mirror of
https://github.com/rust-lang/rust.git
synced 2025-04-29 19:47:38 +00:00
2579 lines
100 KiB
Rust
2579 lines
100 KiB
Rust
use std::assert_matches::assert_matches;
|
|
use std::cmp::Ordering;
|
|
|
|
use rustc_abi::{Align, BackendRepr, ExternAbi, Float, HasDataLayout, Primitive, Size};
|
|
use rustc_codegen_ssa::base::{compare_simd_types, wants_msvc_seh, wants_wasm_eh};
|
|
use rustc_codegen_ssa::common::{IntPredicate, TypeKind};
|
|
use rustc_codegen_ssa::errors::{ExpectedPointerMutability, InvalidMonomorphization};
|
|
use rustc_codegen_ssa::mir::operand::{OperandRef, OperandValue};
|
|
use rustc_codegen_ssa::mir::place::{PlaceRef, PlaceValue};
|
|
use rustc_codegen_ssa::traits::*;
|
|
use rustc_hir as hir;
|
|
use rustc_middle::mir::BinOp;
|
|
use rustc_middle::ty::layout::{FnAbiOf, HasTyCtxt, HasTypingEnv, LayoutOf};
|
|
use rustc_middle::ty::{self, GenericArgsRef, Ty};
|
|
use rustc_middle::{bug, span_bug};
|
|
use rustc_span::{Span, Symbol, sym};
|
|
use rustc_symbol_mangling::mangle_internal_symbol;
|
|
use rustc_target::callconv::{FnAbi, PassMode};
|
|
use rustc_target::spec::{HasTargetSpec, PanicStrategy};
|
|
use tracing::debug;
|
|
|
|
use crate::abi::{FnAbiLlvmExt, LlvmType};
|
|
use crate::builder::Builder;
|
|
use crate::context::CodegenCx;
|
|
use crate::llvm::{self, Metadata};
|
|
use crate::type_::Type;
|
|
use crate::type_of::LayoutLlvmExt;
|
|
use crate::va_arg::emit_va_arg;
|
|
use crate::value::Value;
|
|
|
|
fn get_simple_intrinsic<'ll>(
|
|
cx: &CodegenCx<'ll, '_>,
|
|
name: Symbol,
|
|
) -> Option<(&'ll Type, &'ll Value)> {
|
|
let llvm_name = match name {
|
|
sym::sqrtf16 => "llvm.sqrt.f16",
|
|
sym::sqrtf32 => "llvm.sqrt.f32",
|
|
sym::sqrtf64 => "llvm.sqrt.f64",
|
|
sym::sqrtf128 => "llvm.sqrt.f128",
|
|
|
|
sym::powif16 => "llvm.powi.f16.i32",
|
|
sym::powif32 => "llvm.powi.f32.i32",
|
|
sym::powif64 => "llvm.powi.f64.i32",
|
|
sym::powif128 => "llvm.powi.f128.i32",
|
|
|
|
sym::sinf16 => "llvm.sin.f16",
|
|
sym::sinf32 => "llvm.sin.f32",
|
|
sym::sinf64 => "llvm.sin.f64",
|
|
sym::sinf128 => "llvm.sin.f128",
|
|
|
|
sym::cosf16 => "llvm.cos.f16",
|
|
sym::cosf32 => "llvm.cos.f32",
|
|
sym::cosf64 => "llvm.cos.f64",
|
|
sym::cosf128 => "llvm.cos.f128",
|
|
|
|
sym::powf16 => "llvm.pow.f16",
|
|
sym::powf32 => "llvm.pow.f32",
|
|
sym::powf64 => "llvm.pow.f64",
|
|
sym::powf128 => "llvm.pow.f128",
|
|
|
|
sym::expf16 => "llvm.exp.f16",
|
|
sym::expf32 => "llvm.exp.f32",
|
|
sym::expf64 => "llvm.exp.f64",
|
|
sym::expf128 => "llvm.exp.f128",
|
|
|
|
sym::exp2f16 => "llvm.exp2.f16",
|
|
sym::exp2f32 => "llvm.exp2.f32",
|
|
sym::exp2f64 => "llvm.exp2.f64",
|
|
sym::exp2f128 => "llvm.exp2.f128",
|
|
|
|
sym::logf16 => "llvm.log.f16",
|
|
sym::logf32 => "llvm.log.f32",
|
|
sym::logf64 => "llvm.log.f64",
|
|
sym::logf128 => "llvm.log.f128",
|
|
|
|
sym::log10f16 => "llvm.log10.f16",
|
|
sym::log10f32 => "llvm.log10.f32",
|
|
sym::log10f64 => "llvm.log10.f64",
|
|
sym::log10f128 => "llvm.log10.f128",
|
|
|
|
sym::log2f16 => "llvm.log2.f16",
|
|
sym::log2f32 => "llvm.log2.f32",
|
|
sym::log2f64 => "llvm.log2.f64",
|
|
sym::log2f128 => "llvm.log2.f128",
|
|
|
|
sym::fmaf16 => "llvm.fma.f16",
|
|
sym::fmaf32 => "llvm.fma.f32",
|
|
sym::fmaf64 => "llvm.fma.f64",
|
|
sym::fmaf128 => "llvm.fma.f128",
|
|
|
|
sym::fmuladdf16 => "llvm.fmuladd.f16",
|
|
sym::fmuladdf32 => "llvm.fmuladd.f32",
|
|
sym::fmuladdf64 => "llvm.fmuladd.f64",
|
|
sym::fmuladdf128 => "llvm.fmuladd.f128",
|
|
|
|
sym::fabsf16 => "llvm.fabs.f16",
|
|
sym::fabsf32 => "llvm.fabs.f32",
|
|
sym::fabsf64 => "llvm.fabs.f64",
|
|
sym::fabsf128 => "llvm.fabs.f128",
|
|
|
|
sym::minnumf16 => "llvm.minnum.f16",
|
|
sym::minnumf32 => "llvm.minnum.f32",
|
|
sym::minnumf64 => "llvm.minnum.f64",
|
|
sym::minnumf128 => "llvm.minnum.f128",
|
|
|
|
sym::maxnumf16 => "llvm.maxnum.f16",
|
|
sym::maxnumf32 => "llvm.maxnum.f32",
|
|
sym::maxnumf64 => "llvm.maxnum.f64",
|
|
sym::maxnumf128 => "llvm.maxnum.f128",
|
|
|
|
sym::copysignf16 => "llvm.copysign.f16",
|
|
sym::copysignf32 => "llvm.copysign.f32",
|
|
sym::copysignf64 => "llvm.copysign.f64",
|
|
sym::copysignf128 => "llvm.copysign.f128",
|
|
|
|
sym::floorf16 => "llvm.floor.f16",
|
|
sym::floorf32 => "llvm.floor.f32",
|
|
sym::floorf64 => "llvm.floor.f64",
|
|
sym::floorf128 => "llvm.floor.f128",
|
|
|
|
sym::ceilf16 => "llvm.ceil.f16",
|
|
sym::ceilf32 => "llvm.ceil.f32",
|
|
sym::ceilf64 => "llvm.ceil.f64",
|
|
sym::ceilf128 => "llvm.ceil.f128",
|
|
|
|
sym::truncf16 => "llvm.trunc.f16",
|
|
sym::truncf32 => "llvm.trunc.f32",
|
|
sym::truncf64 => "llvm.trunc.f64",
|
|
sym::truncf128 => "llvm.trunc.f128",
|
|
|
|
// We could use any of `rint`, `nearbyint`, or `roundeven`
|
|
// for this -- they are all identical in semantics when
|
|
// assuming the default FP environment.
|
|
// `rint` is what we used for $forever.
|
|
sym::round_ties_even_f16 => "llvm.rint.f16",
|
|
sym::round_ties_even_f32 => "llvm.rint.f32",
|
|
sym::round_ties_even_f64 => "llvm.rint.f64",
|
|
sym::round_ties_even_f128 => "llvm.rint.f128",
|
|
|
|
sym::roundf16 => "llvm.round.f16",
|
|
sym::roundf32 => "llvm.round.f32",
|
|
sym::roundf64 => "llvm.round.f64",
|
|
sym::roundf128 => "llvm.round.f128",
|
|
|
|
sym::ptr_mask => "llvm.ptrmask",
|
|
|
|
_ => return None,
|
|
};
|
|
Some(cx.get_intrinsic(llvm_name))
|
|
}
|
|
|
|
impl<'ll, 'tcx> IntrinsicCallBuilderMethods<'tcx> for Builder<'_, 'll, 'tcx> {
|
|
fn codegen_intrinsic_call(
|
|
&mut self,
|
|
instance: ty::Instance<'tcx>,
|
|
fn_abi: &FnAbi<'tcx, Ty<'tcx>>,
|
|
args: &[OperandRef<'tcx, &'ll Value>],
|
|
llresult: &'ll Value,
|
|
span: Span,
|
|
) -> Result<(), ty::Instance<'tcx>> {
|
|
let tcx = self.tcx;
|
|
let callee_ty = instance.ty(tcx, self.typing_env());
|
|
|
|
let ty::FnDef(def_id, fn_args) = *callee_ty.kind() else {
|
|
bug!("expected fn item type, found {}", callee_ty);
|
|
};
|
|
|
|
let sig = callee_ty.fn_sig(tcx);
|
|
let sig = tcx.normalize_erasing_late_bound_regions(self.typing_env(), sig);
|
|
let arg_tys = sig.inputs();
|
|
let ret_ty = sig.output();
|
|
let name = tcx.item_name(def_id);
|
|
|
|
let llret_ty = self.layout_of(ret_ty).llvm_type(self);
|
|
let result = PlaceRef::new_sized(llresult, fn_abi.ret.layout);
|
|
|
|
let simple = get_simple_intrinsic(self, name);
|
|
let llval = match name {
|
|
_ if simple.is_some() => {
|
|
let (simple_ty, simple_fn) = simple.unwrap();
|
|
self.call(
|
|
simple_ty,
|
|
None,
|
|
None,
|
|
simple_fn,
|
|
&args.iter().map(|arg| arg.immediate()).collect::<Vec<_>>(),
|
|
None,
|
|
Some(instance),
|
|
)
|
|
}
|
|
sym::is_val_statically_known => {
|
|
let intrinsic_type = args[0].layout.immediate_llvm_type(self.cx);
|
|
let kind = self.type_kind(intrinsic_type);
|
|
let intrinsic_name = match kind {
|
|
TypeKind::Pointer | TypeKind::Integer => {
|
|
Some(format!("llvm.is.constant.{intrinsic_type:?}"))
|
|
}
|
|
// LLVM float types' intrinsic names differ from their type names.
|
|
TypeKind::Half => Some(format!("llvm.is.constant.f16")),
|
|
TypeKind::Float => Some(format!("llvm.is.constant.f32")),
|
|
TypeKind::Double => Some(format!("llvm.is.constant.f64")),
|
|
TypeKind::FP128 => Some(format!("llvm.is.constant.f128")),
|
|
_ => None,
|
|
};
|
|
if let Some(intrinsic_name) = intrinsic_name {
|
|
self.call_intrinsic(&intrinsic_name, &[args[0].immediate()])
|
|
} else {
|
|
self.const_bool(false)
|
|
}
|
|
}
|
|
sym::select_unpredictable => {
|
|
let cond = args[0].immediate();
|
|
assert_eq!(args[1].layout, args[2].layout);
|
|
let select = |bx: &mut Self, true_val, false_val| {
|
|
let result = bx.select(cond, true_val, false_val);
|
|
bx.set_unpredictable(&result);
|
|
result
|
|
};
|
|
match (args[1].val, args[2].val) {
|
|
(OperandValue::Ref(true_val), OperandValue::Ref(false_val)) => {
|
|
assert!(true_val.llextra.is_none());
|
|
assert!(false_val.llextra.is_none());
|
|
assert_eq!(true_val.align, false_val.align);
|
|
let ptr = select(self, true_val.llval, false_val.llval);
|
|
let selected =
|
|
OperandValue::Ref(PlaceValue::new_sized(ptr, true_val.align));
|
|
selected.store(self, result);
|
|
return Ok(());
|
|
}
|
|
(OperandValue::Immediate(_), OperandValue::Immediate(_))
|
|
| (OperandValue::Pair(_, _), OperandValue::Pair(_, _)) => {
|
|
let true_val = args[1].immediate_or_packed_pair(self);
|
|
let false_val = args[2].immediate_or_packed_pair(self);
|
|
select(self, true_val, false_val)
|
|
}
|
|
(OperandValue::ZeroSized, OperandValue::ZeroSized) => return Ok(()),
|
|
_ => span_bug!(span, "Incompatible OperandValue for select_unpredictable"),
|
|
}
|
|
}
|
|
sym::catch_unwind => {
|
|
catch_unwind_intrinsic(
|
|
self,
|
|
args[0].immediate(),
|
|
args[1].immediate(),
|
|
args[2].immediate(),
|
|
llresult,
|
|
);
|
|
return Ok(());
|
|
}
|
|
sym::breakpoint => self.call_intrinsic("llvm.debugtrap", &[]),
|
|
sym::va_copy => {
|
|
self.call_intrinsic("llvm.va_copy", &[args[0].immediate(), args[1].immediate()])
|
|
}
|
|
sym::va_arg => {
|
|
match fn_abi.ret.layout.backend_repr {
|
|
BackendRepr::Scalar(scalar) => {
|
|
match scalar.primitive() {
|
|
Primitive::Int(..) => {
|
|
if self.cx().size_of(ret_ty).bytes() < 4 {
|
|
// `va_arg` should not be called on an integer type
|
|
// less than 4 bytes in length. If it is, promote
|
|
// the integer to an `i32` and truncate the result
|
|
// back to the smaller type.
|
|
let promoted_result = emit_va_arg(self, args[0], tcx.types.i32);
|
|
self.trunc(promoted_result, llret_ty)
|
|
} else {
|
|
emit_va_arg(self, args[0], ret_ty)
|
|
}
|
|
}
|
|
Primitive::Float(Float::F16) => {
|
|
bug!("the va_arg intrinsic does not work with `f16`")
|
|
}
|
|
Primitive::Float(Float::F64) | Primitive::Pointer(_) => {
|
|
emit_va_arg(self, args[0], ret_ty)
|
|
}
|
|
// `va_arg` should never be used with the return type f32.
