rust/compiler/rustc_data_structures/src/map_in_place.rs
Nicholas Nethercote b38106b6d8 Replace rustc_data_structures::thin_vec::ThinVec with thin_vec::ThinVec.
`rustc_data_structures::thin_vec::ThinVec` looks like this:
```
pub struct ThinVec<T>(Option<Box<Vec<T>>>);
```
It's just a zero word if the vector is empty, but requires two
allocations if it is non-empty. So it's only usable in cases where the
vector is empty most of the time.

This commit removes it in favour of `thin_vec::ThinVec`, which is also
word-sized, but stores the length and capacity in the same allocation as
the elements. It's good in a wider variety of situation, e.g. in enum
variants where the vector is usually/always non-empty.

The commit also:
- Sorts some `Cargo.toml` dependency lists, to make additions easier.
- Sorts some `use` item lists, to make additions easier.
- Changes `clean_trait_ref_with_bindings` to take a
  `ThinVec<TypeBinding>` rather than a `&[TypeBinding]`, because this
  avoid some unnecessary allocations.
2022-08-29 15:42:13 +10:00

80 lines
2.4 KiB
Rust

use smallvec::{Array, SmallVec};
use std::ptr;
use thin_vec::ThinVec;
pub trait MapInPlace<T>: Sized {
fn map_in_place<F>(&mut self, mut f: F)
where
F: FnMut(T) -> T,
{
self.flat_map_in_place(|e| Some(f(e)))
}
fn flat_map_in_place<F, I>(&mut self, f: F)
where
F: FnMut(T) -> I,
I: IntoIterator<Item = T>;
}
// The implementation of this method is syntactically identical for all the
// different vector types.
macro_rules! flat_map_in_place {
() => {
fn flat_map_in_place<F, I>(&mut self, mut f: F)
where
F: FnMut(T) -> I,
I: IntoIterator<Item = T>,
{
let mut read_i = 0;
let mut write_i = 0;
unsafe {
let mut old_len = self.len();
self.set_len(0); // make sure we just leak elements in case of panic
while read_i < old_len {
// move the read_i'th item out of the vector and map it
// to an iterator
let e = ptr::read(self.as_ptr().add(read_i));
let iter = f(e).into_iter();
read_i += 1;
for e in iter {
if write_i < read_i {
ptr::write(self.as_mut_ptr().add(write_i), e);
write_i += 1;
} else {
// If this is reached we ran out of space
// in the middle of the vector.
// However, the vector is in a valid state here,
// so we just do a somewhat inefficient insert.
self.set_len(old_len);
self.insert(write_i, e);
old_len = self.len();
self.set_len(0);
read_i += 1;
write_i += 1;
}
}
}
// write_i tracks the number of actually written new items.
self.set_len(write_i);
}
}
};
}
impl<T> MapInPlace<T> for Vec<T> {
flat_map_in_place!();
}
impl<T, A: Array<Item = T>> MapInPlace<T> for SmallVec<A> {
flat_map_in_place!();
}
impl<T> MapInPlace<T> for ThinVec<T> {
flat_map_in_place!();
}