mirror of
https://github.com/rust-lang/rust.git
synced 2025-05-03 05:27:36 +00:00
3227 lines
125 KiB
Rust
3227 lines
125 KiB
Rust
//! Lints in the Rust compiler.
|
|
//!
|
|
//! This contains lints which can feasibly be implemented as their own
|
|
//! AST visitor. Also see `rustc_session::lint::builtin`, which contains the
|
|
//! definitions of lints that are emitted directly inside the main compiler.
|
|
//!
|
|
//! To add a new lint to rustc, declare it here using `declare_lint!()`.
|
|
//! Then add code to emit the new lint in the appropriate circumstances.
|
|
//! You can do that in an existing `LintPass` if it makes sense, or in a
|
|
//! new `LintPass`, or using `Session::add_lint` elsewhere in the
|
|
//! compiler. Only do the latter if the check can't be written cleanly as a
|
|
//! `LintPass` (also, note that such lints will need to be defined in
|
|
//! `rustc_session::lint::builtin`, not here).
|
|
//!
|
|
//! If you define a new `EarlyLintPass`, you will also need to add it to the
|
|
//! `add_early_builtin!` or `add_early_builtin_with_new!` invocation in
|
|
//! `lib.rs`. Use the former for unit-like structs and the latter for structs
|
|
//! with a `pub fn new()`.
|
|
//!
|
|
//! If you define a new `LateLintPass`, you will also need to add it to the
|
|
//! `late_lint_methods!` invocation in `lib.rs`.
|
|
|
|
use crate::{
|
|
types::{transparent_newtype_field, CItemKind},
|
|
EarlyContext, EarlyLintPass, LateContext, LateLintPass, LintContext,
|
|
};
|
|
use rustc_ast::attr;
|
|
use rustc_ast::tokenstream::{TokenStream, TokenTree};
|
|
use rustc_ast::visit::{FnCtxt, FnKind};
|
|
use rustc_ast::{self as ast, *};
|
|
use rustc_ast_pretty::pprust::{self, expr_to_string};
|
|
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
|
|
use rustc_data_structures::stack::ensure_sufficient_stack;
|
|
use rustc_errors::{Applicability, Diagnostic, DiagnosticStyledString, MultiSpan};
|
|
use rustc_feature::{deprecated_attributes, AttributeGate, BuiltinAttribute, GateIssue, Stability};
|
|
use rustc_hir as hir;
|
|
use rustc_hir::def::{DefKind, Res};
|
|
use rustc_hir::def_id::{DefId, LocalDefId, LocalDefIdSet, CRATE_DEF_ID};
|
|
use rustc_hir::{ForeignItemKind, GenericParamKind, HirId, PatKind, PredicateOrigin};
|
|
use rustc_index::vec::Idx;
|
|
use rustc_middle::lint::{in_external_macro, LintDiagnosticBuilder};
|
|
use rustc_middle::ty::layout::{LayoutError, LayoutOf};
|
|
use rustc_middle::ty::print::with_no_trimmed_paths;
|
|
use rustc_middle::ty::subst::GenericArgKind;
|
|
use rustc_middle::ty::Instance;
|
|
use rustc_middle::ty::{self, Ty, TyCtxt};
|
|
use rustc_session::lint::{BuiltinLintDiagnostics, FutureIncompatibilityReason};
|
|
use rustc_span::edition::Edition;
|
|
use rustc_span::source_map::Spanned;
|
|
use rustc_span::symbol::{kw, sym, Ident, Symbol};
|
|
use rustc_span::{BytePos, InnerSpan, Span};
|
|
use rustc_target::abi::VariantIdx;
|
|
use rustc_trait_selection::traits::{self, misc::can_type_implement_copy};
|
|
|
|
use crate::nonstandard_style::{method_context, MethodLateContext};
|
|
|
|
use std::fmt::Write;
|
|
use tracing::{debug, trace};
|
|
|
|
// hardwired lints from librustc_middle
|
|
pub use rustc_session::lint::builtin::*;
|
|
|
|
declare_lint! {
|
|
/// The `while_true` lint detects `while true { }`.
|
|
///
|
|
/// ### Example
|
|
///
|
|
/// ```rust,no_run
|
|
/// while true {
|
|
///
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// {{produces}}
|
|
///
|
|
/// ### Explanation
|
|
///
|
|
/// `while true` should be replaced with `loop`. A `loop` expression is
|
|
/// the preferred way to write an infinite loop because it more directly
|
|
/// expresses the intent of the loop.
|
|
WHILE_TRUE,
|
|
Warn,
|
|
"suggest using `loop { }` instead of `while true { }`"
|
|
}
|
|
|
|
declare_lint_pass!(WhileTrue => [WHILE_TRUE]);
|
|
|
|
/// Traverse through any amount of parenthesis and return the first non-parens expression.