|
|
Primitive::Float(Float::F32) => {
|
|
bug!("the va_arg intrinsic does not work with `f32`")
|
|
}
|
|
Primitive::Float(Float::F128) => {
|
|
bug!("the va_arg intrinsic does not work with `f128`")
|
|
}
|
|
}
|
|
}
|
|
_ => bug!("the va_arg intrinsic does not work with non-scalar types"),
|
|
}
|
|
}
|
|
|
|
sym::volatile_load | sym::unaligned_volatile_load => {
|
|
let tp_ty = fn_args.type_at(0);
|
|
let ptr = args[0].immediate();
|
|
let load = if let PassMode::Cast { cast: ty, pad_i32: _ } = &fn_abi.ret.mode {
|
|
let llty = ty.llvm_type(self);
|
|
self.volatile_load(llty, ptr)
|
|
} else {
|
|
self.volatile_load(self.layout_of(tp_ty).llvm_type(self), ptr)
|
|
};
|
|
let align = if name == sym::unaligned_volatile_load {
|
|
1
|
|
} else {
|
|
self.align_of(tp_ty).bytes() as u32
|
|
};
|
|
unsafe {
|
|
llvm::LLVMSetAlignment(load, align);
|
|
}
|
|
if !result.layout.is_zst() {
|
|
self.store_to_place(load, result.val);
|
|
}
|
|
return Ok(());
|
|
}
|
|
sym::volatile_store => {
|
|
let dst = args[0].deref(self.cx());
|
|
args[1].val.volatile_store(self, dst);
|
|
return Ok(());
|
|
}
|
|
sym::unaligned_volatile_store => {
|
|
let dst = args[0].deref(self.cx());
|
|
args[1].val.unaligned_volatile_store(self, dst);
|
|
return Ok(());
|
|
}
|
|
sym::prefetch_read_data
|
|
| sym::prefetch_write_data
|
|
| sym::prefetch_read_instruction
|
|
| sym::prefetch_write_instruction => {
|
|
let (rw, cache_type) = match name {
|
|
sym::prefetch_read_data => (0, 1),
|
|
sym::prefetch_write_data => (1, 1),
|
|
sym::prefetch_read_instruction => (0, 0),
|
|
sym::prefetch_write_instruction => (1, 0),
|
|
_ => bug!(),
|
|
};
|
|
self.call_intrinsic(
|
|
"llvm.prefetch",
|
|
&[
|
|
args[0].immediate(),
|
|
self.const_i32(rw),
|
|
args[1].immediate(),
|
|
self.const_i32(cache_type),
|
|
],
|
|
)
|
|
}
|
|
sym::carrying_mul_add => {
|
|
let (size, signed) = fn_args.type_at(0).int_size_and_signed(self.tcx);
|
|
|
|
let wide_llty = self.type_ix(size.bits() * 2);
|
|
let args = args.as_array().unwrap();
|
|
let [a, b, c, d] = args.map(|a| self.intcast(a.immediate(), wide_llty, signed));
|
|
|
|
let wide = if signed {
|
|
let prod = self.unchecked_smul(a, b);
|
|
let acc = self.unchecked_sadd(prod, c);
|
|
self.unchecked_sadd(acc, d)
|
|
} else {
|
|
let prod = self.unchecked_umul(a, b);
|
|
let acc = self.unchecked_uadd(prod, c);
|
|
self.unchecked_uadd(acc, d)
|
|
};
|
|
|
|
let narrow_llty = self.type_ix(size.bits());
|
|
let low = self.trunc(wide, narrow_llty);
|
|
let bits_const = self.const_uint(wide_llty, size.bits());
|
|
// No need for ashr when signed; LLVM changes it to lshr anyway.
|
|
let high = self.lshr(wide, bits_const);
|
|
// FIXME: could be `trunc nuw`, even for signed.
|
|
let high = self.trunc(high, narrow_llty);
|
|
|
|
let pair_llty = self.type_struct(&[narrow_llty, narrow_llty], false);
|
|
let pair = self.const_poison(pair_llty);
|
|
let pair = self.insert_value(pair, low, 0);
|
|
let pair = self.insert_value(pair, high, 1);
|
|
pair
|
|
}
|
|
sym::ctlz
|
|
| sym::ctlz_nonzero
|
|
| sym::cttz
|
|
| sym::cttz_nonzero
|
|
| sym::ctpop
|
|
| sym::bswap
|
|
| sym::bitreverse
|
|
| sym::rotate_left
|
|
| sym::rotate_right
|
|
| sym::saturating_add
|
|
| sym::saturating_sub => {
|
|
let ty = arg_tys[0];
|
|
if !ty.is_integral() {
|
|
tcx.dcx().emit_err(InvalidMonomorphization::BasicIntegerType {
|
|
span,
|
|
name,
|
|
ty,
|
|
});
|
|
return Ok(());
|
|
}
|
|
let (size, signed) = ty.int_size_and_signed(self.tcx);
|
|
let width = size.bits();
|
|
match name {
|
|
sym::ctlz | sym::cttz => {
|
|
let y = self.const_bool(false);
|
|
let ret = self.call_intrinsic(
|
|
&format!("llvm.{name}.i{width}"),
|
|
&[args[0].immediate(), y],
|
|
);
|
|
|
|
self.intcast(ret, llret_ty, false)
|
|
}
|
|
sym::ctlz_nonzero => {
|
|
let y = self.const_bool(true);
|
|
let llvm_name = &format!("llvm.ctlz.i{width}");
|
|
let ret = self.call_intrinsic(llvm_name, &[args[0].immediate(), y]);
|
|
self.intcast(ret, llret_ty, false)
|
|
}
|
|
sym::cttz_nonzero => {
|
|
let y = self.const_bool(true);
|
|
let llvm_name = &format!("llvm.cttz.i{width}");
|
|
let ret = self.call_intrinsic(llvm_name, &[args[0].immediate(), y]);
|
|
self.intcast(ret, llret_ty, false)
|
|
}
|
|
sym::ctpop => {
|
|
let ret = self.call_intrinsic(
|
|
&format!("llvm.ctpop.i{width}"),
|
|
&[args[0].immediate()],
|
|
);
|
|
self.intcast(ret, llret_ty, false)
|
|
}
|
|
sym::bswap => {
|
|
if width == 8 {
|
|
args[0].immediate() // byte swap a u8/i8 is just a no-op
|
|
} else {
|
|
self.call_intrinsic(
|
|
&format!("llvm.bswap.i{width}"),
|
|
&[args[0].immediate()],
|
|
)
|
|
}
|
|
}
|
|
sym::bitreverse => self.call_intrinsic(
|
|
&format!("llvm.bitreverse.i{width}"),
|
|
&[args[0].immediate()],
|
|
),
|
|
sym::rotate_left | sym::rotate_right => {
|
|
let is_left = name == sym::rotate_left;
|
|
let val = args[0].immediate();
|
|
let raw_shift = args[1].immediate();
|
|
// rotate = funnel shift with first two args the same
|
|
let llvm_name =
|
|
&format!("llvm.fsh{}.i{}", if is_left { 'l' } else { 'r' }, width);
|
|
|
|
// llvm expects shift to be the same type as the values, but rust
|
|
// always uses `u32`.
|
|
let raw_shift = self.intcast(raw_shift, self.val_ty(val), false);
|
|
|
|
self.call_intrinsic(llvm_name, &[val, val, raw_shift])
|
|
}
|
|
sym::saturating_add | sym::saturating_sub => {
|
|
let is_add = name == sym::saturating_add;
|
|
let lhs = args[0].immediate();
|
|
let rhs = args[1].immediate();
|
|
let llvm_name = &format!(
|
|
"llvm.{}{}.sat.i{}",
|
|
if signed { 's' } else { 'u' },
|
|
if is_add { "add" } else { "sub" },
|
|
width
|
|
);
|
|
self.call_intrinsic(llvm_name, &[lhs, rhs])
|
|
}
|
|
_ => bug!(),
|
|
}
|
|
}
|
|
|
|
sym::raw_eq => {
|
|
use BackendRepr::*;
|
|
let tp_ty = fn_args.type_at(0);
|
|
let layout = self.layout_of(tp_ty).layout;
|
|
let use_integer_compare = match layout.backend_repr() {
|
|
Scalar(_) | ScalarPair(_, _) => true,
|
|
SimdVector { .. } => false,
|
|
Memory { .. } => {
|
|
// For rusty ABIs, small aggregates are actually passed
|
|
// as `RegKind::Integer` (see `FnAbi::adjust_for_abi`),
|
|
// so we re-use that same threshold here.
|
|
layout.size() <= self.data_layout().pointer_size * 2
|
|
}
|
|
};
|
|
|
|
let a = args[0].immediate();
|
|
let b = args[1].immediate();
|
|
if layout.size().bytes() == 0 {
|
|
self.const_bool(true)
|
|
} else if use_integer_compare {
|
|
let integer_ty = self.type_ix(layout.size().bits());
|
|
let a_val = self.load(integer_ty, a, layout.align().abi);
|
|
let b_val = self.load(integer_ty, b, layout.align().abi);
|
|
self.icmp(IntPredicate::IntEQ, a_val, b_val)
|
|
} else {
|
|
let n = self.const_usize(layout.size().bytes());
|
|
let cmp = self.call_intrinsic("memcmp", &[a, b, n]);
|
|
match self.cx.sess().target.arch.as_ref() {
|
|
"avr" | "msp430" => self.icmp(IntPredicate::IntEQ, cmp, self.const_i16(0)),
|
|
_ => self.icmp(IntPredicate::IntEQ, cmp, self.const_i32(0)),
|
|
}
|
|
}
|
|
}
|
|
|
|
sym::compare_bytes => {
|
|
// Here we assume that the `memcmp` provided by the target is a NOP for size 0.
|
|
let cmp = self.call_intrinsic(
|
|
"memcmp",
|
|
&[args[0].immediate(), args[1].immediate(), args[2].immediate()],
|
|
);
|
|
// Some targets have `memcmp` returning `i16`, but the intrinsic is always `i32`.
|
|
self.sext(cmp, self.type_ix(32))
|
|
}
|
|
|
|
sym::black_box => {
|
|
args[0].val.store(self, result);
|
|
let result_val_span = [result.val.llval];
|
|
// We need to "use" the argument in some way LLVM can't introspect, and on
|
|
// targets that support it we can typically leverage inline assembly to do
|
|
// this. LLVM's interpretation of inline assembly is that it's, well, a black
|
|
// box. This isn't the greatest implementation since it probably deoptimizes
|
|
// more than we want, but it's so far good enough.
|
|
//
|
|
// For zero-sized types, the location pointed to by the result may be
|
|
// uninitialized. Do not "use" the result in this case; instead just clobber
|
|
// the memory.
|
|
let (constraint, inputs): (&str, &[_]) = if result.layout.is_zst() {
|
|
("~{memory}", &[])
|
|
} else {
|
|
("r,~{memory}", &result_val_span)
|
|
};
|
|
crate::asm::inline_asm_call(
|
|
self,
|
|
"",
|
|
constraint,
|
|
inputs,
|
|
self.type_void(),
|
|
&[],
|
|
true,
|
|
false,
|
|
llvm::AsmDialect::Att,
|
|
&[span],
|
|
false,
|
|
None,
|
|
None,
|
|
)
|
|
.unwrap_or_else(|| bug!("failed to generate inline asm call for `black_box`"));
|
|
|
|
// We have copied the value to `result` already.
|
|
return Ok(());
|
|
}
|
|
|
|
_ if name.as_str().starts_with("simd_") => {
|
|
// Unpack non-power-of-2 #[repr(packed, simd)] arguments.
|
|
// This gives them the expected layout of a regular #[repr(simd)] vector.
|
|
let mut loaded_args = Vec::new();
|
|
for (ty, arg) in arg_tys.iter().zip(args) {
|
|
loaded_args.push(
|
|
// #[repr(packed, simd)] vectors are passed like arrays (as references,
|
|
// with reduced alignment and no padding) rather than as immediates.
|
|
// We can use a vector load to fix the layout and turn the argument
|
|
// into an immediate.
|
|
if ty.is_simd()
|
|
&& let OperandValue::Ref(place) = arg.val
|
|
{
|
|
let (size, elem_ty) = ty.simd_size_and_type(self.tcx());
|
|
let elem_ll_ty = match elem_ty.kind() {
|
|
ty::Float(f) => self.type_float_from_ty(*f),
|
|
ty::Int(i) => self.type_int_from_ty(*i),
|
|
ty::Uint(u) => self.type_uint_from_ty(*u),
|
|
ty::RawPtr(_, _) => self.type_ptr(),
|
|
_ => unreachable!(),
|
|
};
|
|
let loaded =
|
|
self.load_from_place(self.type_vector(elem_ll_ty, size), place);
|
|
OperandRef::from_immediate_or_packed_pair(self, loaded, arg.layout)
|
|
} else {
|
|
*arg
|
|
},
|
|
);
|
|
}
|
|
|
|
let llret_ty = if ret_ty.is_simd()
|
|
&& let BackendRepr::Memory { .. } = self.layout_of(ret_ty).layout.backend_repr
|
|
{
|
|
let (size, elem_ty) = ret_ty.simd_size_and_type(self.tcx());
|
|
let elem_ll_ty = match elem_ty.kind() {
|
|
ty::Float(f) => self.type_float_from_ty(*f),
|
|
ty::Int(i) => self.type_int_from_ty(*i),
|
|
ty::Uint(u) => self.type_uint_from_ty(*u),
|
|
ty::RawPtr(_, _) => self.type_ptr(),
|
|
_ => unreachable!(),
|
|
};
|
|
self.type_vector(elem_ll_ty, size)
|
|
} else {
|
|
llret_ty
|
|
};
|
|
|
|
match generic_simd_intrinsic(
|
|
self,
|
|
name,
|
|
callee_ty,
|
|
fn_args,
|
|
&loaded_args,
|
|
ret_ty,
|
|
llret_ty,
|
|
span,
|
|
) {
|
|
Ok(llval) => llval,
|
|
// If there was an error, just skip this invocation... we'll abort compilation
|
|
// anyway, but we can keep codegen'ing to find more errors.
