rust/compiler/rustc_codegen_gcc/src/abi.rs
Matthias Krüger 644f06ec1f
Rollup merge of #141569 - workingjubilee:canonicalize-abi, r=bjorn3
Replace ad-hoc ABI "adjustments" with an `AbiMap` to `CanonAbi`

Our `conv_from_spec_abi`, `adjust_abi`, and `is_abi_supported` combine to give us a very confusing way of reasoning about what _actual_ calling convention we want to lower our code to and whether we want to compile the resulting code at all. Instead of leaving this code as a miniature adventure game in which someone tries to combine stateful mutations into a Rube Goldberg machine that will let them escape the maze and arrive at the promised land of codegen, we let `AbiMap` devour this complexity. Once you have an `AbiMap`, you can answer which `ExternAbi`s will lower to what `CanonAbi`s (and whether they will lower at all).

Removed:
- `conv_from_spec_abi` replaced by `AbiMap::canonize_abi`
- `adjust_abi` replaced by same
- `Conv::PreserveAll` as unused
- `Conv::Cold` as unused
- `enum Conv` replaced by `enum CanonAbi`

target-spec.json changes:
- If you have a target-spec.json then now your "entry-abi" key will be specified in terms of one of the `"{abi}"` strings Rust recognizes, e.g.
```json
    "entry-abi": "C",
    "entry-abi": "win64",
    "entry-abi": "aapcs",
```
2025-06-03 21:53:36 +02:00