|
|
fn pierce_parens(mut expr: &ast::Expr) -> &ast::Expr {
|
|
while let ast::ExprKind::Paren(sub) = &expr.kind {
|
|
expr = sub;
|
|
}
|
|
expr
|
|
}
|
|
|
|
impl EarlyLintPass for WhileTrue {
|
|
fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
|
|
if let ast::ExprKind::While(cond, _, label) = &e.kind {
|
|
if let ast::ExprKind::Lit(ref lit) = pierce_parens(cond).kind {
|
|
if let ast::LitKind::Bool(true) = lit.kind {
|
|
if !lit.span.from_expansion() {
|
|
let msg = "denote infinite loops with `loop { ... }`";
|
|
let condition_span = e.span.with_hi(cond.span.hi());
|
|
cx.struct_span_lint(WHILE_TRUE, condition_span, |lint| {
|
|
lint.build(msg)
|
|
.span_suggestion_short(
|
|
condition_span,
|
|
"use `loop`",
|
|
format!(
|
|
"{}loop",
|
|
label.map_or_else(String::new, |label| format!(
|
|
"{}: ",
|
|
label.ident,
|
|
))
|
|
),
|
|
Applicability::MachineApplicable,
|
|
)
|
|
.emit();
|
|
})
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
declare_lint! {
|
|
/// The `box_pointers` lints use of the Box type.
|
|
///
|
|
/// ### Example
|
|
///
|
|
/// ```rust,compile_fail
|
|
/// #![deny(box_pointers)]
|
|
/// struct Foo {
|
|
/// x: Box<isize>,
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// {{produces}}
|
|
///
|
|
/// ### Explanation
|
|
///
|
|
/// This lint is mostly historical, and not particularly useful. `Box<T>`
|
|
/// used to be built into the language, and the only way to do heap
|
|
/// allocation. Today's Rust can call into other allocators, etc.
|
|
BOX_POINTERS,
|
|
Allow,
|
|
"use of owned (Box type) heap memory"
|
|
}
|
|
|
|
declare_lint_pass!(BoxPointers => [BOX_POINTERS]);
|
|
|
|
impl BoxPointers {
|
|
fn check_heap_type(&self, cx: &LateContext<'_>, span: Span, ty: Ty<'_>) {
|
|
for leaf in ty.walk() {
|
|
if let GenericArgKind::Type(leaf_ty) = leaf.unpack() {
|
|
if leaf_ty.is_box() {
|
|
cx.struct_span_lint(BOX_POINTERS, span, |lint| {
|
|
lint.build(&format!("type uses owned (Box type) pointers: {}", ty)).emit();
|
|
});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'tcx> LateLintPass<'tcx> for BoxPointers {
|
|
fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
|
|
match it.kind {
|
|
hir::ItemKind::Fn(..)
|
|
| hir::ItemKind::TyAlias(..)
|
|
| hir::ItemKind::Enum(..)
|
|
| hir::ItemKind::Struct(..)
|
|
| hir::ItemKind::Union(..) => {
|
|
self.check_heap_type(cx, it.span, cx.tcx.type_of(it.def_id))
|
|
}
|
|
_ => (),
|
|
}
|
|
|
|
// If it's a struct, we also have to check the fields' types
|
|
match it.kind {
|
|
hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
|
|
for struct_field in struct_def.fields() {
|
|
let def_id = cx.tcx.hir().local_def_id(struct_field.hir_id);
|
|
self.check_heap_type(cx, struct_field.span, cx.tcx.type_of(def_id));
|
|
}
|
|
}
|
|
_ => (),
|
|
}
|
|
}
|
|
|
|
fn check_expr(&mut self, cx: &LateContext<'_>, e: &hir::Expr<'_>) {
|
|
let ty = cx.typeck_results().node_type(e.hir_id);
|
|
self.check_heap_type(cx, e.span, ty);
|
|
}
|
|
}
|
|
|
|
declare_lint! {
|
|
/// The `non_shorthand_field_patterns` lint detects using `Struct { x: x }`
|
|
/// instead of `Struct { x }` in a pattern.
|
|
///
|
|
/// ### Example
|
|
///
|
|
/// ```rust
|
|
/// struct Point {
|
|
/// x: i32,
|
|
/// y: i32,
|
|
/// }
|
|
///
|
|
///
|
|
/// fn main() {
|
|
/// let p = Point {
|
|
/// x: 5,
|
|
/// y: 5,
|
|
/// };
|
|
///
|
|
/// match p {
|
|
/// Point { x: x, y: y } => (),
|
|
/// }
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// {{produces}}
|
|
///
|
|
/// ### Explanation
|
|
///
|
|
/// The preferred style is to avoid the repetition of specifying both the
|
|
/// field name and the binding name if both identifiers are the same.