|
|
Err(()) => return Ok(()),
|
|
}
|
|
}
|
|
|
|
_ => {
|
|
debug!("unknown intrinsic '{}' -- falling back to default body", name);
|
|
// Call the fallback body instead of generating the intrinsic code
|
|
return Err(ty::Instance::new(instance.def_id(), instance.args));
|
|
}
|
|
};
|
|
|
|
if !fn_abi.ret.is_ignore() {
|
|
if let PassMode::Cast { .. } = &fn_abi.ret.mode {
|
|
self.store(llval, result.val.llval, result.val.align);
|
|
} else {
|
|
OperandRef::from_immediate_or_packed_pair(self, llval, result.layout)
|
|
.val
|
|
.store(self, result);
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn abort(&mut self) {
|
|
self.call_intrinsic("llvm.trap", &[]);
|
|
}
|
|
|
|
fn assume(&mut self, val: Self::Value) {
|
|
if self.cx.sess().opts.optimize != rustc_session::config::OptLevel::No {
|
|
self.call_intrinsic("llvm.assume", &[val]);
|
|
}
|
|
}
|
|
|
|
fn expect(&mut self, cond: Self::Value, expected: bool) -> Self::Value {
|
|
if self.cx.sess().opts.optimize != rustc_session::config::OptLevel::No {
|
|
self.call_intrinsic("llvm.expect.i1", &[cond, self.const_bool(expected)])
|
|
} else {
|
|
cond
|
|
}
|
|
}
|
|
|
|
fn type_test(&mut self, pointer: Self::Value, typeid: Self::Metadata) -> Self::Value {
|
|
// Test the called operand using llvm.type.test intrinsic. The LowerTypeTests link-time
|
|
// optimization pass replaces calls to this intrinsic with code to test type membership.
|
|
let typeid = self.get_metadata_value(typeid);
|
|
self.call_intrinsic("llvm.type.test", &[pointer, typeid])
|
|
}
|
|
|
|
fn type_checked_load(
|
|
&mut self,
|
|
llvtable: &'ll Value,
|
|
vtable_byte_offset: u64,
|
|
typeid: &'ll Metadata,
|
|
) -> Self::Value {
|
|
let typeid = self.get_metadata_value(typeid);
|
|
let vtable_byte_offset = self.const_i32(vtable_byte_offset as i32);
|
|
let type_checked_load =
|
|
self.call_intrinsic("llvm.type.checked.load", &[llvtable, vtable_byte_offset, typeid]);
|
|
self.extract_value(type_checked_load, 0)
|
|
}
|
|
|
|
fn va_start(&mut self, va_list: &'ll Value) -> &'ll Value {
|
|
self.call_intrinsic("llvm.va_start", &[va_list])
|
|
}
|
|
|
|
fn va_end(&mut self, va_list: &'ll Value) -> &'ll Value {
|
|
self.call_intrinsic("llvm.va_end", &[va_list])
|
|
}
|
|
}
|
|
|
|
fn catch_unwind_intrinsic<'ll>(
|
|
bx: &mut Builder<'_, 'll, '_>,
|
|
try_func: &'ll Value,
|
|
data: &'ll Value,
|
|
catch_func: &'ll Value,
|
|
dest: &'ll Value,
|
|
) {
|
|
if bx.sess().panic_strategy() == PanicStrategy::Abort {
|
|
let try_func_ty = bx.type_func(&[bx.type_ptr()], bx.type_void());
|
|
bx.call(try_func_ty, None, None, try_func, &[data], None, None);
|
|
// Return 0 unconditionally from the intrinsic call;
|
|
// we can never unwind.
|
|
let ret_align = bx.tcx().data_layout.i32_align.abi;
|
|
bx.store(bx.const_i32(0), dest, ret_align);
|
|
} else if wants_msvc_seh(bx.sess()) {
|
|
codegen_msvc_try(bx, try_func, data, catch_func, dest);
|
|
} else if wants_wasm_eh(bx.sess()) {
|
|
codegen_wasm_try(bx, try_func, data, catch_func, dest);
|
|
} else if bx.sess().target.os == "emscripten" {
|
|
codegen_emcc_try(bx, try_func, data, catch_func, dest);
|
|
} else {
|
|
codegen_gnu_try(bx, try_func, data, catch_func, dest);
|
|
}
|
|
}
|
|
|
|
// MSVC's definition of the `rust_try` function.
|
|
//
|
|
// This implementation uses the new exception handling instructions in LLVM
|
|
// which have support in LLVM for SEH on MSVC targets. Although these
|
|
// instructions are meant to work for all targets, as of the time of this
|
|
// writing, however, LLVM does not recommend the usage of these new instructions
|
|
// as the old ones are still more optimized.
|
|
fn codegen_msvc_try<'ll>(
|
|
bx: &mut Builder<'_, 'll, '_>,
|
|
try_func: &'ll Value,
|
|
data: &'ll Value,
|
|
catch_func: &'ll Value,
|
|
dest: &'ll Value,
|
|
) {
|
|
let (llty, llfn) = get_rust_try_fn(bx, &mut |mut bx| {
|
|
bx.set_personality_fn(bx.eh_personality());
|
|
|
|
let normal = bx.append_sibling_block("normal");
|
|
let catchswitch = bx.append_sibling_block("catchswitch");
|
|
let catchpad_rust = bx.append_sibling_block("catchpad_rust");
|
|
let catchpad_foreign = bx.append_sibling_block("catchpad_foreign");
|
|
let caught = bx.append_sibling_block("caught");
|
|
|
|
let try_func = llvm::get_param(bx.llfn(), 0);
|
|
let data = llvm::get_param(bx.llfn(), 1);
|
|
let catch_func = llvm::get_param(bx.llfn(), 2);
|
|
|
|
// We're generating an IR snippet that looks like:
|
|
//
|
|
// declare i32 @rust_try(%try_func, %data, %catch_func) {
|
|
// %slot = alloca i8*
|
|
// invoke %try_func(%data) to label %normal unwind label %catchswitch
|
|
//
|
|
// normal:
|
|
// ret i32 0
|
|
//
|
|
// catchswitch:
|
|
// %cs = catchswitch within none [%catchpad_rust, %catchpad_foreign] unwind to caller
|
|
//
|
|
// catchpad_rust:
|
|
// %tok = catchpad within %cs [%type_descriptor, 8, %slot]
|
|
// %ptr = load %slot
|
|
// call %catch_func(%data, %ptr)
|
|
// catchret from %tok to label %caught
|
|
//
|
|
// catchpad_foreign:
|
|
// %tok = catchpad within %cs [null, 64, null]
|
|
// call %catch_func(%data, null)
|
|
// catchret from %tok to label %caught
|
|
//
|
|
// caught:
|
|
// ret i32 1
|
|
// }
|
|
//
|
|
// This structure follows the basic usage of throw/try/catch in LLVM.
|
|
// For example, compile this C++ snippet to see what LLVM generates:
|
|
//
|
|
// struct rust_panic {
|
|
// rust_panic(const rust_panic&);
|
|
// ~rust_panic();
|
|
//
|
|
// void* x[2];
|
|
// };
|
|
//
|
|
// int __rust_try(
|
|
// void (*try_func)(void*),
|
|
// void *data,
|
|
// void (*catch_func)(void*, void*) noexcept
|
|
// ) {
|
|
// try {
|
|
// try_func(data);
|
|
// return 0;
|
|
// } catch(rust_panic& a) {
|
|
// catch_func(data, &a);
|
|
// return 1;
|
|
// } catch(...) {
|
|
// catch_func(data, NULL);
|
|
// return 1;
|
|
// }
|
|
// }
|
|
//
|
|
// More information can be found in libstd's seh.rs implementation.
|
|
let ptr_size = bx.tcx().data_layout.pointer_size;
|
|
let ptr_align = bx.tcx().data_layout.pointer_align.abi;
|
|
let slot = bx.alloca(ptr_size, ptr_align);
|
|
let try_func_ty = bx.type_func(&[bx.type_ptr()], bx.type_void());
|
|
bx.invoke(try_func_ty, None, None, try_func, &[data], normal, catchswitch, None, None);
|
|
|
|
bx.switch_to_block(normal);
|
|
bx.ret(bx.const_i32(0));
|
|
|
|
bx.switch_to_block(catchswitch);
|
|
let cs = bx.catch_switch(None, None, &[catchpad_rust, catchpad_foreign]);
|
|
|
|
// We can't use the TypeDescriptor defined in libpanic_unwind because it
|
|
// might be in another DLL and the SEH encoding only supports specifying
|
|
// a TypeDescriptor from the current module.
|
|
//
|
|
// However this isn't an issue since the MSVC runtime uses string
|
|
// comparison on the type name to match TypeDescriptors rather than
|
|
// pointer equality.
|
|
//
|
|
// So instead we generate a new TypeDescriptor in each module that uses
|
|
// `try` and let the linker merge duplicate definitions in the same
|
|
// module.
|
|
//
|
|
// When modifying, make sure that the type_name string exactly matches
|
|
// the one used in library/panic_unwind/src/seh.rs.
|
|
let type_info_vtable = bx.declare_global("??_7type_info@@6B@", bx.type_ptr());
|
|
let type_name = bx.const_bytes(b"rust_panic\0");
|
|
let type_info =
|
|
bx.const_struct(&[type_info_vtable, bx.const_null(bx.type_ptr()), type_name], false);
|
|
let tydesc = bx.declare_global(
|
|
&mangle_internal_symbol(bx.tcx, "__rust_panic_type_info"),
|
|
bx.val_ty(type_info),
|
|
);
|
|
|
|
llvm::set_linkage(tydesc, llvm::Linkage::LinkOnceODRLinkage);
|
|
if bx.cx.tcx.sess.target.supports_comdat() {
|
|
llvm::SetUniqueComdat(bx.llmod, tydesc);
|
|
}
|
|
llvm::set_initializer(tydesc, type_info);
|
|
|
|
// The flag value of 8 indicates that we are catching the exception by
|
|
// reference instead of by value. We can't use catch by value because
|
|
// that requires copying the exception object, which we don't support
|
|
// since our exception object effectively contains a Box.
|
|
//
|
|
// Source: MicrosoftCXXABI::getAddrOfCXXCatchHandlerType in clang
|
|
bx.switch_to_block(catchpad_rust);
|
|
let flags = bx.const_i32(8);
|
|
let funclet = bx.catch_pad(cs, &[tydesc, flags, slot]);
|
|
let ptr = bx.load(bx.type_ptr(), slot, ptr_align);
|
|
let catch_ty = bx.type_func(&[bx.type_ptr(), bx.type_ptr()], bx.type_void());
|
|
bx.call(catch_ty, None, None, catch_func, &[data, ptr], Some(&funclet), None);
|
|
bx.catch_ret(&funclet, caught);
|
|
|
|
// The flag value of 64 indicates a "catch-all".
|
|
bx.switch_to_block(catchpad_foreign);
|
|
let flags = bx.const_i32(64);
|
|
let null = bx.const_null(bx.type_ptr());
|
|
let funclet = bx.catch_pad(cs, &[null, flags, null]);
|
|
bx.call(catch_ty, None, None, catch_func, &[data, null], Some(&funclet), None);
|
|
bx.catch_ret(&funclet, caught);
|
|
|
|
bx.switch_to_block(caught);
|
|
bx.ret(bx.const_i32(1));
|
|
});
|
|
|
|
// Note that no invoke is used here because by definition this function
|
|
// can't panic (that's what it's catching).
|
|
let ret = bx.call(llty, None, None, llfn, &[try_func, data, catch_func], None, None);
|
|
let i32_align = bx.tcx().data_layout.i32_align.abi;
|
|
bx.store(ret, dest, i32_align);
|
|
}
|
|
|
|
// WASM's definition of the `rust_try` function.
|
|
fn codegen_wasm_try<'ll>(
|
|
bx: &mut Builder<'_, 'll, '_>,
|
|
try_func: &'ll Value,
|
|
data: &'ll Value,
|
|
catch_func: &'ll Value,
|
|
dest: &'ll Value,
|
|
) {
|
|
let (llty, llfn) = get_rust_try_fn(bx, &mut |mut bx| {
|
|
bx.set_personality_fn(bx.eh_personality());
|
|
|
|
let normal = bx.append_sibling_block("normal");
|
|
let catchswitch = bx.append_sibling_block("catchswitch");
|
|
let catchpad = bx.append_sibling_block("catchpad");
|
|
let caught = bx.append_sibling_block("caught");
|
|
|
|
let try_func = llvm::get_param(bx.llfn(), 0);
|
|
let data = llvm::get_param(bx.llfn(), 1);
|
|
let catch_func = llvm::get_param(bx.llfn(), 2);
|
|
|
|
// We're generating an IR snippet that looks like:
|
|
//
|
|
// declare i32 @rust_try(%try_func, %data, %catch_func) {
|
|
// %slot = alloca i8*
|
|
// invoke %try_func(%data) to label %normal unwind label %catchswitch
|
|
//
|
|
// normal:
|
|
// ret i32 0
|
|
//
|
|
// catchswitch:
|
|
// %cs = catchswitch within none [%catchpad] unwind to caller
|
|
//
|
|
// catchpad:
|
|
// %tok = catchpad within %cs [null]
|
|
// %ptr = call @llvm.wasm.get.exception(token %tok)
|
|
// %sel = call @llvm.wasm.get.ehselector(token %tok)
|
|
// call %catch_func(%data, %ptr)
|
|
// catchret from %tok to label %caught
|
|
//
|
|
// caught:
|
|
// ret i32 1
|
|
// }
|
|
//
|
|
let try_func_ty = bx.type_func(&[bx.type_ptr()], bx.type_void());
|
|
bx.invoke(try_func_ty, None, None, try_func, &[data], normal, catchswitch, None, None);
|
|
|
|
bx.switch_to_block(normal);
|
|
bx.ret(bx.const_i32(0));
|
|
|
|
bx.switch_to_block(catchswitch);
|
|
let cs = bx.catch_switch(None, None, &[catchpad]);
|
|
|
|
bx.switch_to_block(catchpad);
|
|
let null = bx.const_null(bx.type_ptr());
|
|
let funclet = bx.catch_pad(cs, &[null]);
|
|
|
|
let ptr = bx.call_intrinsic("llvm.wasm.get.exception", &[funclet.cleanuppad()]);
|
|
let _sel = bx.call_intrinsic("llvm.wasm.get.ehselector", &[funclet.cleanuppad()]);
|
|
|
|
let catch_ty = bx.type_func(&[bx.type_ptr(), bx.type_ptr()], bx.type_void());
|
|
bx.call(catch_ty, None, None, catch_func, &[data, ptr], Some(&funclet), None);
|
|
bx.catch_ret(&funclet, caught);
|
|
|
|
bx.switch_to_block(caught);
|
|
bx.ret(bx.const_i32(1));
|
|
});
|
|
|
|
// Note that no invoke is used here because by definition this function
|
|
// can't panic (that's what it's catching).
