336e6ab3b3
Only compute `specializes` query if (min)specialization is enabled in the crate of the specializing impl Fixes (after backport) https://github.com/rust-lang/rust/issues/125197 ### What https://github.com/rust-lang/rust/pull/122791 makes it so that inductive cycles are no longer hard errors. That means that when we are testing, for example, whether these impls overlap: ```rust impl PartialEq<Self> for AnyId { fn eq(&self, _: &Self) -> bool { todo!() } } impl<T: Identifier> PartialEq<T> for AnyId { fn eq(&self, _: &T) -> bool { todo!() } } ``` ...given... ```rust pub trait Identifier: Display + 'static {} impl<T> Identifier for T where T: PartialEq + Display + 'static {} ``` Then we try to see if the second impl holds given `T = AnyId`. That requires `AnyId: Identifier`, which requires that `AnyId: PartialEq`, which is satisfied by these two impl candidates... The `PartialEq<T>` impl is a cycle, and we used to winnow it when we used to treat inductive cycles as errors. However, now that we don't winnow it, this means that we *now* try calling `candidate_should_be_dropped_in_favor_of`, which tries to check whether one of the impls specializes the other: the `specializes` query. In that query, we currently bail early if the impl is local. However, in a foreign crate, we try to compute if the two impls specialize each other by doing trait solving. This may itself lead to the same situation where we call `specializes`, which will lead to a query cycle. ### How does this fix the problem We now record whether specialization is enabled in foreign crates, and extend this early-return behavior to foreign impls too. This means that we can only encounter these cycles if we truly have a specializing impl from a crate with specialization enabled. ----- r? `@oli-obk` or `@lcnr` |
||
---|---|---|
.github | ||
.reuse | ||
compiler | ||
library | ||
LICENSES | ||
src | ||
tests | ||
.editorconfig | ||
.git-blame-ignore-revs | ||
.gitattributes | ||
.gitignore | ||
.gitmodules | ||
.mailmap | ||
Cargo.lock | ||
Cargo.toml | ||
CODE_OF_CONDUCT.md | ||
config.example.toml | ||
configure | ||
CONTRIBUTING.md | ||
COPYRIGHT | ||
INSTALL.md | ||
LICENSE-APACHE | ||
LICENSE-MIT | ||
README.md | ||
RELEASES.md | ||
rust-bors.toml | ||
rustfmt.toml | ||
triagebot.toml | ||
x | ||
x.ps1 | ||
x.py |
This is the main source code repository for Rust. It contains the compiler, standard library, and documentation.
Why Rust?
-
Performance: Fast and memory-efficient, suitable for critical services, embedded devices, and easily integrate with other languages.
-
Reliability: Our rich type system and ownership model ensure memory and thread safety, reducing bugs at compile-time.
-
Productivity: Comprehensive documentation, a compiler committed to providing great diagnostics, and advanced tooling including package manager and build tool (Cargo), auto-formatter (rustfmt), linter (Clippy) and editor support (rust-analyzer).
Quick Start
Read "Installation" from The Book.
Installing from Source
If you really want to install from source (though this is not recommended), see INSTALL.md.
Getting Help
See https://www.rust-lang.org/community for a list of chat platforms and forums.
Contributing
See CONTRIBUTING.md.
License
Rust is primarily distributed under the terms of both the MIT license and the Apache License (Version 2.0), with portions covered by various BSD-like licenses.
See LICENSE-APACHE, LICENSE-MIT, and COPYRIGHT for details.
Trademark
The Rust Foundation owns and protects the Rust and Cargo trademarks and logos (the "Rust Trademarks").
If you want to use these names or brands, please read the media guide.
Third-party logos may be subject to third-party copyrights and trademarks. See Licenses for details.