|
|
NON_SHORTHAND_FIELD_PATTERNS,
|
|
Warn,
|
|
"using `Struct { x: x }` instead of `Struct { x }` in a pattern"
|
|
}
|
|
|
|
declare_lint_pass!(NonShorthandFieldPatterns => [NON_SHORTHAND_FIELD_PATTERNS]);
|
|
|
|
impl<'tcx> LateLintPass<'tcx> for NonShorthandFieldPatterns {
|
|
fn check_pat(&mut self, cx: &LateContext<'_>, pat: &hir::Pat<'_>) {
|
|
if let PatKind::Struct(ref qpath, field_pats, _) = pat.kind {
|
|
let variant = cx
|
|
.typeck_results()
|
|
.pat_ty(pat)
|
|
.ty_adt_def()
|
|
.expect("struct pattern type is not an ADT")
|
|
.variant_of_res(cx.qpath_res(qpath, pat.hir_id));
|
|
for fieldpat in field_pats {
|
|
if fieldpat.is_shorthand {
|
|
continue;
|
|
}
|
|
if fieldpat.span.from_expansion() {
|
|
// Don't lint if this is a macro expansion: macro authors
|
|
// shouldn't have to worry about this kind of style issue
|
|
// (Issue #49588)
|
|
continue;
|
|
}
|
|
if let PatKind::Binding(binding_annot, _, ident, None) = fieldpat.pat.kind {
|
|
if cx.tcx.find_field_index(ident, &variant)
|
|
== Some(cx.tcx.field_index(fieldpat.hir_id, cx.typeck_results()))
|
|
{
|
|
cx.struct_span_lint(NON_SHORTHAND_FIELD_PATTERNS, fieldpat.span, |lint| {
|
|
let mut err = lint
|
|
.build(&format!("the `{}:` in this pattern is redundant", ident));
|
|
let binding = match binding_annot {
|
|
hir::BindingAnnotation::Unannotated => None,
|
|
hir::BindingAnnotation::Mutable => Some("mut"),
|
|
hir::BindingAnnotation::Ref => Some("ref"),
|
|
hir::BindingAnnotation::RefMut => Some("ref mut"),
|
|
};
|
|
let ident = if let Some(binding) = binding {
|
|
format!("{} {}", binding, ident)
|
|
} else {
|
|
ident.to_string()
|
|
};
|
|
err.span_suggestion(
|
|
fieldpat.span,
|
|
"use shorthand field pattern",
|
|
ident,
|
|
Applicability::MachineApplicable,
|
|
);
|
|
err.emit();
|
|
});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
declare_lint! {
|
|
/// The `unsafe_code` lint catches usage of `unsafe` code.
|
|
///
|
|
/// ### Example
|
|
///
|
|
/// ```rust,compile_fail
|
|
/// #![deny(unsafe_code)]
|
|
/// fn main() {
|
|
/// unsafe {
|
|
///
|
|
/// }
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// {{produces}}
|
|
///
|
|
/// ### Explanation
|
|
///
|
|
/// This lint is intended to restrict the usage of `unsafe`, which can be
|
|
/// difficult to use correctly.
|
|
UNSAFE_CODE,
|
|
Allow,
|
|
"usage of `unsafe` code"
|
|
}
|
|
|
|
declare_lint_pass!(UnsafeCode => [UNSAFE_CODE]);
|
|
|
|
impl UnsafeCode {
|
|
fn report_unsafe(
|
|
&self,
|
|
cx: &EarlyContext<'_>,
|
|
span: Span,
|
|
decorate: impl for<'a> FnOnce(LintDiagnosticBuilder<'a, ()>),
|
|
) {
|
|
// This comes from a macro that has `#[allow_internal_unsafe]`.
|
|
if span.allows_unsafe() {
|
|
return;
|
|
}
|
|
|
|
cx.struct_span_lint(UNSAFE_CODE, span, decorate);
|
|
}
|
|
|
|
fn report_overridden_symbol_name(&self, cx: &EarlyContext<'_>, span: Span, msg: &str) {
|
|
self.report_unsafe(cx, span, |lint| {
|
|
lint.build(msg)
|
|
.note(
|
|
"the linker's behavior with multiple libraries exporting duplicate symbol \
|
|
names is undefined and Rust cannot provide guarantees when you manually \
|
|
override them",
|
|
)
|
|
.emit();
|
|
})
|
|
}
|
|
|
|
fn report_overridden_symbol_section(&self, cx: &EarlyContext<'_>, span: Span, msg: &str) {
|
|
self.report_unsafe(cx, span, |lint| {
|
|
lint.build(msg)
|
|
.note(
|
|
"the program's behavior with overridden link sections on items is unpredictable \
|
|
and Rust cannot provide guarantees when you manually override them",
|
|
)
|
|
.emit();
|
|
})
|
|
}
|
|
}
|
|
|
|
impl EarlyLintPass for UnsafeCode {
|
|
fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) {
|
|
if attr.has_name(sym::allow_internal_unsafe) {
|
|
self.report_unsafe(cx, attr.span, |lint| {
|
|
lint.build(
|
|
"`allow_internal_unsafe` allows defining \
|
|
macros using unsafe without triggering \
|
|
the `unsafe_code` lint at their call site",
|
|
)
|
|
.emit();
|
|
});
|
|
}
|
|
}
|
|
|
|
fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
|
|
if let ast::ExprKind::Block(ref blk, _) = e.kind {
|
|
// Don't warn about generated blocks; that'll just pollute the output.