|
|
let ret = bx.call(llty, None, None, llfn, &[try_func, data, catch_func], None, None);
|
|
let i32_align = bx.tcx().data_layout.i32_align.abi;
|
|
bx.store(ret, dest, i32_align);
|
|
}
|
|
|
|
// Definition of the standard `try` function for Rust using the GNU-like model
|
|
// of exceptions (e.g., the normal semantics of LLVM's `landingpad` and `invoke`
|
|
// instructions).
|
|
//
|
|
// This codegen is a little surprising because we always call a shim
|
|
// function instead of inlining the call to `invoke` manually here. This is done
|
|
// because in LLVM we're only allowed to have one personality per function
|
|
// definition. The call to the `try` intrinsic is being inlined into the
|
|
// function calling it, and that function may already have other personality
|
|
// functions in play. By calling a shim we're guaranteed that our shim will have
|
|
// the right personality function.
|
|
fn codegen_gnu_try<'ll>(
|
|
bx: &mut Builder<'_, 'll, '_>,
|
|
try_func: &'ll Value,
|
|
data: &'ll Value,
|
|
catch_func: &'ll Value,
|
|
dest: &'ll Value,
|
|
) {
|
|
let (llty, llfn) = get_rust_try_fn(bx, &mut |mut bx| {
|
|
// Codegens the shims described above:
|
|
//
|
|
// bx:
|
|
// invoke %try_func(%data) normal %normal unwind %catch
|
|
//
|
|
// normal:
|
|
// ret 0
|
|
//
|
|
// catch:
|
|
// (%ptr, _) = landingpad
|
|
// call %catch_func(%data, %ptr)
|
|
// ret 1
|
|
let then = bx.append_sibling_block("then");
|
|
let catch = bx.append_sibling_block("catch");
|
|
|
|
let try_func = llvm::get_param(bx.llfn(), 0);
|
|
let data = llvm::get_param(bx.llfn(), 1);
|
|
let catch_func = llvm::get_param(bx.llfn(), 2);
|
|
let try_func_ty = bx.type_func(&[bx.type_ptr()], bx.type_void());
|
|
bx.invoke(try_func_ty, None, None, try_func, &[data], then, catch, None, None);
|
|
|
|
bx.switch_to_block(then);
|
|
bx.ret(bx.const_i32(0));
|
|
|
|
// Type indicator for the exception being thrown.
|
|
//
|
|
// The first value in this tuple is a pointer to the exception object
|
|
// being thrown. The second value is a "selector" indicating which of
|
|
// the landing pad clauses the exception's type had been matched to.
|
|
// rust_try ignores the selector.
|
|
bx.switch_to_block(catch);
|
|
let lpad_ty = bx.type_struct(&[bx.type_ptr(), bx.type_i32()], false);
|
|
let vals = bx.landing_pad(lpad_ty, bx.eh_personality(), 1);
|
|
let tydesc = bx.const_null(bx.type_ptr());
|
|
bx.add_clause(vals, tydesc);
|
|
let ptr = bx.extract_value(vals, 0);
|
|
let catch_ty = bx.type_func(&[bx.type_ptr(), bx.type_ptr()], bx.type_void());
|
|
bx.call(catch_ty, None, None, catch_func, &[data, ptr], None, None);
|
|
bx.ret(bx.const_i32(1));
|
|
});
|
|
|
|
// Note that no invoke is used here because by definition this function
|
|
// can't panic (that's what it's catching).
|
|
let ret = bx.call(llty, None, None, llfn, &[try_func, data, catch_func], None, None);
|
|
let i32_align = bx.tcx().data_layout.i32_align.abi;
|
|
bx.store(ret, dest, i32_align);
|
|
}
|
|
|
|
// Variant of codegen_gnu_try used for emscripten where Rust panics are
|
|
// implemented using C++ exceptions. Here we use exceptions of a specific type
|
|
// (`struct rust_panic`) to represent Rust panics.
|
|
fn codegen_emcc_try<'ll>(
|
|
bx: &mut Builder<'_, 'll, '_>,
|
|
try_func: &'ll Value,
|
|
data: &'ll Value,
|
|
catch_func: &'ll Value,
|
|
dest: &'ll Value,
|
|
) {
|
|
let (llty, llfn) = get_rust_try_fn(bx, &mut |mut bx| {
|
|
// Codegens the shims described above:
|
|
//
|
|
// bx:
|
|
// invoke %try_func(%data) normal %normal unwind %catch
|
|
//
|
|
// normal:
|
|
// ret 0
|
|
//
|
|
// catch:
|
|
// (%ptr, %selector) = landingpad
|
|
// %rust_typeid = @llvm.eh.typeid.for(@_ZTI10rust_panic)
|
|
// %is_rust_panic = %selector == %rust_typeid
|
|
// %catch_data = alloca { i8*, i8 }
|
|
// %catch_data[0] = %ptr
|
|
// %catch_data[1] = %is_rust_panic
|
|
// call %catch_func(%data, %catch_data)
|
|
// ret 1
|
|
let then = bx.append_sibling_block("then");
|
|
let catch = bx.append_sibling_block("catch");
|
|
|
|
let try_func = llvm::get_param(bx.llfn(), 0);
|
|
let data = llvm::get_param(bx.llfn(), 1);
|
|
let catch_func = llvm::get_param(bx.llfn(), 2);
|
|
let try_func_ty = bx.type_func(&[bx.type_ptr()], bx.type_void());
|
|
bx.invoke(try_func_ty, None, None, try_func, &[data], then, catch, None, None);
|
|
|
|
bx.switch_to_block(then);
|
|
bx.ret(bx.const_i32(0));
|
|
|
|
// Type indicator for the exception being thrown.
|
|
//
|
|
// The first value in this tuple is a pointer to the exception object
|
|
// being thrown. The second value is a "selector" indicating which of
|
|
// the landing pad clauses the exception's type had been matched to.
|
|
bx.switch_to_block(catch);
|
|
let tydesc = bx.eh_catch_typeinfo();
|
|
let lpad_ty = bx.type_struct(&[bx.type_ptr(), bx.type_i32()], false);
|
|
let vals = bx.landing_pad(lpad_ty, bx.eh_personality(), 2);
|
|
bx.add_clause(vals, tydesc);
|
|
bx.add_clause(vals, bx.const_null(bx.type_ptr()));
|
|
let ptr = bx.extract_value(vals, 0);
|
|
let selector = bx.extract_value(vals, 1);
|
|
|
|
// Check if the typeid we got is the one for a Rust panic.
|
|
let rust_typeid = bx.call_intrinsic("llvm.eh.typeid.for", &[tydesc]);
|
|
let is_rust_panic = bx.icmp(IntPredicate::IntEQ, selector, rust_typeid);
|
|
let is_rust_panic = bx.zext(is_rust_panic, bx.type_bool());
|
|
|
|
// We need to pass two values to catch_func (ptr and is_rust_panic), so
|
|
// create an alloca and pass a pointer to that.
|
|
let ptr_size = bx.tcx().data_layout.pointer_size;
|
|
let ptr_align = bx.tcx().data_layout.pointer_align.abi;
|
|
let i8_align = bx.tcx().data_layout.i8_align.abi;
|
|
// Required in order for there to be no padding between the fields.
|
|
assert!(i8_align <= ptr_align);
|
|
let catch_data = bx.alloca(2 * ptr_size, ptr_align);
|
|
bx.store(ptr, catch_data, ptr_align);
|
|
let catch_data_1 = bx.inbounds_ptradd(catch_data, bx.const_usize(ptr_size.bytes()));
|
|
bx.store(is_rust_panic, catch_data_1, i8_align);
|
|
|
|
let catch_ty = bx.type_func(&[bx.type_ptr(), bx.type_ptr()], bx.type_void());
|
|
bx.call(catch_ty, None, None, catch_func, &[data, catch_data], None, None);
|
|
bx.ret(bx.const_i32(1));
|
|
});
|
|
|
|
// Note that no invoke is used here because by definition this function
|
|
// can't panic (that's what it's catching).
|
|
let ret = bx.call(llty, None, None, llfn, &[try_func, data, catch_func], None, None);
|
|
let i32_align = bx.tcx().data_layout.i32_align.abi;
|
|
bx.store(ret, dest, i32_align);
|
|
}
|
|
|
|
// Helper function to give a Block to a closure to codegen a shim function.
|
|
// This is currently primarily used for the `try` intrinsic functions above.
|
|
fn gen_fn<'a, 'll, 'tcx>(
|
|
cx: &'a CodegenCx<'ll, 'tcx>,
|
|
name: &str,
|
|
rust_fn_sig: ty::PolyFnSig<'tcx>,
|
|
codegen: &mut dyn FnMut(Builder<'a, 'll, 'tcx>),
|
|
) -> (&'ll Type, &'ll Value) {
|
|
let fn_abi = cx.fn_abi_of_fn_ptr(rust_fn_sig, ty::List::empty());
|
|
let llty = fn_abi.llvm_type(cx);
|
|
let llfn = cx.declare_fn(name, fn_abi, None);
|
|
cx.set_frame_pointer_type(llfn);
|
|
cx.apply_target_cpu_attr(llfn);
|
|
// FIXME(eddyb) find a nicer way to do this.
|
|
llvm::set_linkage(llfn, llvm::Linkage::InternalLinkage);
|
|
let llbb = Builder::append_block(cx, llfn, "entry-block");
|
|
let bx = Builder::build(cx, llbb);
|
|
codegen(bx);
|
|
(llty, llfn)
|
|
}
|
|
|
|
// Helper function used to get a handle to the `__rust_try` function used to
|
|
// catch exceptions.
|
|
//
|
|
// This function is only generated once and is then cached.
|
|
fn get_rust_try_fn<'a, 'll, 'tcx>(
|
|
cx: &'a CodegenCx<'ll, 'tcx>,
|
|
codegen: &mut dyn FnMut(Builder<'a, 'll, 'tcx>),
|
|
) -> (&'ll Type, &'ll Value) {
|
|
if let Some(llfn) = cx.rust_try_fn.get() {
|
|
return llfn;
|
|
}
|
|
|
|
// Define the type up front for the signature of the rust_try function.
|
|
let tcx = cx.tcx;
|
|
let i8p = Ty::new_mut_ptr(tcx, tcx.types.i8);
|
|
// `unsafe fn(*mut i8) -> ()`
|
|
let try_fn_ty = Ty::new_fn_ptr(
|
|
tcx,
|
|
ty::Binder::dummy(tcx.mk_fn_sig(
|
|
[i8p],
|
|
tcx.types.unit,
|
|
false,
|
|
hir::Safety::Unsafe,
|
|
ExternAbi::Rust,
|
|
)),
|
|
);
|
|
// `unsafe fn(*mut i8, *mut i8) -> ()`
|
|
let catch_fn_ty = Ty::new_fn_ptr(
|
|
tcx,
|
|
ty::Binder::dummy(tcx.mk_fn_sig(
|
|
[i8p, i8p],
|
|
tcx.types.unit,
|
|
false,
|
|
hir::Safety::Unsafe,
|
|
ExternAbi::Rust,
|
|
)),
|
|
);
|
|
// `unsafe fn(unsafe fn(*mut i8) -> (), *mut i8, unsafe fn(*mut i8, *mut i8) -> ()) -> i32`
|
|
let rust_fn_sig = ty::Binder::dummy(cx.tcx.mk_fn_sig(
|
|
[try_fn_ty, i8p, catch_fn_ty],
|
|
tcx.types.i32,
|
|
false,
|
|
hir::Safety::Unsafe,
|
|
ExternAbi::Rust,
|
|
));
|
|
let rust_try = gen_fn(cx, "__rust_try", rust_fn_sig, codegen);
|
|
cx.rust_try_fn.set(Some(rust_try));
|
|
rust_try
|
|
}
|
|
|
|
fn generic_simd_intrinsic<'ll, 'tcx>(
|
|
bx: &mut Builder<'_, 'll, 'tcx>,
|
|
name: Symbol,
|
|
callee_ty: Ty<'tcx>,
|
|
fn_args: GenericArgsRef<'tcx>,
|
|
args: &[OperandRef<'tcx, &'ll Value>],
|
|
ret_ty: Ty<'tcx>,
|
|
llret_ty: &'ll Type,
|
|
span: Span,
|
|
) -> Result<&'ll Value, ()> {
|
|
macro_rules! return_error {
|
|
($diag: expr) => {{
|
|
bx.sess().dcx().emit_err($diag);
|
|
return Err(());
|
|
}};
|
|
}
|
|
|
|
macro_rules! require {
|
|
($cond: expr, $diag: expr) => {
|
|
if !$cond {
|
|
return_error!($diag);
|
|
}
|
|
};
|
|
}
|
|
|
|
macro_rules! require_simd {
|
|
($ty: expr, $variant:ident) => {{
|
|
require!($ty.is_simd(), InvalidMonomorphization::$variant { span, name, ty: $ty });
|
|
$ty.simd_size_and_type(bx.tcx())
|
|
}};
|
|
}
|
|
|
|
/// Returns the bitwidth of the `$ty` argument if it is an `Int` type.
|
|
macro_rules! require_int_ty {
|
|
($ty: expr, $diag: expr) => {
|
|
match $ty {
|
|
ty::Int(i) => i.bit_width().unwrap_or_else(|| bx.data_layout().pointer_size.bits()),
|
|
_ => {
|
|
return_error!($diag);
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Returns the bitwidth of the `$ty` argument if it is an `Int` or `Uint` type.
|
|
macro_rules! require_int_or_uint_ty {
|
|
($ty: expr, $diag: expr) => {
|
|
match $ty {
|
|
ty::Int(i) => i.bit_width().unwrap_or_else(|| bx.data_layout().pointer_size.bits()),
|
|
ty::Uint(i) => {
|
|
i.bit_width().unwrap_or_else(|| bx.data_layout().pointer_size.bits())
|
|
}
|
|
_ => {
|
|
return_error!($diag);
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Converts a vector mask, where each element has a bit width equal to the data elements it is used with,
|
|
/// down to an i1 based mask that can be used by llvm intrinsics.
|
|
///
|
|
/// The rust simd semantics are that each element should either consist of all ones or all zeroes,
|
|
/// but this information is not available to llvm. Truncating the vector effectively uses the lowest bit,
|
|
/// but codegen for several targets is better if we consider the highest bit by shifting.
|
|
///
|
|
/// For x86 SSE/AVX targets this is beneficial since most instructions with mask parameters only consider the highest bit.
|
|
/// So even though on llvm level we have an additional shift, in the final assembly there is no shift or truncate and
|
|
/// instead the mask can be used as is.
|
|
///
|
|
/// For aarch64 and other targets there is a benefit because a mask from the sign bit can be more
|
|
/// efficiently converted to an all ones / all zeroes mask by comparing whether each element is negative.
