Equal, Greater, Less};
|
||
use crate::hint::unreachable_unchecked;
|
||
|
||
macro_rules! partial_eq_impl {
|
||
($($t:ty)*) => ($(
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[rustc_const_unstable(feature = "const_cmp", issue = "92391")]
|
||
impl const PartialEq for $t {
|
||
#[inline]
|
||
fn eq(&self, other: &$t) -> bool { (*self) == (*other) }
|
||
#[inline]
|
||
fn ne(&self, other: &$t) -> bool { (*self) != (*other) }
|
||
}
|
||
)*)
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl PartialEq for () {
|
||
#[inline]
|
||
fn eq(&self, _other: &()) -> bool {
|
||
true
|
||
}
|
||
#[inline]
|
||
fn ne(&self, _other: &()) -> bool {
|
||
false
|
||
}
|
||
}
|
||
|
||
partial_eq_impl! {
|
||
bool char usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64
|
||
}
|
||
|
||
macro_rules! eq_impl {
|
||
($($t:ty)*) => ($(
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl Eq for $t {}
|
||
)*)
|
||
}
|
||
|
||
eq_impl! { () bool char usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 }
|
||
|
||
macro_rules! partial_ord_impl {
|
||
($($t:ty)*) => ($(
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl PartialOrd for $t {
|
||
#[inline]
|
||
fn partial_cmp(&self, other: &$t) -> Option<Ordering> {
|
||
match (*self <= *other, *self >= *other) {
|
||
(false, false) => None,
|
||
(false, true) => Some(Greater),
|
||
(true, false) => Some(Less),
|
||
(true, true) => Some(Equal),
|
||
}
|
||
}
|
||
#[inline(always)]
|
||
fn lt(&self, other: &$t) -> bool { (*self) < (*other) }
|
||
#[inline(always)]
|
||
fn le(&self, other: &$t) -> bool { (*self) <= (*other) }
|
||
#[inline(always)]
|
||
fn ge(&self, other: &$t) -> bool { (*self) >= (*other) }
|
||
#[inline(always)]
|
||
fn gt(&self, other: &$t) -> bool { (*self) > (*other) }
|
||
}
|
||
)*)
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl PartialOrd for () {
|
||
#[inline]
|
||
fn partial_cmp(&self, _: &()) -> Option<Ordering> {
|
||
Some(Equal)
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl PartialOrd for bool {
|
||
#[inline]
|
||
fn partial_cmp(&self, other: &bool) -> Option<Ordering> {
|
||
Some(self.cmp(other))
|
||
}
|
||
}
|
||
|
||
partial_ord_impl! { f32 f64 }
|
||
|
||
macro_rules! ord_impl {
|
||
($($t:ty)*) => ($(
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl PartialOrd for $t {
|
||
#[inline]
|
||
fn partial_cmp(&self, other: &$t) -> Option<Ordering> {
|
||
Some(self.cmp(other))
|
||
}
|
||
#[inline(always)]
|
||
fn lt(&self, other: &$t) -> bool { (*self) < (*other) }
|
||
#[inline(always)]
|
||
fn le(&self, other: &$t) -> bool { (*self) <= (*other) }
|
||
#[inline(always)]
|
||
fn ge(&self, other: &$t) -> bool { (*self) >= (*other) }
|
||
#[inline(always)]
|
||
fn gt(&self, other: &$t) -> bool { (*self) > (*other) }
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl Ord for $t {
|
||
#[inline]
|
||
fn cmp(&self, other: &$t) -> Ordering {
|
||
#[cfg(bootstrap)]
|
||
{
|
||
// The order here is important to generate more optimal assembly.
|
||
// See <https://github.com/rust-lang/rust/issues/63758> for more info.
|
||
if *self < *other { Less }
|
||
else if *self == *other { Equal }
|
||
else { Greater }
|
||
}
|
||
#[cfg(not(bootstrap))]
|
||
{
|
||
crate::intrinsics::three_way_compare(*self, *other)
|
||
}
|
||
}
|
||
}
|
||
)*)
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl Ord for () {
|
||
#[inline]
|
||
fn cmp(&self, _other: &()) -> Ordering {
|
||
Equal
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl Ord for bool {
|
||
#[inline]
|
||
fn cmp(&self, other: &bool) -> Ordering {
|
||
// Casting to i8's and converting the difference to an Ordering generates
|
||
// more optimal assembly.
|
||
// See <https://github.com/rust-lang/rust/issues/66780> for more info.