|
|
if blk.rules == ast::BlockCheckMode::Unsafe(ast::UserProvided) {
|
|
self.report_unsafe(cx, blk.span, |lint| {
|
|
lint.build("usage of an `unsafe` block").emit();
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
fn check_item(&mut self, cx: &EarlyContext<'_>, it: &ast::Item) {
|
|
match it.kind {
|
|
ast::ItemKind::Trait(box ast::Trait { unsafety: ast::Unsafe::Yes(_), .. }) => self
|
|
.report_unsafe(cx, it.span, |lint| {
|
|
lint.build("declaration of an `unsafe` trait").emit();
|
|
}),
|
|
|
|
ast::ItemKind::Impl(box ast::Impl { unsafety: ast::Unsafe::Yes(_), .. }) => self
|
|
.report_unsafe(cx, it.span, |lint| {
|
|
lint.build("implementation of an `unsafe` trait").emit();
|
|
}),
|
|
|
|
ast::ItemKind::Fn(..) => {
|
|
if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) {
|
|
self.report_overridden_symbol_name(
|
|
cx,
|
|
attr.span,
|
|
"declaration of a `no_mangle` function",
|
|
);
|
|
}
|
|
|
|
if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) {
|
|
self.report_overridden_symbol_name(
|
|
cx,
|
|
attr.span,
|
|
"declaration of a function with `export_name`",
|
|
);
|
|
}
|
|
|
|
if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::link_section) {
|
|
self.report_overridden_symbol_section(
|
|
cx,
|
|
attr.span,
|
|
"declaration of a function with `link_section`",
|
|
);
|
|
}
|
|
}
|
|
|
|
ast::ItemKind::Static(..) => {
|
|
if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) {
|
|
self.report_overridden_symbol_name(
|
|
cx,
|
|
attr.span,
|
|
"declaration of a `no_mangle` static",
|
|
);
|
|
}
|
|
|
|
if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) {
|
|
self.report_overridden_symbol_name(
|
|
cx,
|
|
attr.span,
|
|
"declaration of a static with `export_name`",
|
|
);
|
|
}
|
|
|
|
if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::link_section) {
|
|
self.report_overridden_symbol_section(
|
|
cx,
|
|
attr.span,
|
|
"declaration of a static with `link_section`",
|
|
);
|
|
}
|
|
}
|
|
|
|
_ => {}
|
|
}
|
|
}
|
|
|
|
fn check_impl_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
|
|
if let ast::AssocItemKind::Fn(..) = it.kind {
|
|
if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) {
|
|
self.report_overridden_symbol_name(
|
|
cx,
|
|
attr.span,
|
|
"declaration of a `no_mangle` method",
|
|
);
|
|
}
|
|
if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) {
|
|
self.report_overridden_symbol_name(
|
|
cx,
|
|
attr.span,
|
|
"declaration of a method with `export_name`",
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn check_fn(&mut self, cx: &EarlyContext<'_>, fk: FnKind<'_>, span: Span, _: ast::NodeId) {
|
|
if let FnKind::Fn(
|
|
ctxt,
|
|
_,
|
|
ast::FnSig { header: ast::FnHeader { unsafety: ast::Unsafe::Yes(_), .. }, .. },
|
|
_,
|
|
_,
|
|
body,
|
|
) = fk
|
|
{
|
|
let msg = match ctxt {
|
|
FnCtxt::Foreign => return,
|
|
FnCtxt::Free => "declaration of an `unsafe` function",
|
|
FnCtxt::Assoc(_) if body.is_none() => "declaration of an `unsafe` method",
|
|
FnCtxt::Assoc(_) => "implementation of an `unsafe` method",
|
|
};
|
|
self.report_unsafe(cx, span, |lint| {
|
|
lint.build(msg).emit();
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
declare_lint! {
|
|
/// The `missing_docs` lint detects missing documentation for public items.
|
|
///
|
|
/// ### Example
|
|
///
|
|
/// ```rust,compile_fail
|
|
/// #![deny(missing_docs)]
|
|
/// pub fn foo() {}
|
|
/// ```
|
|
///
|
|
/// {{produces}}
|
|
///
|
|
/// ### Explanation
|
|
///
|
|
/// This lint is intended to ensure that a library is well-documented.
|
|
/// Items without documentation can be difficult for users to understand
|
|
/// how to use properly.
|
|
///
|
|
/// This lint is "allow" by default because it can be noisy, and not all
|
|
/// projects may want to enforce everything to be documented.
|
|
pub MISSING_DOCS,
|
|
Allow,
|
|
"detects missing documentation for public members",
|
|
report_in_external_macro
|
|
}
|
|
|
|
pub struct MissingDoc {
|
|
/// Stack of whether `#[doc(hidden)]` is set at each level which has lint attributes.
|
|
doc_hidden_stack: Vec<bool>,
|
|
}
|
|
|
|
impl_lint_pass!(MissingDoc => [MISSING_DOCS]);
|
|
|
|
fn has_doc(attr: &ast::Attribute) -> bool {
|
|
if attr.is_doc_comment() {
|
|
return true;
|
|
}
|
|
|
|
if !attr.has_name(sym::doc) {
|
|
return false;
|
|
}
|
|
|
|
if attr.value_str().is_some() {
|
|
return true;
|
|
}
|
|
|
|
if let Some(list) = attr.meta_item_list() {
|
|
for meta in list {
|
|
if meta.has_name(sym::hidden) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
false
|
|
}
|
|
|
|
impl MissingDoc {
|
|
pub fn new() -> MissingDoc {
|
|
MissingDoc { doc_hidden_stack: vec![false] }
|
|
}
|
|
|
|
fn doc_hidden(&self) -> bool {
|
|
*self.doc_hidden_stack.last().expect("empty doc_hidden_stack")
|
|
}
|
|
|
|
fn check_missing_docs_attrs(
|
|
&self,
|
|
cx: &LateContext<'_>,
|
|
def_id: LocalDefId,
|
|
sp: Span,
|
|
article: &'static str,
|
|
desc: &'static str,
|
|
) {
|
|
// If we're building a test harness, then warning about
|
|
// documentation is probably not really relevant right now.