|
|
fn vector_mask_to_bitmask<'a, 'll, 'tcx>(
|
|
bx: &mut Builder<'a, 'll, 'tcx>,
|
|
i_xn: &'ll Value,
|
|
in_elem_bitwidth: u64,
|
|
in_len: u64,
|
|
) -> &'ll Value {
|
|
// Shift the MSB to the right by "in_elem_bitwidth - 1" into the first bit position.
|
|
let shift_idx = bx.cx.const_int(bx.type_ix(in_elem_bitwidth), (in_elem_bitwidth - 1) as _);
|
|
let shift_indices = vec![shift_idx; in_len as _];
|
|
let i_xn_msb = bx.lshr(i_xn, bx.const_vector(shift_indices.as_slice()));
|
|
// Truncate vector to an <i1 x N>
|
|
bx.trunc(i_xn_msb, bx.type_vector(bx.type_i1(), in_len))
|
|
}
|
|
|
|
let tcx = bx.tcx();
|
|
let sig = tcx.normalize_erasing_late_bound_regions(bx.typing_env(), callee_ty.fn_sig(tcx));
|
|
let arg_tys = sig.inputs();
|
|
|
|
// Sanity-check: all vector arguments must be immediates.
|
|
if cfg!(debug_assertions) {
|
|
for (ty, arg) in arg_tys.iter().zip(args) {
|
|
if ty.is_simd() {
|
|
assert_matches!(arg.val, OperandValue::Immediate(_));
|
|
}
|
|
}
|
|
}
|
|
|
|
if name == sym::simd_select_bitmask {
|
|
let (len, _) = require_simd!(arg_tys[1], SimdArgument);
|
|
|
|
let expected_int_bits = len.max(8).next_power_of_two();
|
|
let expected_bytes = len.div_ceil(8);
|
|
|
|
let mask_ty = arg_tys[0];
|
|
let mask = match mask_ty.kind() {
|
|
ty::Int(i) if i.bit_width() == Some(expected_int_bits) => args[0].immediate(),
|
|
ty::Uint(i) if i.bit_width() == Some(expected_int_bits) => args[0].immediate(),
|
|
ty::Array(elem, len)
|
|
if matches!(elem.kind(), ty::Uint(ty::UintTy::U8))
|
|
&& len
|
|
.try_to_target_usize(bx.tcx)
|
|
.expect("expected monomorphic const in codegen")
|
|
== expected_bytes =>
|
|
{
|
|
let place = PlaceRef::alloca(bx, args[0].layout);
|
|
args[0].val.store(bx, place);
|
|
let int_ty = bx.type_ix(expected_bytes * 8);
|
|
bx.load(int_ty, place.val.llval, Align::ONE)
|
|
}
|
|
_ => return_error!(InvalidMonomorphization::InvalidBitmask {
|
|
span,
|
|
name,
|
|
mask_ty,
|
|
expected_int_bits,
|
|
expected_bytes
|
|
}),
|
|
};
|
|
|
|
let i1 = bx.type_i1();
|
|
let im = bx.type_ix(len);
|
|
let i1xn = bx.type_vector(i1, len);
|
|
let m_im = bx.trunc(mask, im);
|
|
let m_i1s = bx.bitcast(m_im, i1xn);
|
|
return Ok(bx.select(m_i1s, args[1].immediate(), args[2].immediate()));
|
|
}
|
|
|
|
// every intrinsic below takes a SIMD vector as its first argument
|
|
let (in_len, in_elem) = require_simd!(arg_tys[0], SimdInput);
|
|
let in_ty = arg_tys[0];
|
|
|
|
let comparison = match name {
|
|
sym::simd_eq => Some(BinOp::Eq),
|
|
sym::simd_ne => Some(BinOp::Ne),
|
|
sym::simd_lt => Some(BinOp::Lt),
|
|
sym::simd_le => Some(BinOp::Le),
|
|
sym::simd_gt => Some(BinOp::Gt),
|
|
sym::simd_ge => Some(BinOp::Ge),
|
|
_ => None,
|
|
};
|
|
|
|
if let Some(cmp_op) = comparison {
|
|
let (out_len, out_ty) = require_simd!(ret_ty, SimdReturn);
|
|
|
|
require!(
|
|
in_len == out_len,
|
|
InvalidMonomorphization::ReturnLengthInputType {
|
|
span,
|
|
name,
|
|
in_len,
|
|
in_ty,
|
|
ret_ty,
|
|
out_len
|
|
}
|
|
);
|
|
require!(
|
|
bx.type_kind(bx.element_type(llret_ty)) == TypeKind::Integer,
|
|
InvalidMonomorphization::ReturnIntegerType { span, name, ret_ty, out_ty }
|
|
);
|
|
|
|
return Ok(compare_simd_types(
|
|
bx,
|
|
args[0].immediate(),
|
|
args[1].immediate(),
|
|
in_elem,
|
|
llret_ty,
|
|
cmp_op,
|
|
));
|
|
}
|
|
|
|
if name == sym::simd_shuffle_const_generic {
|
|
let idx = fn_args[2].expect_const().to_value().valtree.unwrap_branch();
|
|
let n = idx.len() as u64;
|
|
|
|
let (out_len, out_ty) = require_simd!(ret_ty, SimdReturn);
|
|
require!(
|
|
out_len == n,
|
|
InvalidMonomorphization::ReturnLength { span, name, in_len: n, ret_ty, out_len }
|
|
);
|
|
require!(
|
|
in_elem == out_ty,
|
|
InvalidMonomorphization::ReturnElement { span, name, in_elem, in_ty, ret_ty, out_ty }
|
|
);
|
|
|
|
let total_len = in_len * 2;
|
|
|
|
let indices: Option<Vec<_>> = idx
|
|
.iter()
|
|
.enumerate()
|
|
.map(|(arg_idx, val)| {
|
|
let idx = val.unwrap_leaf().to_i32();
|
|
if idx >= i32::try_from(total_len).unwrap() {
|
|
bx.sess().dcx().emit_err(InvalidMonomorphization::SimdIndexOutOfBounds {
|
|
span,
|
|
name,
|
|
arg_idx: arg_idx as u64,
|
|
total_len: total_len.into(),
|
|
});
|
|
None
|
|
} else {
|
|
Some(bx.const_i32(idx))
|
|
}
|
|
})
|
|
.collect();
|
|
let Some(indices) = indices else {
|
|
return Ok(bx.const_null(llret_ty));
|
|
};
|
|
|
|
return Ok(bx.shuffle_vector(
|
|
args[0].immediate(),
|
|
args[1].immediate(),
|
|
bx.const_vector(&indices),
|
|
));
|
|
}
|
|
|
|
if name == sym::simd_shuffle {
|
|
// Make sure this is actually a SIMD vector.
|
|
let idx_ty = args[2].layout.ty;
|
|
let n: u64 = if idx_ty.is_simd()
|
|
&& matches!(idx_ty.simd_size_and_type(bx.cx.tcx).1.kind(), ty::Uint(ty::UintTy::U32))
|
|
{
|
|
idx_ty.simd_size_and_type(bx.cx.tcx).0
|
|
} else {
|
|
return_error!(InvalidMonomorphization::SimdShuffle { span, name, ty: idx_ty })
|
|
};
|
|
|
|
let (out_len, out_ty) = require_simd!(ret_ty, SimdReturn);
|
|
require!(
|
|
out_len == n,
|
|
InvalidMonomorphization::ReturnLength { span, name, in_len: n, ret_ty, out_len }
|
|
);
|
|
require!(
|
|
in_elem == out_ty,
|
|
InvalidMonomorphization::ReturnElement { span, name, in_elem, in_ty, ret_ty, out_ty }
|
|
);
|
|
|
|
let total_len = u128::from(in_len) * 2;
|
|
|
|
// Check that the indices are in-bounds.
|
|
let indices = args[2].immediate();
|
|
for i in 0..n {
|
|
let val = bx.const_get_elt(indices, i as u64);
|
|
let idx = bx
|
|
.const_to_opt_u128(val, true)
|
|
.unwrap_or_else(|| bug!("typeck should have already ensured that these are const"));
|
|
if idx >= total_len {
|
|
return_error!(InvalidMonomorphization::SimdIndexOutOfBounds {
|
|
span,
|
|
name,
|
|
arg_idx: i,
|
|
total_len,
|
|
});
|
|
}
|
|
}
|
|
|
|
return Ok(bx.shuffle_vector(args[0].immediate(), args[1].immediate(), indices));
|
|
}
|
|
|
|
if name == sym::simd_insert {
|
|
require!(
|
|
in_elem == arg_tys[2],
|
|
InvalidMonomorphization::InsertedType {
|
|
span,
|
|
name,
|
|
in_elem,
|
|
in_ty,
|
|
out_ty: arg_tys[2]
|
|
}
|
|
);
|
|
let idx = bx
|
|
.const_to_opt_u128(args[1].immediate(), false)
|
|
.expect("typeck should have ensure that this is a const");
|
|
if idx >= in_len.into() {
|
|
return_error!(InvalidMonomorphization::SimdIndexOutOfBounds {
|
|
span,
|
|
name,
|
|
arg_idx: 1,
|
|
total_len: in_len.into(),
|
|
});
|
|
}
|
|
return Ok(bx.insert_element(
|
|
args[0].immediate(),
|
|
args[2].immediate(),
|
|
bx.const_i32(idx as i32),
|
|
));
|
|
}
|
|
if name == sym::simd_extract {
|
|
require!(
|
|
ret_ty == in_elem,
|
|
InvalidMonomorphization::ReturnType { span, name, in_elem, in_ty, ret_ty }
|
|
);
|
|
let idx = bx
|
|
.const_to_opt_u128(args[1].immediate(), false)
|
|
.expect("typeck should have ensure that this is a const");
|
|
if idx >= in_len.into() {
|
|
return_error!(InvalidMonomorphization::SimdIndexOutOfBounds {
|
|
span,
|
|
name,
|
|
arg_idx: 1,
|
|
total_len: in_len.into(),
|
|
});
|
|
}
|
|
return Ok(bx.extract_element(args[0].immediate(), bx.const_i32(idx as i32)));
|
|
}
|
|
|
|
if name == sym::simd_select {
|
|
let m_elem_ty = in_elem;
|
|
let m_len = in_len;
|
|
let (v_len, _) = require_simd!(arg_tys[1], SimdArgument);
|
|
require!(
|
|
m_len == v_len,
|
|
InvalidMonomorphization::MismatchedLengths { span, name, m_len, v_len }
|
|
);
|
|
let in_elem_bitwidth = require_int_ty!(
|
|
m_elem_ty.kind(),
|
|
InvalidMonomorphization::MaskType { span, name, ty: m_elem_ty }
|
|
);
|
|
let m_i1s = vector_mask_to_bitmask(bx, args[0].immediate(), in_elem_bitwidth, m_len);
|
|
return Ok(bx.select(m_i1s, args[1].immediate(), args[2].immediate()));
|
|
}
|
|
|
|
if name == sym::simd_bitmask {
|
|
// The `fn simd_bitmask(vector) -> unsigned integer` intrinsic takes a vector mask and
|
|
// returns one bit for each lane (which must all be `0` or `!0`) in the form of either:
|
|
// * an unsigned integer
|
|
// * an array of `u8`
|
|
// If the vector has less than 8 lanes, a u8 is returned with zeroed trailing bits.
|
|
//
|
|
// The bit order of the result depends on the byte endianness, LSB-first for little
|
|
// endian and MSB-first for big endian.