|
||
match (*self as i8) - (*other as i8) {
|
||
-1 => Less,
|
||
0 => Equal,
|
||
1 => Greater,
|
||
// SAFETY: bool as i8 returns 0 or 1, so the difference can't be anything else
|
||
_ => unsafe { unreachable_unchecked() },
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn min(self, other: bool) -> bool {
|
||
self & other
|
||
}
|
||
|
||
#[inline]
|
||
fn max(self, other: bool) -> bool {
|
||
self | other
|
||
}
|
||
|
||
#[inline]
|
||
fn clamp(self, min: bool, max: bool) -> bool {
|
||
assert!(min <= max);
|
||
self.max(min).min(max)
|
||
}
|
||
}
|
||
|
||
ord_impl! { char usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 }
|
||
|
||
#[unstable(feature = "never_type", issue = "35121")]
|
||
impl PartialEq for ! {
|
||
#[inline]
|
||
fn eq(&self, _: &!) -> bool {
|
||
*self
|
||
}
|
||
}
|
||
|
||
#[unstable(feature = "never_type", issue = "35121")]
|
||
impl Eq for ! {}
|
||
|
||
#[unstable(feature = "never_type", issue = "35121")]
|
||
impl PartialOrd for ! {
|
||
#[inline]
|
||
fn partial_cmp(&self, _: &!) -> Option<Ordering> {
|
||
*self
|
||
}
|
||
}
|
||
|
||
#[unstable(feature = "never_type", issue = "35121")]
|
||
impl Ord for ! {
|
||
#[inline]
|
||
fn cmp(&self, _: &!) -> Ordering {
|
||
*self
|
||
}
|
||
}
|
||
|
||
// & pointers
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<A: ?Sized, B: ?Sized> PartialEq<&B> for &A
|
||
where
|
||
A: PartialEq<B>,
|
||
{
|
||
#[inline]
|
||
fn eq(&self, other: &&B) -> bool {
|
||
PartialEq::eq(*self, *other)
|
||
}
|
||
#[inline]
|
||
fn ne(&self, other: &&B) -> bool {
|
||
PartialEq::ne(*self, *other)
|
||
}
|
||
}
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<A: ?Sized, B: ?Sized> PartialOrd<&B> for &A
|
||
where
|
||
A: PartialOrd<B>,
|
||
{
|
||
#[inline]
|
||
fn partial_cmp(&self, other: &&B) -> Option<Ordering> {
|
||
PartialOrd::partial_cmp(*self, *other)
|
||
}
|
||
#[inline]
|
||
fn lt(&self, other: &&B) -> bool {
|
||
PartialOrd::lt(*self, *other)
|
||
}
|
||
#[inline]
|
||
fn le(&self, other: &&B) -> bool {
|
||
PartialOrd::le(*self, *other)
|
||
}
|
||
#[inline]
|
||
fn gt(&self, other: &&B) -> bool {
|
||
PartialOrd::gt(*self, *other)
|
||
}
|
||
#[inline]
|
||
fn ge(&self, other: &&B) -> bool {
|
||
PartialOrd::ge(*self, *other)
|
||
}
|
||
}
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<A: ?Sized> Ord for &A
|
||
where
|
||
A: Ord,
|
||
{
|
||
#[inline]
|
||
fn cmp(&self, other: &Self) -> Ordering {
|
||
Ord::cmp(*self, *other)
|
||
}
|
||
}
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<A: ?Sized> Eq for &A where A: Eq {}
|
||
|
||
// &mut pointers
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<A: ?Sized, B: ?Sized> PartialEq<&mut B> for &mut A
|
||
where
|
||
A: PartialEq<B>,
|
||
{
|
||
#[inline]
|
||
fn eq(&self, other: &&mut B) -> bool {
|
||
PartialEq::eq(*self, *other)
|
||
}
|
||
#[inline]
|
||
fn ne(&self, other: &&mut B) -> bool {
|
||
PartialEq::ne(*self, *other)
|
||
}
|
||
}
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<A: ?Sized, B: ?Sized> PartialOrd<&mut B> for &mut A
|
||
where
|
||
A: PartialOrd<B>,
|
||
{
|
||
#[inline]
|
||
fn partial_cmp(&self, other: &&mut B) -> Option<Ordering> {
|
||
PartialOrd::partial_cmp(*self, *other)
|
||
}
|
||
#[inline]
|
||
fn lt(&self, other: &&mut B) -> bool {
|
||
PartialOrd::lt(*self, *other)
|
||
}
|
||
#[inline]
|
||
fn le(&self, other: &&mut B) -> bool {
|
||
PartialOrd::le(*self, *other)
|
||
}
|
||
#[inline]
|
||
fn gt(&self, other: &&mut B) -> bool {
|
||
PartialOrd::gt(*self, *other)
|
||
}
|
||
#[inline]
|
||
fn ge(&self, other: &&mut B) -> bool {
|
||
PartialOrd::ge(*self, *other)
|
||
}
|
||
}
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<A: ?Sized> Ord for &mut A
|
||
where
|
||
A: Ord,
|
||
{
|
||
#[inline]
|
||
fn cmp(&self, other: &Self) -> Ordering {
|
||
Ord::cmp(*self, *other)
|
||
}
|
||
}
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<A: ?Sized> Eq for &mut A where A: Eq {}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<A: ?Sized, B: ?Sized> PartialEq<&mut B> for &A
|
||
where
|
||
A: PartialEq<B>,
|
||
{
|
||
#[inline]
|
||
fn eq(&self, other: &&mut B) -> bool {
|
||
PartialEq::eq(*self, *other)
|
||
}
|
||
#[inline]
|
||
fn ne(&self, other: &&mut B) -> bool {
|
||
PartialEq::ne(*self, *other)
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<A: ?Sized, B: ?Sized> PartialEq<&B> for &mut A
|
||
where
|
||
A: PartialEq<B>,
|
||
{
|
||
#[inline]
|
||
fn eq(&self, other: &&B) -> bool {
|
||
PartialEq::eq(*self, *other)
|
||
}
|
||
#[inline]
|
||
fn ne(&self, other: &&B) -> bool {
|
||
PartialEq::ne(*self, *other)
|
||
}
|
||
}
|
||
}
|