|
|
if cx.sess().opts.test {
|
|
return;
|
|
}
|
|
|
|
// `#[doc(hidden)]` disables missing_docs check.
|
|
if self.doc_hidden() {
|
|
return;
|
|
}
|
|
|
|
// Only check publicly-visible items, using the result from the privacy pass.
|
|
// It's an option so the crate root can also use this function (it doesn't
|
|
// have a `NodeId`).
|
|
if def_id != CRATE_DEF_ID {
|
|
if !cx.access_levels.is_exported(def_id) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
let attrs = cx.tcx.hir().attrs(cx.tcx.hir().local_def_id_to_hir_id(def_id));
|
|
let has_doc = attrs.iter().any(has_doc);
|
|
if !has_doc {
|
|
cx.struct_span_lint(
|
|
MISSING_DOCS,
|
|
cx.tcx.sess.source_map().guess_head_span(sp),
|
|
|lint| {
|
|
lint.build(&format!("missing documentation for {} {}", article, desc)).emit();
|
|
},
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'tcx> LateLintPass<'tcx> for MissingDoc {
|
|
fn enter_lint_attrs(&mut self, _cx: &LateContext<'_>, attrs: &[ast::Attribute]) {
|
|
let doc_hidden = self.doc_hidden()
|
|
|| attrs.iter().any(|attr| {
|
|
attr.has_name(sym::doc)
|
|
&& match attr.meta_item_list() {
|
|
None => false,
|
|
Some(l) => attr::list_contains_name(&l, sym::hidden),
|
|
}
|
|
});
|
|
self.doc_hidden_stack.push(doc_hidden);
|
|
}
|
|
|
|
fn exit_lint_attrs(&mut self, _: &LateContext<'_>, _attrs: &[ast::Attribute]) {
|
|
self.doc_hidden_stack.pop().expect("empty doc_hidden_stack");
|
|
}
|
|
|
|
fn check_crate(&mut self, cx: &LateContext<'_>) {
|
|
self.check_missing_docs_attrs(
|
|
cx,
|
|
CRATE_DEF_ID,
|
|
cx.tcx.def_span(CRATE_DEF_ID),
|
|
"the",
|
|
"crate",
|
|
);
|
|
}
|
|
|
|
fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
|
|
match it.kind {
|
|
hir::ItemKind::Trait(..) => {
|
|
// Issue #11592: traits are always considered exported, even when private.
|
|
if cx.tcx.visibility(it.def_id)
|
|
== ty::Visibility::Restricted(
|
|
cx.tcx.parent_module_from_def_id(it.def_id).to_def_id(),
|
|
)
|
|
{
|
|
return;
|
|
}
|
|
}
|
|
hir::ItemKind::TyAlias(..)
|
|
| hir::ItemKind::Fn(..)
|
|
| hir::ItemKind::Macro(..)
|
|
| hir::ItemKind::Mod(..)
|
|
| hir::ItemKind::Enum(..)
|
|
| hir::ItemKind::Struct(..)
|
|
| hir::ItemKind::Union(..)
|
|
| hir::ItemKind::Const(..)
|
|
| hir::ItemKind::Static(..) => {}
|
|
|
|
_ => return,
|
|
};
|
|
|
|
let (article, desc) = cx.tcx.article_and_description(it.def_id.to_def_id());
|
|
|
|
self.check_missing_docs_attrs(cx, it.def_id, it.span, article, desc);
|
|
}
|
|
|
|
fn check_trait_item(&mut self, cx: &LateContext<'_>, trait_item: &hir::TraitItem<'_>) {
|
|
let (article, desc) = cx.tcx.article_and_description(trait_item.def_id.to_def_id());
|
|
|
|
self.check_missing_docs_attrs(cx, trait_item.def_id, trait_item.span, article, desc);
|
|
}
|
|
|
|
fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
|
|
// If the method is an impl for a trait, don't doc.
|
|
if method_context(cx, impl_item.hir_id()) == MethodLateContext::TraitImpl {
|
|
return;
|
|
}
|
|
|
|
// If the method is an impl for an item with docs_hidden, don't doc.
|
|
if method_context(cx, impl_item.hir_id()) == MethodLateContext::PlainImpl {
|
|
let parent = cx.tcx.hir().get_parent_item(impl_item.hir_id());
|
|
let impl_ty = cx.tcx.type_of(parent);
|
|
let outerdef = match impl_ty.kind() {
|
|
ty::Adt(def, _) => Some(def.did()),
|
|
ty::Foreign(def_id) => Some(*def_id),
|
|
_ => None,
|
|
};
|
|
let is_hidden = match outerdef {
|
|
Some(id) => cx.tcx.is_doc_hidden(id),
|
|
None => false,
|
|
};
|
|
if is_hidden {
|
|
return;
|
|
}
|
|
}
|
|
|
|
let (article, desc) = cx.tcx.article_and_description(impl_item.def_id.to_def_id());
|
|
self.check_missing_docs_attrs(cx, impl_item.def_id, impl_item.span, article, desc);
|
|
}
|
|
|
|
fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'_>) {
|
|
let (article, desc) = cx.tcx.article_and_description(foreign_item.def_id.to_def_id());
|
|
self.check_missing_docs_attrs(cx, foreign_item.def_id, foreign_item.span, article, desc);
|
|
}
|
|
|
|
fn check_field_def(&mut self, cx: &LateContext<'_>, sf: &hir::FieldDef<'_>) {
|
|
if !sf.is_positional() {
|
|
let def_id = cx.tcx.hir().local_def_id(sf.hir_id);
|
|
self.check_missing_docs_attrs(cx, def_id, sf.span, "a", "struct field")
|
|
}
|
|
}
|
|
|
|
fn check_variant(&mut self, cx: &LateContext<'_>, v: &hir::Variant<'_>) {
|
|
self.check_missing_docs_attrs(cx, cx.tcx.hir().local_def_id(v.id), v.span, "a", "variant");
|
|
}
|
|
}
|
|
|
|
declare_lint! {
|
|
/// The `missing_copy_implementations` lint detects potentially-forgotten
|
|
/// implementations of [`Copy`].