|
|
let expected_int_bits = in_len.max(8).next_power_of_two();
|
|
let expected_bytes = in_len.div_ceil(8);
|
|
|
|
// Integer vector <i{in_bitwidth} x in_len>:
|
|
let in_elem_bitwidth = require_int_or_uint_ty!(
|
|
in_elem.kind(),
|
|
InvalidMonomorphization::VectorArgument { span, name, in_ty, in_elem }
|
|
);
|
|
|
|
let i1xn = vector_mask_to_bitmask(bx, args[0].immediate(), in_elem_bitwidth, in_len);
|
|
// Bitcast <i1 x N> to iN:
|
|
let i_ = bx.bitcast(i1xn, bx.type_ix(in_len));
|
|
|
|
match ret_ty.kind() {
|
|
ty::Uint(i) if i.bit_width() == Some(expected_int_bits) => {
|
|
// Zero-extend iN to the bitmask type:
|
|
return Ok(bx.zext(i_, bx.type_ix(expected_int_bits)));
|
|
}
|
|
ty::Array(elem, len)
|
|
if matches!(elem.kind(), ty::Uint(ty::UintTy::U8))
|
|
&& len
|
|
.try_to_target_usize(bx.tcx)
|
|
.expect("expected monomorphic const in codegen")
|
|
== expected_bytes =>
|
|
{
|
|
// Zero-extend iN to the array length:
|
|
let ze = bx.zext(i_, bx.type_ix(expected_bytes * 8));
|
|
|
|
// Convert the integer to a byte array
|
|
let ptr = bx.alloca(Size::from_bytes(expected_bytes), Align::ONE);
|
|
bx.store(ze, ptr, Align::ONE);
|
|
let array_ty = bx.type_array(bx.type_i8(), expected_bytes);
|
|
return Ok(bx.load(array_ty, ptr, Align::ONE));
|
|
}
|
|
_ => return_error!(InvalidMonomorphization::CannotReturn {
|
|
span,
|
|
name,
|
|
ret_ty,
|
|
expected_int_bits,
|
|
expected_bytes
|
|
}),
|
|
}
|
|
}
|
|
|
|
fn simd_simple_float_intrinsic<'ll, 'tcx>(
|
|
name: Symbol,
|
|
in_elem: Ty<'_>,
|
|
in_ty: Ty<'_>,
|
|
in_len: u64,
|
|
bx: &mut Builder<'_, 'll, 'tcx>,
|
|
span: Span,
|
|
args: &[OperandRef<'tcx, &'ll Value>],
|
|
) -> Result<&'ll Value, ()> {
|
|
macro_rules! return_error {
|
|
($diag: expr) => {{
|
|
bx.sess().dcx().emit_err($diag);
|
|
return Err(());
|
|
}};
|
|
}
|
|
|
|
let (elem_ty_str, elem_ty) = if let ty::Float(f) = in_elem.kind() {
|
|
let elem_ty = bx.cx.type_float_from_ty(*f);
|
|
match f.bit_width() {
|
|
16 => ("f16", elem_ty),
|
|
32 => ("f32", elem_ty),
|
|
64 => ("f64", elem_ty),
|
|
128 => ("f128", elem_ty),
|
|
_ => return_error!(InvalidMonomorphization::FloatingPointVector {
|
|
span,
|
|
name,
|
|
f_ty: *f,
|
|
in_ty,
|
|
}),
|
|
}
|
|
} else {
|
|
return_error!(InvalidMonomorphization::FloatingPointType { span, name, in_ty });
|
|
};
|
|
|
|
let vec_ty = bx.type_vector(elem_ty, in_len);
|
|
|
|
let (intr_name, fn_ty) = match name {
|
|
sym::simd_ceil => ("ceil", bx.type_func(&[vec_ty], vec_ty)),
|
|
sym::simd_fabs => ("fabs", bx.type_func(&[vec_ty], vec_ty)),
|
|
sym::simd_fcos => ("cos", bx.type_func(&[vec_ty], vec_ty)),
|
|
sym::simd_fexp2 => ("exp2", bx.type_func(&[vec_ty], vec_ty)),
|
|
sym::simd_fexp => ("exp", bx.type_func(&[vec_ty], vec_ty)),
|
|
sym::simd_flog10 => ("log10", bx.type_func(&[vec_ty], vec_ty)),
|
|
sym::simd_flog2 => ("log2", bx.type_func(&[vec_ty], vec_ty)),
|
|
sym::simd_flog => ("log", bx.type_func(&[vec_ty], vec_ty)),
|
|
sym::simd_floor => ("floor", bx.type_func(&[vec_ty], vec_ty)),
|
|
sym::simd_fma => ("fma", bx.type_func(&[vec_ty, vec_ty, vec_ty], vec_ty)),
|
|
sym::simd_relaxed_fma => ("fmuladd", bx.type_func(&[vec_ty, vec_ty, vec_ty], vec_ty)),
|
|
sym::simd_fsin => ("sin", bx.type_func(&[vec_ty], vec_ty)),
|
|
sym::simd_fsqrt => ("sqrt", bx.type_func(&[vec_ty], vec_ty)),
|
|
sym::simd_round => ("round", bx.type_func(&[vec_ty], vec_ty)),
|
|
sym::simd_trunc => ("trunc", bx.type_func(&[vec_ty], vec_ty)),
|
|
_ => return_error!(InvalidMonomorphization::UnrecognizedIntrinsic { span, name }),
|
|
};
|
|
let llvm_name = &format!("llvm.{intr_name}.v{in_len}{elem_ty_str}");
|
|
let f = bx.declare_cfn(llvm_name, llvm::UnnamedAddr::No, fn_ty);
|
|
let c = bx.call(
|
|
fn_ty,
|
|
None,
|
|
None,
|
|
f,
|
|
&args.iter().map(|arg| arg.immediate()).collect::<Vec<_>>(),
|
|
None,
|
|
None,
|
|
);
|
|
Ok(c)
|
|
}
|
|
|
|
if std::matches!(
|
|
name,
|
|
sym::simd_ceil
|
|
| sym::simd_fabs
|
|
| sym::simd_fcos
|
|
| sym::simd_fexp2
|
|
| sym::simd_fexp
|
|
| sym::simd_flog10
|
|
| sym::simd_flog2
|
|
| sym::simd_flog
|
|
| sym::simd_floor
|
|
| sym::simd_fma
|
|
| sym::simd_fsin
|
|
| sym::simd_fsqrt
|
|
| sym::simd_relaxed_fma
|
|
| sym::simd_round
|
|
| sym::simd_trunc
|
|
) {
|
|
return simd_simple_float_intrinsic(name, in_elem, in_ty, in_len, bx, span, args);
|
|
}
|
|
|
|
// FIXME: use:
|
|
// https://github.com/llvm-mirror/llvm/blob/master/include/llvm/IR/Function.h#L182
|
|
// https://github.com/llvm-mirror/llvm/blob/master/include/llvm/IR/Intrinsics.h#L81
|
|
fn llvm_vector_str(bx: &Builder<'_, '_, '_>, elem_ty: Ty<'_>, vec_len: u64) -> String {
|
|
match *elem_ty.kind() {
|
|
ty::Int(v) => format!(
|
|
"v{}i{}",
|
|
vec_len,
|
|
// Normalize to prevent crash if v: IntTy::Isize
|
|
v.normalize(bx.target_spec().pointer_width).bit_width().unwrap()
|
|
),
|
|
ty::Uint(v) => format!(
|
|
"v{}i{}",
|
|
vec_len,
|
|
// Normalize to prevent crash if v: UIntTy::Usize
|
|
v.normalize(bx.target_spec().pointer_width).bit_width().unwrap()
|
|
),
|
|
ty::Float(v) => format!("v{}f{}", vec_len, v.bit_width()),
|
|
ty::RawPtr(_, _) => format!("v{}p0", vec_len),
|
|
_ => unreachable!(),
|
|
}
|
|
}
|
|
|
|
fn llvm_vector_ty<'ll>(cx: &CodegenCx<'ll, '_>, elem_ty: Ty<'_>, vec_len: u64) -> &'ll Type {
|
|
let elem_ty = match *elem_ty.kind() {
|
|
ty::Int(v) => cx.type_int_from_ty(v),
|
|
ty::Uint(v) => cx.type_uint_from_ty(v),
|
|
ty::Float(v) => cx.type_float_from_ty(v),
|
|
ty::RawPtr(_, _) => cx.type_ptr(),
|
|
_ => unreachable!(),
|
|
};
|
|
cx.type_vector(elem_ty, vec_len)
|
|
}
|
|
|
|
if name == sym::simd_gather {
|
|
// simd_gather(values: <N x T>, pointers: <N x *_ T>,
|
|
// mask: <N x i{M}>) -> <N x T>
|
|
// * N: number of elements in the input vectors
|
|
// * T: type of the element to load
|
|
// * M: any integer width is supported, will be truncated to i1
|
|
|
|
// All types must be simd vector types
|
|
|
|
// The second argument must be a simd vector with an element type that's a pointer
|
|
// to the element type of the first argument
|
|
let (_, element_ty0) = require_simd!(in_ty, SimdFirst);
|
|
let (out_len, element_ty1) = require_simd!(arg_tys[1], SimdSecond);
|
|
// The element type of the third argument must be a signed integer type of any width:
|
|
let (out_len2, element_ty2) = require_simd!(arg_tys[2], SimdThird);
|
|
require_simd!(ret_ty, SimdReturn);
|
|
|
|
// Of the same length:
|
|
require!(
|
|
in_len == out_len,
|
|
InvalidMonomorphization::SecondArgumentLength {
|
|
span,
|
|
name,
|
|
in_len,
|
|
in_ty,
|
|
arg_ty: arg_tys[1],
|
|
out_len
|
|
}
|
|
);
|
|
require!(
|
|
in_len == out_len2,
|
|
InvalidMonomorphization::ThirdArgumentLength {
|
|
span,
|
|
name,
|
|
in_len,
|
|
in_ty,
|
|
arg_ty: arg_tys[2],
|
|
out_len: out_len2
|
|
}
|
|
);
|
|
|
|
// The return type must match the first argument type
|
|
require!(
|
|
ret_ty == in_ty,
|
|
InvalidMonomorphization::ExpectedReturnType { span, name, in_ty, ret_ty }
|
|
);
|
|
|
|
require!(
|
|
matches!(
|
|
*element_ty1.kind(),
|
|
ty::RawPtr(p_ty, _) if p_ty == in_elem && p_ty.kind() == element_ty0.kind()
|
|
),
|
|
InvalidMonomorphization::ExpectedElementType {
|
|
span,
|
|
name,
|
|
expected_element: element_ty1,
|
|
second_arg: arg_tys[1],
|
|
in_elem,
|
|
in_ty,
|
|
mutability: ExpectedPointerMutability::Not,
|
|
}
|
|
);
|
|
|
|
let mask_elem_bitwidth = require_int_ty!(
|
|
element_ty2.kind(),
|
|
InvalidMonomorphization::ThirdArgElementType {
|
|
span,
|
|
name,
|
|
expected_element: element_ty2,
|
|
third_arg: arg_tys[2]
|
|
}
|
|
);
|
|
|
|
// Alignment of T, must be a constant integer value:
|
|
let alignment_ty = bx.type_i32();
|
|
let alignment = bx.const_i32(bx.align_of(in_elem).bytes() as i32);
|
|
|
|
// Truncate the mask vector to a vector of i1s:
|
|
let mask = vector_mask_to_bitmask(bx, args[2].immediate(), mask_elem_bitwidth, in_len);
|
|
let mask_ty = bx.type_vector(bx.type_i1(), in_len);
|
|
|
|
// Type of the vector of pointers:
|
|
let llvm_pointer_vec_ty = llvm_vector_ty(bx, element_ty1, in_len);
|
|
let llvm_pointer_vec_str = llvm_vector_str(bx, element_ty1, in_len);
|
|
|
|
// Type of the vector of elements:
|
|
let llvm_elem_vec_ty = llvm_vector_ty(bx, element_ty0, in_len);
|
|
let llvm_elem_vec_str = llvm_vector_str(bx, element_ty0, in_len);
|
|
|
|
let llvm_intrinsic =
|
|
format!("llvm.masked.gather.{llvm_elem_vec_str}.{llvm_pointer_vec_str}");
|
|
let fn_ty = bx.type_func(
|
|
&[llvm_pointer_vec_ty, alignment_ty, mask_ty, llvm_elem_vec_ty],
|
|
llvm_elem_vec_ty,
|
|
);
|
|
let f = bx.declare_cfn(&llvm_intrinsic, llvm::UnnamedAddr::No, fn_ty);
|
|
let v = bx.call(
|
|
fn_ty,
|
|
None,
|
|
None,
|
|
f,
|
|
&[args[1].immediate(), alignment, mask, args[0].immediate()],
|
|
None,
|
|
None,
|
|
);
|
|
return Ok(v);
|
|
}
|
|
|
|
if name == sym::simd_masked_load {
|
|
// simd_masked_load(mask: <N x i{M}>, pointer: *_ T, values: <N x T>) -> <N x T>
|
|
// * N: number of elements in the input vectors
|
|
// * T: type of the element to load
|
|
// * M: any integer width is supported, will be truncated to i1
|
|
// Loads contiguous elements from memory behind `pointer`, but only for
|
|
// those lanes whose `mask` bit is enabled.
|
|
// The memory addresses corresponding to the “off” lanes are not accessed.
|
|
|
|
// The element type of the "mask" argument must be a signed integer type of any width
|
|
let mask_ty = in_ty;
|
|
let (mask_len, mask_elem) = (in_len, in_elem);
|
|
|
|
// The second argument must be a pointer matching the element type
|
|
let pointer_ty = arg_tys[1];
|
|
|
|
// The last argument is a passthrough vector providing values for disabled lanes
|
|
let values_ty = arg_tys[2];
|
|
let (values_len, values_elem) = require_simd!(values_ty, SimdThird);
|
|
|
|
require_simd!(ret_ty, SimdReturn);
|
|
|
|
// Of the same length:
|
|
require!(
|
|
values_len == mask_len,
|
|
InvalidMonomorphization::ThirdArgumentLength {
|
|
span,
|
|
name,
|
|
in_len: mask_len,
|
|
in_ty: mask_ty,
|
|
arg_ty: values_ty,
|
|
out_len: values_len
|
|
}
|
|
);
|
|
|
|
// The return type must match the last argument type
|
|
require!(
|
|
ret_ty == values_ty,
|
|
InvalidMonomorphization::ExpectedReturnType { span, name, in_ty: values_ty, ret_ty }
|
|
);
|
|
|
|
require!(
|
|
matches!(
|
|
*pointer_ty.kind(),
|
|
ty::RawPtr(p_ty, _) if p_ty == values_elem && p_ty.kind() == values_elem.kind()
|
|
),
|
|
InvalidMonomorphization::ExpectedElementType {
|
|
span,
|
|
name,
|
|
expected_element: values_elem,
|
|
second_arg: pointer_ty,
|
|
in_elem: values_elem,
|
|
in_ty: values_ty,
|
|
mutability: ExpectedPointerMutability::Not,
|
|
}
|
|
);
|
|
|
|
let m_elem_bitwidth = require_int_ty!(
|
|
mask_elem.kind(),
|
|
InvalidMonomorphization::ThirdArgElementType {
|
|
span,
|
|
name,
|
|
expected_element: values_elem,
|
|
third_arg: mask_ty,
|
|
}
|
|
);
|
|
|
|
let mask = vector_mask_to_bitmask(bx, args[0].immediate(), m_elem_bitwidth, mask_len);
|
|
let mask_ty = bx.type_vector(bx.type_i1(), mask_len);
|
|
|
|
// Alignment of T, must be a constant integer value:
|
|
let alignment_ty = bx.type_i32();
|
|
let alignment = bx.const_i32(bx.align_of(values_elem).bytes() as i32);
|
|
|
|
let llvm_pointer = bx.type_ptr();
|
|
|
|
// Type of the vector of elements:
|
|
let llvm_elem_vec_ty = llvm_vector_ty(bx, values_elem, values_len);
|
|
let llvm_elem_vec_str = llvm_vector_str(bx, values_elem, values_len);
|
|
|
|
let llvm_intrinsic = format!("llvm.masked.load.{llvm_elem_vec_str}.p0");
|
|
let fn_ty = bx
|
|
.type_func(&[llvm_pointer, alignment_ty, mask_ty, llvm_elem_vec_ty], llvm_elem_vec_ty);
|
|
let f = bx.declare_cfn(&llvm_intrinsic, llvm::UnnamedAddr::No, fn_ty);
|
|
let v = bx.call(
|
|
fn_ty,
|
|
None,
|
|
None,
|
|
f,
|
|
&[args[1].immediate(), alignment, mask, args[2].immediate()],
|
|
None,
|
|
None,
|
|
);
|
|
return Ok(v);
|
|
}
|
|
|
|
if name == sym::simd_masked_store {
|
|
// simd_masked_store(mask: <N x i{M}>, pointer: *mut T, values: <N x T>) -> ()
|
|
// * N: number of elements in the input vectors
|
|
// * T: type of the element to load
|
|
// * M: any integer width is supported, will be truncated to i1
|
|
// Stores contiguous elements to memory behind `pointer`, but only for
|
|
// those lanes whose `mask` bit is enabled.
|
|
// The memory addresses corresponding to the “off” lanes are not accessed.