279 lines
11 KiB
Rust

#[cfg(feature = "master")]
use gccjit::FnAttribute;
use gccjit::{ToLValue, ToRValue, Type};
use rustc_abi::{ArmCall, CanonAbi, InterruptKind, Reg, RegKind, X86Call};
use rustc_codegen_ssa::traits::{AbiBuilderMethods, BaseTypeCodegenMethods};
use rustc_data_structures::fx::FxHashSet;
use rustc_middle::bug;
use rustc_middle::ty::Ty;
use rustc_middle::ty::layout::LayoutOf;
#[cfg(feature = "master")]
use rustc_session::config;
use rustc_target::callconv::{ArgAttributes, CastTarget, FnAbi, PassMode};
use crate::builder::Builder;
use crate::context::CodegenCx;
use crate::type_of::LayoutGccExt;
impl AbiBuilderMethods for Builder<'_, '_, '_> {
fn get_param(&mut self, index: usize) -> Self::Value {
let func = self.current_func();
let param = func.get_param(index as i32);
let on_stack = if let Some(on_stack_param_indices) =
self.on_stack_function_params.borrow().get(&func)
{
on_stack_param_indices.contains(&index)
} else {
false
};
if on_stack { param.to_lvalue().get_address(None) } else { param.to_rvalue() }
}
}
impl GccType for CastTarget {
fn gcc_type<'gcc>(&self, cx: &CodegenCx<'gcc, '_>) -> Type<'gcc> {
let rest_gcc_unit = self.rest.unit.gcc_type(cx);
let (rest_count, rem_bytes) = if self.rest.unit.size.bytes() == 0 {
(0, 0)
} else {
(
self.rest.total.bytes() / self.rest.unit.size.bytes(),
self.rest.total.bytes() % self.rest.unit.size.bytes(),
)
};
if self.prefix.iter().all(|x| x.is_none()) {
// Simplify to a single unit when there is no prefix and size <= unit size
if self.rest.total <= self.rest.unit.size {
return rest_gcc_unit;
}
// Simplify to array when all chunks are the same size and type
if rem_bytes == 0 {
return cx.type_array(rest_gcc_unit, rest_count);
}
}
// Create list of fields in the main structure
let mut args: Vec<_> = self
.prefix
.iter()
.flat_map(|option_reg| option_reg.map(|reg| reg.gcc_type(cx)))
.chain((0..rest_count).map(|_| rest_gcc_unit))
.collect();
// Append final integer
if rem_bytes != 0 {
// Only integers can be really split further.
assert_eq!(self.rest.unit.kind, RegKind::Integer);
args.push(cx.type_ix(rem_bytes * 8));
}
cx.type_struct(&args, false)
}
}
pub trait GccType {
fn gcc_type<'gcc>(&self, cx: &CodegenCx<'gcc, '_>) -> Type<'gcc>;
}
impl GccType for Reg {
fn gcc_type<'gcc>(&self, cx: &CodegenCx<'gcc, '_>) -> Type<'gcc> {
match self.kind {
RegKind::Integer => cx.type_ix(self.size.bits()),
RegKind::Float => match self.size.bits() {
32 => cx.type_f32(),
64 => cx.type_f64(),
_ => bug!("unsupported float: {:?}", self),
},
RegKind::Vector => unimplemented!(), //cx.type_vector(cx.type_i8(), self.size.bytes()),
}
}
}
pub struct FnAbiGcc<'gcc> {
pub return_type: Type<'gcc>,
pub arguments_type: Vec<Type<'gcc>>,
pub is_c_variadic: bool,
pub on_stack_param_indices: FxHashSet<usize>,
#[cfg(feature = "master")]
pub fn_attributes: Vec<FnAttribute<'gcc>>,
}
pub trait FnAbiGccExt<'gcc, 'tcx> {
// TODO(antoyo): return a function pointer type instead?
fn gcc_type(&self, cx: &CodegenCx<'gcc, 'tcx>) -> FnAbiGcc<'gcc>;
fn ptr_to_gcc_type(&self, cx: &CodegenCx<'gcc, 'tcx>) -> Type<'gcc>;
#[cfg(feature = "master")]
fn gcc_cconv(&self, cx: &CodegenCx<'gcc, 'tcx>) -> Option<FnAttribute<'gcc>>;
}
impl<'gcc, 'tcx> FnAbiGccExt<'gcc, 'tcx> for FnAbi<'tcx, Ty<'tcx>> {
fn gcc_type(&self, cx: &CodegenCx<'gcc, 'tcx>) -> FnAbiGcc<'gcc> {
let mut on_stack_param_indices = FxHashSet::default();
// This capacity calculation is approximate.
let mut argument_tys = Vec::with_capacity(
self.args.len() + if let PassMode::Indirect { .. } = self.ret.mode { 1 } else { 0 },
);
let return_type = match self.ret.mode {
PassMode::Ignore => cx.type_void(),
PassMode::Direct(_) | PassMode::Pair(..) => self.ret.layout.immediate_gcc_type(cx),
PassMode::Cast { ref cast, .. } => cast.gcc_type(cx),
PassMode::Indirect { .. } => {
argument_tys.push(cx.type_ptr_to(self.ret.layout.gcc_type(cx)));
cx.type_void()
}
};
#[cfg(feature = "master")]
let mut non_null_args = Vec::new();
#[cfg(feature = "master")]
let mut apply_attrs = |mut ty: Type<'gcc>, attrs: &ArgAttributes, arg_index: usize| {
if cx.sess().opts.optimize == config::OptLevel::No {
return ty;
}
if attrs.regular.contains(rustc_target::callconv::ArgAttribute::NoAlias) {
ty = ty.make_restrict()
}
if attrs.regular.contains(rustc_target::callconv::ArgAttribute::NonNull) {
non_null_args.push(arg_index as i32 + 1);
}
ty
};
#[cfg(not(feature = "master"))]
let apply_attrs = |ty: Type<'gcc>, _attrs: &ArgAttributes, _arg_index: usize| ty;