|
|
///
|
|
/// [`Copy`]: https://doc.rust-lang.org/std/marker/trait.Copy.html
|
|
///
|
|
/// ### Example
|
|
///
|
|
/// ```rust,compile_fail
|
|
/// #![deny(missing_copy_implementations)]
|
|
/// pub struct Foo {
|
|
/// pub field: i32
|
|
/// }
|
|
/// # fn main() {}
|
|
/// ```
|
|
///
|
|
/// {{produces}}
|
|
///
|
|
/// ### Explanation
|
|
///
|
|
/// Historically (before 1.0), types were automatically marked as `Copy`
|
|
/// if possible. This was changed so that it required an explicit opt-in
|
|
/// by implementing the `Copy` trait. As part of this change, a lint was
|
|
/// added to alert if a copyable type was not marked `Copy`.
|
|
///
|
|
/// This lint is "allow" by default because this code isn't bad; it is
|
|
/// common to write newtypes like this specifically so that a `Copy` type
|
|
/// is no longer `Copy`. `Copy` types can result in unintended copies of
|
|
/// large data which can impact performance.
|
|
pub MISSING_COPY_IMPLEMENTATIONS,
|
|
Allow,
|
|
"detects potentially-forgotten implementations of `Copy`"
|
|
}
|
|
|
|
declare_lint_pass!(MissingCopyImplementations => [MISSING_COPY_IMPLEMENTATIONS]);
|
|
|
|
impl<'tcx> LateLintPass<'tcx> for MissingCopyImplementations {
|
|
fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
|
|
if !cx.access_levels.is_reachable(item.def_id) {
|
|
return;
|
|
}
|
|
let (def, ty) = match item.kind {
|
|
hir::ItemKind::Struct(_, ref ast_generics) => {
|
|
if !ast_generics.params.is_empty() {
|
|
return;
|
|
}
|
|
let def = cx.tcx.adt_def(item.def_id);
|
|
(def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
|
|
}
|
|
hir::ItemKind::Union(_, ref ast_generics) => {
|
|
if !ast_generics.params.is_empty() {
|
|
return;
|
|
}
|
|
let def = cx.tcx.adt_def(item.def_id);
|
|
(def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
|
|
}
|
|
hir::ItemKind::Enum(_, ref ast_generics) => {
|
|
if !ast_generics.params.is_empty() {
|
|
return;
|
|
}
|
|
let def = cx.tcx.adt_def(item.def_id);
|
|
(def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
|
|
}
|
|
_ => return,
|
|
};
|
|
if def.has_dtor(cx.tcx) {
|
|
return;
|
|
}
|
|
let param_env = ty::ParamEnv::empty();
|
|
if ty.is_copy_modulo_regions(cx.tcx.at(item.span), param_env) {
|
|
return;
|
|
}
|
|
if can_type_implement_copy(
|
|
cx.tcx,
|
|
param_env,
|
|
ty,
|
|
traits::ObligationCause::misc(item.span, item.hir_id()),
|
|
)
|
|
.is_ok()
|
|
{
|
|
cx.struct_span_lint(MISSING_COPY_IMPLEMENTATIONS, item.span, |lint| {
|
|
lint.build(
|
|
"type could implement `Copy`; consider adding `impl \
|
|
Copy`",
|
|
)
|
|
.emit();
|
|
})
|
|
}
|
|
}
|
|
}
|
|
|
|
declare_lint! {
|
|
/// The `missing_debug_implementations` lint detects missing
|
|
/// implementations of [`fmt::Debug`].
|
|
///
|
|
/// [`fmt::Debug`]: https://doc.rust-lang.org/std/fmt/trait.Debug.html
|
|
///
|
|
/// ### Example
|
|
///
|
|
/// ```rust,compile_fail
|
|
/// #![deny(missing_debug_implementations)]
|
|
/// pub struct Foo;
|
|
/// # fn main() {}
|
|
/// ```
|
|
///
|
|
/// {{produces}}
|
|
///
|
|
/// ### Explanation
|
|
///
|
|
/// Having a `Debug` implementation on all types can assist with
|
|
/// debugging, as it provides a convenient way to format and display a
|
|
/// value. Using the `#[derive(Debug)]` attribute will automatically
|
|
/// generate a typical implementation, or a custom implementation can be
|
|
/// added by manually implementing the `Debug` trait.
|
|
///
|
|
/// This lint is "allow" by default because adding `Debug` to all types can
|
|
/// have a negative impact on compile time and code size. It also requires
|
|
/// boilerplate to be added to every type, which can be an impediment.