|
|
|
|
// The element type of the "mask" argument must be a signed integer type of any width
|
|
let mask_ty = in_ty;
|
|
let (mask_len, mask_elem) = (in_len, in_elem);
|
|
|
|
// The second argument must be a pointer matching the element type
|
|
let pointer_ty = arg_tys[1];
|
|
|
|
// The last argument specifies the values to store to memory
|
|
let values_ty = arg_tys[2];
|
|
let (values_len, values_elem) = require_simd!(values_ty, SimdThird);
|
|
|
|
// Of the same length:
|
|
require!(
|
|
values_len == mask_len,
|
|
InvalidMonomorphization::ThirdArgumentLength {
|
|
span,
|
|
name,
|
|
in_len: mask_len,
|
|
in_ty: mask_ty,
|
|
arg_ty: values_ty,
|
|
out_len: values_len
|
|
}
|
|
);
|
|
|
|
// The second argument must be a mutable pointer type matching the element type
|
|
require!(
|
|
matches!(
|
|
*pointer_ty.kind(),
|
|
ty::RawPtr(p_ty, p_mutbl)
|
|
if p_ty == values_elem && p_ty.kind() == values_elem.kind() && p_mutbl.is_mut()
|
|
),
|
|
InvalidMonomorphization::ExpectedElementType {
|
|
span,
|
|
name,
|
|
expected_element: values_elem,
|
|
second_arg: pointer_ty,
|
|
in_elem: values_elem,
|
|
in_ty: values_ty,
|
|
mutability: ExpectedPointerMutability::Mut,
|
|
}
|
|
);
|
|
|
|
let m_elem_bitwidth = require_int_ty!(
|
|
mask_elem.kind(),
|
|
InvalidMonomorphization::ThirdArgElementType {
|
|
span,
|
|
name,
|
|
expected_element: values_elem,
|
|
third_arg: mask_ty,
|
|
}
|
|
);
|
|
|
|
let mask = vector_mask_to_bitmask(bx, args[0].immediate(), m_elem_bitwidth, mask_len);
|
|
let mask_ty = bx.type_vector(bx.type_i1(), mask_len);
|
|
|
|
// Alignment of T, must be a constant integer value:
|
|
let alignment_ty = bx.type_i32();
|
|
let alignment = bx.const_i32(bx.align_of(values_elem).bytes() as i32);
|
|
|
|
let ret_t = bx.type_void();
|
|
|
|
let llvm_pointer = bx.type_ptr();
|
|
|
|
// Type of the vector of elements:
|
|
let llvm_elem_vec_ty = llvm_vector_ty(bx, values_elem, values_len);
|
|
let llvm_elem_vec_str = llvm_vector_str(bx, values_elem, values_len);
|
|
|
|
let llvm_intrinsic = format!("llvm.masked.store.{llvm_elem_vec_str}.p0");
|
|
let fn_ty = bx.type_func(&[llvm_elem_vec_ty, llvm_pointer, alignment_ty, mask_ty], ret_t);
|
|
let f = bx.declare_cfn(&llvm_intrinsic, llvm::UnnamedAddr::No, fn_ty);
|
|
let v = bx.call(
|
|
fn_ty,
|
|
None,
|
|
None,
|
|
f,
|
|
&[args[2].immediate(), args[1].immediate(), alignment, mask],
|
|
None,
|
|
None,
|
|
);
|
|
return Ok(v);
|
|
}
|
|
|
|
if name == sym::simd_scatter {
|
|
// simd_scatter(values: <N x T>, pointers: <N x *mut T>,
|
|
// mask: <N x i{M}>) -> ()
|
|
// * N: number of elements in the input vectors
|
|
// * T: type of the element to load
|
|
// * M: any integer width is supported, will be truncated to i1
|
|
|
|
// All types must be simd vector types
|
|
// The second argument must be a simd vector with an element type that's a pointer
|
|
// to the element type of the first argument
|
|
let (_, element_ty0) = require_simd!(in_ty, SimdFirst);
|
|
let (element_len1, element_ty1) = require_simd!(arg_tys[1], SimdSecond);
|
|
let (element_len2, element_ty2) = require_simd!(arg_tys[2], SimdThird);
|
|
|
|
// Of the same length:
|
|
require!(
|
|
in_len == element_len1,
|
|
InvalidMonomorphization::SecondArgumentLength {
|
|
span,
|
|
name,
|
|
in_len,
|
|
in_ty,
|
|
arg_ty: arg_tys[1],
|
|
out_len: element_len1
|
|
}
|
|
);
|
|
require!(
|
|
in_len == element_len2,
|
|
InvalidMonomorphization::ThirdArgumentLength {
|
|
span,
|
|
name,
|
|
in_len,
|
|
in_ty,
|
|
arg_ty: arg_tys[2],
|
|
out_len: element_len2
|
|
}
|
|
);
|
|
|
|
require!(
|
|
matches!(
|
|
*element_ty1.kind(),
|
|
ty::RawPtr(p_ty, p_mutbl)
|
|
if p_ty == in_elem && p_mutbl.is_mut() && p_ty.kind() == element_ty0.kind()
|
|
),
|
|
InvalidMonomorphization::ExpectedElementType {
|
|
span,
|
|
name,
|
|
expected_element: element_ty1,
|
|
second_arg: arg_tys[1],
|
|
in_elem,
|
|
in_ty,
|
|
mutability: ExpectedPointerMutability::Mut,
|
|
}
|
|
);
|
|
|
|
// The element type of the third argument must be a signed integer type of any width:
|
|
let mask_elem_bitwidth = require_int_ty!(
|
|
element_ty2.kind(),
|
|
InvalidMonomorphization::ThirdArgElementType {
|
|
span,
|
|
name,
|
|
expected_element: element_ty2,
|
|
third_arg: arg_tys[2]
|
|
}
|
|
);
|
|
|
|
// Alignment of T, must be a constant integer value:
|
|
let alignment_ty = bx.type_i32();
|
|
let alignment = bx.const_i32(bx.align_of(in_elem).bytes() as i32);
|
|
|
|
// Truncate the mask vector to a vector of i1s:
|
|
let mask = vector_mask_to_bitmask(bx, args[2].immediate(), mask_elem_bitwidth, in_len);
|
|
let mask_ty = bx.type_vector(bx.type_i1(), in_len);
|
|
|
|
let ret_t = bx.type_void();
|
|
|
|
// Type of the vector of pointers:
|
|
let llvm_pointer_vec_ty = llvm_vector_ty(bx, element_ty1, in_len);
|
|
let llvm_pointer_vec_str = llvm_vector_str(bx, element_ty1, in_len);
|
|
|
|
// Type of the vector of elements:
|
|
let llvm_elem_vec_ty = llvm_vector_ty(bx, element_ty0, in_len);
|
|
let llvm_elem_vec_str = llvm_vector_str(bx, element_ty0, in_len);
|
|
|
|
let llvm_intrinsic =
|
|
format!("llvm.masked.scatter.{llvm_elem_vec_str}.{llvm_pointer_vec_str}");
|
|
let fn_ty =
|
|
bx.type_func(&[llvm_elem_vec_ty, llvm_pointer_vec_ty, alignment_ty, mask_ty], ret_t);
|
|
let f = bx.declare_cfn(&llvm_intrinsic, llvm::UnnamedAddr::No, fn_ty);
|
|
let v = bx.call(
|
|
fn_ty,
|
|
None,
|
|
None,
|
|
f,
|
|
&[args[0].immediate(), args[1].immediate(), alignment, mask],
|
|
None,
|
|
None,
|
|
);
|
|
return Ok(v);
|
|
}
|
|
|
|
macro_rules! arith_red {
|
|
($name:ident : $integer_reduce:ident, $float_reduce:ident, $ordered:expr, $op:ident,
|
|
$identity:expr) => {
|
|
if name == sym::$name {
|
|
require!(
|
|
ret_ty == in_elem,
|
|
InvalidMonomorphization::ReturnType { span, name, in_elem, in_ty, ret_ty }
|
|
);
|
|
return match in_elem.kind() {
|
|
ty::Int(_) | ty::Uint(_) => {
|
|
let r = bx.$integer_reduce(args[0].immediate());
|
|
if $ordered {
|
|
// if overflow occurs, the result is the
|
|
// mathematical result modulo 2^n:
|
|
Ok(bx.$op(args[1].immediate(), r))
|
|
} else {
|
|
Ok(bx.$integer_reduce(args[0].immediate()))
|
|
}
|
|
}
|
|
ty::Float(f) => {
|
|
let acc = if $ordered {
|
|
// ordered arithmetic reductions take an accumulator
|
|
args[1].immediate()
|
|
} else {
|
|
// unordered arithmetic reductions use the identity accumulator
|
|
match f.bit_width() {
|
|
32 => bx.const_real(bx.type_f32(), $identity),
|
|
64 => bx.const_real(bx.type_f64(), $identity),
|
|
v => return_error!(
|
|
InvalidMonomorphization::UnsupportedSymbolOfSize {
|
|
span,
|
|
name,
|
|
symbol: sym::$name,
|
|
in_ty,
|
|
in_elem,
|
|
size: v,
|
|
ret_ty
|
|
}
|
|
),
|
|
}
|
|
};
|
|
Ok(bx.$float_reduce(acc, args[0].immediate()))
|
|
}
|
|
_ => return_error!(InvalidMonomorphization::UnsupportedSymbol {
|
|
span,
|
|
name,
|
|
symbol: sym::$name,
|
|
in_ty,
|
|
in_elem,
|
|
ret_ty
|
|
}),
|
|
};
|
|
}
|
|
};
|
|
}
|
|
|
|
arith_red!(simd_reduce_add_ordered: vector_reduce_add, vector_reduce_fadd, true, add, -0.0);
|
|
arith_red!(simd_reduce_mul_ordered: vector_reduce_mul, vector_reduce_fmul, true, mul, 1.0);
|
|
arith_red!(
|
|
simd_reduce_add_unordered: vector_reduce_add,
|
|
vector_reduce_fadd_reassoc,
|
|
false,
|
|
add,
|
|
-0.0
|
|
);
|
|
arith_red!(
|
|
simd_reduce_mul_unordered: vector_reduce_mul,
|
|
vector_reduce_fmul_reassoc,
|
|
false,
|
|
mul,
|
|
1.0
|
|
);
|
|
|
|
macro_rules! minmax_red {
|
|
($name:ident: $int_red:ident, $float_red:ident) => {
|
|
if name == sym::$name {
|
|
require!(
|
|
ret_ty == in_elem,
|
|
InvalidMonomorphization::ReturnType { span, name, in_elem, in_ty, ret_ty }
|
|
);
|
|
return match in_elem.kind() {
|
|
ty::Int(_i) => Ok(bx.$int_red(args[0].immediate(), true)),
|
|
ty::Uint(_u) => Ok(bx.$int_red(args[0].immediate(), false)),
|
|
ty::Float(_f) => Ok(bx.$float_red(args[0].immediate())),
|
|
_ => return_error!(InvalidMonomorphization::UnsupportedSymbol {
|
|
span,
|
|
name,
|
|
symbol: sym::$name,
|
|
in_ty,
|
|
in_elem,
|
|
ret_ty
|
|
}),
|
|
};
|
|
}
|
|
};
|
|
}
|
|
|
|
minmax_red!(simd_reduce_min: vector_reduce_min, vector_reduce_fmin);
|
|
minmax_red!(simd_reduce_max: vector_reduce_max, vector_reduce_fmax);
|
|
|
|
macro_rules! bitwise_red {
|
|
($name:ident : $red:ident, $boolean:expr) => {
|
|
if name == sym::$name {
|
|
let input = if !$boolean {
|
|
require!(
|
|
ret_ty == in_elem,
|
|
InvalidMonomorphization::ReturnType { span, name, in_elem, in_ty, ret_ty }
|
|
);
|
|
args[0].immediate()
|
|
} else {
|
|
let bitwidth = match in_elem.kind() {
|
|
ty::Int(i) => {
|
|
i.bit_width().unwrap_or_else(|| bx.data_layout().pointer_size.bits())
|
|
}
|
|
ty::Uint(i) => {
|
|
i.bit_width().unwrap_or_else(|| bx.data_layout().pointer_size.bits())
|
|
}
|
|
_ => return_error!(InvalidMonomorphization::UnsupportedSymbol {
|
|
span,
|
|
name,
|
|
symbol: sym::$name,
|
|
in_ty,
|
|
in_elem,
|
|
ret_ty
|
|
}),
|
|
};
|
|
|
|
vector_mask_to_bitmask(bx, args[0].immediate(), bitwidth, in_len as _)
|
|
};
|
|
return match in_elem.kind() {
|
|
ty::Int(_) | ty::Uint(_) => {
|
|
let r = bx.$red(input);
|
|
Ok(if !$boolean { r } else { bx.zext(r, bx.type_bool()) })
|
|
}
|
|
_ => return_error!(InvalidMonomorphization::UnsupportedSymbol {
|
|
span,
|
|
name,
|
|
symbol: sym::$name,
|
|
in_ty,
|
|
in_elem,
|
|
ret_ty
|
|
}),
|
|
};
|
|
}
|
|
};
|
|
}
|
|
|
|
bitwise_red!(simd_reduce_and: vector_reduce_and, false);
|
|
bitwise_red!(simd_reduce_or: vector_reduce_or, false);
|
|
bitwise_red!(simd_reduce_xor: vector_reduce_xor, false);
|
|
bitwise_red!(simd_reduce_all: vector_reduce_and, true);
|
|
bitwise_red!(simd_reduce_any: vector_reduce_or, true);
|
|
|
|
if name == sym::simd_cast_ptr {
|
|
let (out_len, out_elem) = require_simd!(ret_ty, SimdReturn);
|
|
require!(
|
|
in_len == out_len,
|
|
InvalidMonomorphization::ReturnLengthInputType {
|
|
span,
|
|
name,
|
|
in_len,
|
|
in_ty,
|
|
ret_ty,
|
|
out_len
|
|
}
|
|
);
|
|
|
|
match in_elem.kind() {
|
|
ty::RawPtr(p_ty, _) => {
|
|
let metadata = p_ty.ptr_metadata_ty(bx.tcx, |ty| {
|
|
bx.tcx.normalize_erasing_regions(bx.typing_env(), ty)
|
|
});
|
|
require!(
|
|
metadata.is_unit(),
|
|
InvalidMonomorphization::CastWidePointer { span, name, ty: in_elem }
|
|
);
|
|
}
|
|
_ => {
|
|
return_error!(InvalidMonomorphization::ExpectedPointer { span, name, ty: in_elem })
|
|
}
|
|
}
|
|
match out_elem.kind() {
|
|
ty::RawPtr(p_ty, _) => {
|
|
let metadata = p_ty.ptr_metadata_ty(bx.tcx, |ty| {
|
|
bx.tcx.normalize_erasing_regions(bx.typing_env(), ty)
|
|
});
|
|
require!(
|
|
metadata.is_unit(),
|
|
InvalidMonomorphization::CastWidePointer { span, name, ty: out_elem }
|
|
);
|
|
}
|
|
_ => {
|
|
return_error!(InvalidMonomorphization::ExpectedPointer { span, name, ty: out_elem })
|
|
}
|
|
}
|
|
|
|
return Ok(args[0].immediate());
|
|
}
|
|
|
|
if name == sym::simd_expose_provenance {
|
|
let (out_len, out_elem) = require_simd!(ret_ty, SimdReturn);
|
|
require!(
|
|
in_len == out_len,
|
|
InvalidMonomorphization::ReturnLengthInputType {
|
|
span,
|
|
name,
|
|
in_len,
|
|
in_ty,
|
|
ret_ty,
|
|
out_len
|
|
}
|
|
);
|
|
|
|
match in_elem.kind() {
|
|
ty::RawPtr(_, _) => {}
|
|
_ => {
|
|
return_error!(InvalidMonomorphization::ExpectedPointer { span, name, ty: in_elem })
|
|
}
|
|
}
|
|
match out_elem.kind() {
|
|
ty::Uint(ty::UintTy::Usize) => {}
|
|
_ => return_error!(InvalidMonomorphization::ExpectedUsize { span, name, ty: out_elem }),
|
|
}
|
|
|
|
return Ok(bx.ptrtoint(args[0].immediate(), llret_ty));
|
|
}
|
|
|
|
if name == sym::simd_with_exposed_provenance {
|
|
let (out_len, out_elem) = require_simd!(ret_ty, SimdReturn);
|
|
require!(
|
|
in_len == out_len,
|
|
InvalidMonomorphization::ReturnLengthInputType {
|
|
span,
|
|
name,
|
|
in_len,
|
|
in_ty,
|
|
ret_ty,
|
|
out_len
|
|
}
|
|
);
|
|
|
|
match in_elem.kind() {
|
|
ty::Uint(ty::UintTy::Usize) => {}
|
|
_ => return_error!(InvalidMonomorphization::ExpectedUsize { span, name, ty: in_elem }),
|
|
}
|
|
match out_elem.kind() {
|
|
ty::RawPtr(_, _) => {}
|
|
_ => {
|
|
return_error!(InvalidMonomorphization::ExpectedPointer { span, name, ty: out_elem })
|
|
}
|
|
}
|
|
|
|
return Ok(bx.inttoptr(args[0].immediate(), llret_ty));
|
|
}
|
|
|
|
if name == sym::simd_cast || name == sym::simd_as {
|
|
let (out_len, out_elem) = require_simd!(ret_ty, SimdReturn);
|
|
require!(
|
|
in_len == out_len,
|
|
InvalidMonomorphization::ReturnLengthInputType {
|
|
span,
|
|
name,
|
|
in_len,
|
|
in_ty,
|
|
ret_ty,
|
|
out_len
|
|
}
|
|
);
|
|
// casting cares about nominal type, not just structural type
|
|
if in_elem == out_elem {
|
|
return Ok(args[0].immediate());
|
|
}
|
|
|
|
#[derive(Copy, Clone)]
|
|
enum Sign {
|
|
Unsigned,
|
|
Signed,
|
|
}
|
|
use Sign::*;
|
|
|
|
enum Style {
|
|
Float,
|
|
Int(Sign),
|
|
Unsupported,
|
|
}
|
|
|
|
let (in_style, in_width) = match in_elem.kind() {
|
|
// vectors of pointer-sized integers should've been
|
|
// disallowed before here, so this unwrap is safe.