for arg in self.args.iter() {
let arg_ty = match arg.mode {
PassMode::Ignore => continue,
PassMode::Pair(a, b) => {
let arg_pos = argument_tys.len();
argument_tys.push(apply_attrs(
arg.layout.scalar_pair_element_gcc_type(cx, 0),
&a,
arg_pos,
));
argument_tys.push(apply_attrs(
arg.layout.scalar_pair_element_gcc_type(cx, 1),
&b,
arg_pos + 1,
));
continue;
}
PassMode::Cast { ref cast, pad_i32 } => {
// add padding
if pad_i32 {
argument_tys.push(Reg::i32().gcc_type(cx));
}
let ty = cast.gcc_type(cx);
apply_attrs(ty, &cast.attrs, argument_tys.len())
}
PassMode::Indirect { attrs: _, meta_attrs: None, on_stack: true } => {
// This is a "byval" argument, so we don't apply the `restrict` attribute on it.
on_stack_param_indices.insert(argument_tys.len());
arg.layout.gcc_type(cx)
}
PassMode::Direct(attrs) => {
apply_attrs(arg.layout.immediate_gcc_type(cx), &attrs, argument_tys.len())
}
PassMode::Indirect { attrs, meta_attrs: None, on_stack: false } => {
apply_attrs(cx.type_ptr_to(arg.layout.gcc_type(cx)), &attrs, argument_tys.len())
}
PassMode::Indirect { attrs, meta_attrs: Some(meta_attrs), on_stack } => {
assert!(!on_stack);
// Construct the type of a (wide) pointer to `ty`, and pass its two fields.
// Any two ABI-compatible unsized types have the same metadata type and
// moreover the same metadata value leads to the same dynamic size and
// alignment, so this respects ABI compatibility.
let ptr_ty = Ty::new_mut_ptr(cx.tcx, arg.layout.ty);
let ptr_layout = cx.layout_of(ptr_ty);
let typ1 = ptr_layout.scalar_pair_element_gcc_type(cx, 0);
let typ2 = ptr_layout.scalar_pair_element_gcc_type(cx, 1);
argument_tys.push(apply_attrs(typ1, &attrs, argument_tys.len()));
argument_tys.push(apply_attrs(typ2, &meta_attrs, argument_tys.len()));
continue;
}
};
argument_tys.push(arg_ty);
}
#[cfg(feature = "master")]
let fn_attrs = if non_null_args.is_empty() {
Vec::new()
} else {
vec![FnAttribute::NonNull(non_null_args)]
};
FnAbiGcc {
return_type,
arguments_type: argument_tys,
is_c_variadic: self.c_variadic,
on_stack_param_indices,
#[cfg(feature = "master")]
fn_attributes: fn_attrs,
}
}
fn ptr_to_gcc_type(&self, cx: &CodegenCx<'gcc, 'tcx>) -> Type<'gcc> {
// FIXME(antoyo): Should we do something with `FnAbiGcc::fn_attributes`?
let FnAbiGcc { return_type, arguments_type, is_c_variadic, on_stack_param_indices, .. } =
self.gcc_type(cx);
let pointer_type =
cx.context.new_function_pointer_type(None, return_type, &arguments_type, is_c_variadic);
cx.on_stack_params.borrow_mut().insert(
pointer_type.dyncast_function_ptr_type().expect("function ptr type"),
on_stack_param_indices,
);
pointer_type
}
#[cfg(feature = "master")]
fn gcc_cconv(&self, cx: &CodegenCx<'gcc, 'tcx>) -> Option<FnAttribute<'gcc>> {
conv_to_fn_attribute(self.conv, &cx.tcx.sess.target.arch)
}
}
#[cfg(feature = "master")]
pub fn conv_to_fn_attribute<'gcc>(conv: CanonAbi, arch: &str) -> Option<FnAttribute<'gcc>> {
let attribute = match conv {
CanonAbi::C | CanonAbi::Rust => return None,
CanonAbi::Arm(arm_call) => match arm_call {
ArmCall::CCmseNonSecureCall => FnAttribute::ArmCmseNonsecureCall,
ArmCall::CCmseNonSecureEntry => FnAttribute::ArmCmseNonsecureEntry,
ArmCall::Aapcs => FnAttribute::ArmPcs("aapcs"),
},
CanonAbi::RustCold => FnAttribute::Cold,
CanonAbi::GpuKernel => {
if arch == "amdgpu" {
FnAttribute::GcnAmdGpuHsaKernel
} else if arch == "nvptx64" {
FnAttribute::NvptxKernel
} else {
panic!("Architecture {} does not support GpuKernel calling convention", arch);
}
}
// TODO(antoyo): check if those AVR attributes are mapped correctly.
CanonAbi::Interrupt(interrupt_kind) => match interrupt_kind {
InterruptKind::Avr => FnAttribute::AvrSignal,
InterruptKind::AvrNonBlocking => FnAttribute::AvrInterrupt,
InterruptKind::Msp430 => FnAttribute::Msp430Interrupt,
InterruptKind::RiscvMachine => FnAttribute::RiscvInterrupt("machine"),
InterruptKind::RiscvSupervisor => FnAttribute::RiscvInterrupt("supervisor"),
InterruptKind::X86 => FnAttribute::X86Interrupt,
},
CanonAbi::X86(x86_call) => match x86_call {
X86Call::Fastcall => FnAttribute::X86FastCall,
X86Call::Stdcall => FnAttribute::X86Stdcall,
X86Call::Thiscall => FnAttribute::X86ThisCall,
// // NOTE: the vectorcall calling convention is not yet implemented in GCC:
// // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=89485
X86Call::Vectorcall => return None,
X86Call::SysV64 => FnAttribute::X86SysvAbi,
X86Call::Win64 => FnAttribute::X86MsAbi,
},
};
Some(attribute)
}