|
|
MISSING_DEBUG_IMPLEMENTATIONS,
|
|
Allow,
|
|
"detects missing implementations of Debug"
|
|
}
|
|
|
|
#[derive(Default)]
|
|
pub struct MissingDebugImplementations {
|
|
impling_types: Option<LocalDefIdSet>,
|
|
}
|
|
|
|
impl_lint_pass!(MissingDebugImplementations => [MISSING_DEBUG_IMPLEMENTATIONS]);
|
|
|
|
impl<'tcx> LateLintPass<'tcx> for MissingDebugImplementations {
|
|
fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
|
|
if !cx.access_levels.is_reachable(item.def_id) {
|
|
return;
|
|
}
|
|
|
|
match item.kind {
|
|
hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) | hir::ItemKind::Enum(..) => {}
|
|
_ => return,
|
|
}
|
|
|
|
let Some(debug) = cx.tcx.get_diagnostic_item(sym::Debug) else {
|
|
return
|
|
};
|
|
|
|
if self.impling_types.is_none() {
|
|
let mut impls = LocalDefIdSet::default();
|
|
cx.tcx.for_each_impl(debug, |d| {
|
|
if let Some(ty_def) = cx.tcx.type_of(d).ty_adt_def() {
|
|
if let Some(def_id) = ty_def.did().as_local() {
|
|
impls.insert(def_id);
|
|
}
|
|
}
|
|
});
|
|
|
|
self.impling_types = Some(impls);
|
|
debug!("{:?}", self.impling_types);
|
|
}
|
|
|
|
if !self.impling_types.as_ref().unwrap().contains(&item.def_id) {
|
|
cx.struct_span_lint(MISSING_DEBUG_IMPLEMENTATIONS, item.span, |lint| {
|
|
lint.build(&format!(
|
|
"type does not implement `{}`; consider adding `#[derive(Debug)]` \
|
|
or a manual implementation",
|
|
cx.tcx.def_path_str(debug)
|
|
))
|
|
.emit();
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
declare_lint! {
|
|
/// The `anonymous_parameters` lint detects anonymous parameters in trait
|
|
/// definitions.
|
|
///
|
|
/// ### Example
|
|
///
|
|
/// ```rust,edition2015,compile_fail
|
|
/// #![deny(anonymous_parameters)]
|
|
/// // edition 2015
|
|
/// pub trait Foo {
|
|
/// fn foo(usize);
|
|
/// }
|
|
/// fn main() {}
|
|
/// ```
|
|
///
|
|
/// {{produces}}
|
|
///
|
|
/// ### Explanation
|
|
///
|
|
/// This syntax is mostly a historical accident, and can be worked around
|
|
/// quite easily by adding an `_` pattern or a descriptive identifier:
|
|
///
|
|
/// ```rust
|
|
/// trait Foo {
|
|
/// fn foo(_: usize);
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// This syntax is now a hard error in the 2018 edition. In the 2015
|
|
/// edition, this lint is "warn" by default. This lint
|
|
/// enables the [`cargo fix`] tool with the `--edition` flag to
|
|
/// automatically transition old code from the 2015 edition to 2018. The
|
|
/// tool will run this lint and automatically apply the
|
|
/// suggested fix from the compiler (which is to add `_` to each
|
|
/// parameter). This provides a completely automated way to update old
|
|
/// code for a new edition. See [issue #41686] for more details.
|
|
///
|
|
/// [issue #41686]: https://github.com/rust-lang/rust/issues/41686
|
|
/// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
|
|
pub ANONYMOUS_PARAMETERS,
|
|
Warn,
|
|
"detects anonymous parameters",
|
|
@future_incompatible = FutureIncompatibleInfo {
|
|
reference: "issue #41686 <https://github.com/rust-lang/rust/issues/41686>",
|
|
reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018),
|
|
};
|
|
}
|
|
|
|
declare_lint_pass!(
|
|
/// Checks for use of anonymous parameters (RFC 1685).
|
|
AnonymousParameters => [ANONYMOUS_PARAMETERS]
|
|
);
|
|
|
|
impl EarlyLintPass for AnonymousParameters {
|
|
fn check_trait_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
|
|
if cx.sess().edition() != Edition::Edition2015 {
|
|
// This is a hard error in future editions; avoid linting and erroring
|
|
return;
|
|
}
|
|
if let ast::AssocItemKind::Fn(box Fn { ref sig, .. }) = it.kind {
|
|
for arg in sig.decl.inputs.iter() {
|
|
if let ast::PatKind::Ident(_, ident, None) = arg.pat.kind {
|
|
if ident.name == kw::Empty {
|
|
cx.struct_span_lint(ANONYMOUS_PARAMETERS, arg.pat.span, |lint| {
|
|
let ty_snip = cx.sess().source_map().span_to_snippet(arg.ty.span);
|
|
|
|
let (ty_snip, appl) = if let Ok(ref snip) = ty_snip {
|
|
(snip.as_str(), Applicability::MachineApplicable)
|
|
} else {
|
|
("<type>", Applicability::HasPlaceholders)
|
|
};
|
|
|
|
lint.build(
|
|
"anonymous parameters are deprecated and will be \
|
|
removed in the next edition",
|
|
)
|
|
.span_suggestion(
|
|
arg.pat.span,
|
|
"try naming the parameter or explicitly \
|
|
ignoring it",
|
|
format!("_: {}", ty_snip),
|
|
appl,
|
|
)
|
|
.emit();
|
|
})
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Check for use of attributes which have been deprecated.