|
|
ty::Int(i) => (
|
|
Style::Int(Signed),
|
|
i.normalize(bx.tcx().sess.target.pointer_width).bit_width().unwrap(),
|
|
),
|
|
ty::Uint(u) => (
|
|
Style::Int(Unsigned),
|
|
u.normalize(bx.tcx().sess.target.pointer_width).bit_width().unwrap(),
|
|
),
|
|
ty::Float(f) => (Style::Float, f.bit_width()),
|
|
_ => (Style::Unsupported, 0),
|
|
};
|
|
let (out_style, out_width) = match out_elem.kind() {
|
|
ty::Int(i) => (
|
|
Style::Int(Signed),
|
|
i.normalize(bx.tcx().sess.target.pointer_width).bit_width().unwrap(),
|
|
),
|
|
ty::Uint(u) => (
|
|
Style::Int(Unsigned),
|
|
u.normalize(bx.tcx().sess.target.pointer_width).bit_width().unwrap(),
|
|
),
|
|
ty::Float(f) => (Style::Float, f.bit_width()),
|
|
_ => (Style::Unsupported, 0),
|
|
};
|
|
|
|
match (in_style, out_style) {
|
|
(Style::Int(sign), Style::Int(_)) => {
|
|
return Ok(match in_width.cmp(&out_width) {
|
|
Ordering::Greater => bx.trunc(args[0].immediate(), llret_ty),
|
|
Ordering::Equal => args[0].immediate(),
|
|
Ordering::Less => match sign {
|
|
Sign::Signed => bx.sext(args[0].immediate(), llret_ty),
|
|
Sign::Unsigned => bx.zext(args[0].immediate(), llret_ty),
|
|
},
|
|
});
|
|
}
|
|
(Style::Int(Sign::Signed), Style::Float) => {
|
|
return Ok(bx.sitofp(args[0].immediate(), llret_ty));
|
|
}
|
|
(Style::Int(Sign::Unsigned), Style::Float) => {
|
|
return Ok(bx.uitofp(args[0].immediate(), llret_ty));
|
|
}
|
|
(Style::Float, Style::Int(sign)) => {
|
|
return Ok(match (sign, name == sym::simd_as) {
|
|
(Sign::Unsigned, false) => bx.fptoui(args[0].immediate(), llret_ty),
|
|
(Sign::Signed, false) => bx.fptosi(args[0].immediate(), llret_ty),
|
|
(_, true) => bx.cast_float_to_int(
|
|
matches!(sign, Sign::Signed),
|
|
args[0].immediate(),
|
|
llret_ty,
|
|
),
|
|
});
|
|
}
|
|
(Style::Float, Style::Float) => {
|
|
return Ok(match in_width.cmp(&out_width) {
|
|
Ordering::Greater => bx.fptrunc(args[0].immediate(), llret_ty),
|
|
Ordering::Equal => args[0].immediate(),
|
|
Ordering::Less => bx.fpext(args[0].immediate(), llret_ty),
|
|
});
|
|
}
|
|
_ => { /* Unsupported. Fallthrough. */ }
|
|
}
|
|
return_error!(InvalidMonomorphization::UnsupportedCast {
|
|
span,
|
|
name,
|
|
in_ty,
|
|
in_elem,
|
|
ret_ty,
|
|
out_elem
|
|
});
|
|
}
|
|
macro_rules! arith_binary {
|
|
($($name: ident: $($($p: ident),* => $call: ident),*;)*) => {
|
|
$(if name == sym::$name {
|
|
match in_elem.kind() {
|
|
$($(ty::$p(_))|* => {
|
|
return Ok(bx.$call(args[0].immediate(), args[1].immediate()))
|
|
})*
|
|
_ => {},
|
|
}
|
|
return_error!(
|
|
InvalidMonomorphization::UnsupportedOperation { span, name, in_ty, in_elem }
|
|
);
|
|
})*
|
|
}
|
|
}
|
|
arith_binary! {
|
|
simd_add: Uint, Int => add, Float => fadd;
|
|
simd_sub: Uint, Int => sub, Float => fsub;
|
|
simd_mul: Uint, Int => mul, Float => fmul;
|
|
simd_div: Uint => udiv, Int => sdiv, Float => fdiv;
|
|
simd_rem: Uint => urem, Int => srem, Float => frem;
|
|
simd_shl: Uint, Int => shl;
|
|
simd_shr: Uint => lshr, Int => ashr;
|
|
simd_and: Uint, Int => and;
|
|
simd_or: Uint, Int => or;
|
|
simd_xor: Uint, Int => xor;
|
|
simd_fmax: Float => maxnum;
|
|
simd_fmin: Float => minnum;
|
|
|
|
}
|
|
macro_rules! arith_unary {
|
|
($($name: ident: $($($p: ident),* => $call: ident),*;)*) => {
|
|
$(if name == sym::$name {
|
|
match in_elem.kind() {
|
|
$($(ty::$p(_))|* => {
|
|
return Ok(bx.$call(args[0].immediate()))
|
|
})*
|
|
_ => {},
|
|
}
|
|
return_error!(
|
|
InvalidMonomorphization::UnsupportedOperation { span, name, in_ty, in_elem }
|
|
);
|
|
})*
|
|
}
|
|
}
|
|
arith_unary! {
|
|
simd_neg: Int => neg, Float => fneg;
|
|
}
|
|
|
|
// Unary integer intrinsics
|
|
if matches!(
|
|
name,
|
|
sym::simd_bswap | sym::simd_bitreverse | sym::simd_ctlz | sym::simd_ctpop | sym::simd_cttz
|
|
) {
|
|
let vec_ty = bx.cx.type_vector(
|
|
match *in_elem.kind() {
|
|
ty::Int(i) => bx.cx.type_int_from_ty(i),
|
|
ty::Uint(i) => bx.cx.type_uint_from_ty(i),
|
|
_ => return_error!(InvalidMonomorphization::UnsupportedOperation {
|
|
span,
|
|
name,
|
|
in_ty,
|
|
in_elem
|
|
}),
|
|
},
|
|
in_len as u64,
|
|
);
|
|
let intrinsic_name = match name {
|
|
sym::simd_bswap => "bswap",
|
|
sym::simd_bitreverse => "bitreverse",
|
|
sym::simd_ctlz => "ctlz",
|
|
sym::simd_ctpop => "ctpop",
|
|
sym::simd_cttz => "cttz",
|
|
_ => unreachable!(),
|
|
};
|
|
let int_size = in_elem.int_size_and_signed(bx.tcx()).0.bits();
|
|
let llvm_intrinsic = &format!("llvm.{}.v{}i{}", intrinsic_name, in_len, int_size,);
|
|
|
|
return match name {
|
|
// byte swap is no-op for i8/u8
|
|
sym::simd_bswap if int_size == 8 => Ok(args[0].immediate()),
|
|
sym::simd_ctlz | sym::simd_cttz => {
|
|
// for the (int, i1 immediate) pair, the second arg adds `(0, true) => poison`
|
|
let fn_ty = bx.type_func(&[vec_ty, bx.type_i1()], vec_ty);
|
|
let dont_poison_on_zero = bx.const_int(bx.type_i1(), 0);
|
|
let f = bx.declare_cfn(llvm_intrinsic, llvm::UnnamedAddr::No, fn_ty);
|
|
Ok(bx.call(
|
|
fn_ty,
|
|
None,
|
|
None,
|
|
f,
|
|
&[args[0].immediate(), dont_poison_on_zero],
|
|
None,
|
|
None,
|
|
))
|
|
}
|
|
sym::simd_bswap | sym::simd_bitreverse | sym::simd_ctpop => {
|
|
// simple unary argument cases
|
|
let fn_ty = bx.type_func(&[vec_ty], vec_ty);
|
|
let f = bx.declare_cfn(llvm_intrinsic, llvm::UnnamedAddr::No, fn_ty);
|
|
Ok(bx.call(fn_ty, None, None, f, &[args[0].immediate()], None, None))
|
|
}
|
|
_ => unreachable!(),
|
|
};
|
|
}
|
|
|
|
if name == sym::simd_arith_offset {
|
|
// This also checks that the first operand is a ptr type.
|
|
let pointee = in_elem.builtin_deref(true).unwrap_or_else(|| {
|
|
span_bug!(span, "must be called with a vector of pointer types as first argument")
|
|
});
|
|
let layout = bx.layout_of(pointee);
|
|
let ptrs = args[0].immediate();
|
|
// The second argument must be a ptr-sized integer.
|
|
// (We don't care about the signedness, this is wrapping anyway.)
|
|
let (_offsets_len, offsets_elem) = arg_tys[1].simd_size_and_type(bx.tcx());
|
|
if !matches!(offsets_elem.kind(), ty::Int(ty::IntTy::Isize) | ty::Uint(ty::UintTy::Usize)) {
|
|
span_bug!(
|
|
span,
|
|
"must be called with a vector of pointer-sized integers as second argument"
|
|
);
|
|
}
|
|
let offsets = args[1].immediate();
|
|
|
|
return Ok(bx.gep(bx.backend_type(layout), ptrs, &[offsets]));
|
|
}
|
|
|
|
if name == sym::simd_saturating_add || name == sym::simd_saturating_sub {
|
|
let lhs = args[0].immediate();
|
|
let rhs = args[1].immediate();
|
|
let is_add = name == sym::simd_saturating_add;
|
|
let ptr_bits = bx.tcx().data_layout.pointer_size.bits() as _;
|
|
let (signed, elem_width, elem_ty) = match *in_elem.kind() {
|
|
ty::Int(i) => (true, i.bit_width().unwrap_or(ptr_bits), bx.cx.type_int_from_ty(i)),
|
|
ty::Uint(i) => (false, i.bit_width().unwrap_or(ptr_bits), bx.cx.type_uint_from_ty(i)),
|
|
_ => {
|
|
return_error!(InvalidMonomorphization::ExpectedVectorElementType {
|
|
span,
|
|
name,
|
|
expected_element: arg_tys[0].simd_size_and_type(bx.tcx()).1,
|
|
vector_type: arg_tys[0]
|
|
});
|
|
}
|
|
};
|
|
let llvm_intrinsic = &format!(
|
|
"llvm.{}{}.sat.v{}i{}",
|
|
if signed { 's' } else { 'u' },
|
|
if is_add { "add" } else { "sub" },
|
|
in_len,
|
|
elem_width
|
|
);
|
|
let vec_ty = bx.cx.type_vector(elem_ty, in_len as u64);
|
|
|
|
let fn_ty = bx.type_func(&[vec_ty, vec_ty], vec_ty);
|
|
let f = bx.declare_cfn(llvm_intrinsic, llvm::UnnamedAddr::No, fn_ty);
|
|
let v = bx.call(fn_ty, None, None, f, &[lhs, rhs], None, None);
|
|
return Ok(v);
|
|
}
|
|
|
|
span_bug!(span, "unknown SIMD intrinsic");
|
|
}
|