|
|
#[derive(Clone)]
|
|
pub struct DeprecatedAttr {
|
|
// This is not free to compute, so we want to keep it around, rather than
|
|
// compute it for every attribute.
|
|
depr_attrs: Vec<&'static BuiltinAttribute>,
|
|
}
|
|
|
|
impl_lint_pass!(DeprecatedAttr => []);
|
|
|
|
impl DeprecatedAttr {
|
|
pub fn new() -> DeprecatedAttr {
|
|
DeprecatedAttr { depr_attrs: deprecated_attributes() }
|
|
}
|
|
}
|
|
|
|
fn lint_deprecated_attr(
|
|
cx: &EarlyContext<'_>,
|
|
attr: &ast::Attribute,
|
|
msg: &str,
|
|
suggestion: Option<&str>,
|
|
) {
|
|
cx.struct_span_lint(DEPRECATED, attr.span, |lint| {
|
|
lint.build(msg)
|
|
.span_suggestion_short(
|
|
attr.span,
|
|
suggestion.unwrap_or("remove this attribute"),
|
|
"",
|
|
Applicability::MachineApplicable,
|
|
)
|
|
.emit();
|
|
})
|
|
}
|
|
|
|
impl EarlyLintPass for DeprecatedAttr {
|
|
fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) {
|
|
for BuiltinAttribute { name, gate, .. } in &self.depr_attrs {
|
|
if attr.ident().map(|ident| ident.name) == Some(*name) {
|
|
if let &AttributeGate::Gated(
|
|
Stability::Deprecated(link, suggestion),
|
|
name,
|
|
reason,
|
|
_,
|
|
) = gate
|
|
{
|
|
let msg =
|
|
format!("use of deprecated attribute `{}`: {}. See {}", name, reason, link);
|
|
lint_deprecated_attr(cx, attr, &msg, suggestion);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
if attr.has_name(sym::no_start) || attr.has_name(sym::crate_id) {
|
|
let path_str = pprust::path_to_string(&attr.get_normal_item().path);
|
|
let msg = format!("use of deprecated attribute `{}`: no longer used.", path_str);
|
|
lint_deprecated_attr(cx, attr, &msg, None);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn warn_if_doc(cx: &EarlyContext<'_>, node_span: Span, node_kind: &str, attrs: &[ast::Attribute]) {
|
|
use rustc_ast::token::CommentKind;
|
|
|
|
let mut attrs = attrs.iter().peekable();
|
|
|
|
// Accumulate a single span for sugared doc comments.
|
|
let mut sugared_span: Option<Span> = None;
|
|
|
|
while let Some(attr) = attrs.next() {
|
|
let is_doc_comment = attr.is_doc_comment();
|
|
if is_doc_comment {
|
|
sugared_span =
|
|
Some(sugared_span.map_or(attr.span, |span| span.with_hi(attr.span.hi())));
|
|
}
|
|
|
|
if attrs.peek().map_or(false, |next_attr| next_attr.is_doc_comment()) {
|
|
continue;
|
|
}
|
|
|
|
let span = sugared_span.take().unwrap_or(attr.span);
|
|
|
|
if is_doc_comment || attr.has_name(sym::doc) {
|
|
cx.struct_span_lint(UNUSED_DOC_COMMENTS, span, |lint| {
|
|
let mut err = lint.build("unused doc comment");
|
|
err.span_label(
|
|
node_span,
|
|
format!("rustdoc does not generate documentation for {}", node_kind),
|
|
);
|
|
match attr.kind {
|
|
AttrKind::DocComment(CommentKind::Line, _) | AttrKind::Normal(..) => {
|
|
err.help("use `//` for a plain comment");
|
|
}
|
|
AttrKind::DocComment(CommentKind::Block, _) => {
|
|
err.help("use `/* */` for a plain comment");
|
|
}
|
|
}
|
|
err.emit();
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
impl EarlyLintPass for UnusedDocComment {
|
|
fn check_stmt(&mut self, cx: &EarlyContext<'_>, stmt: &ast::Stmt) {
|
|
let kind = match stmt.kind {
|
|
ast::StmtKind::Local(..) => "statements",
|
|
// Disabled pending discussion in #78306
|
|
ast::StmtKind::Item(..) => return,
|
|
// expressions will be reported by `check_expr`.
|
|
ast::StmtKind::Empty
|
|
| ast::StmtKind::Semi(_)
|
|
| ast::StmtKind::Expr(_)
|
|
| ast::StmtKind::MacCall(_) => return,
|
|
};
|
|
|
|
warn_if_doc(cx, stmt.span, kind, stmt.kind.attrs());
|
|
}
|
|
|
|
fn check_arm(&mut self, cx: &EarlyContext<'_>, arm: &ast::Arm) {
|
|
let arm_span = arm.pat.span.with_hi(arm.body.span.hi());
|
|
warn_if_doc(cx, arm_span, "match arms", &arm.attrs);
|
|
}
|
|
|
|
fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &ast::Expr) {
|
|
warn_if_doc(cx, expr.span, "expressions", &expr.attrs);
|
|
}
|
|
|
|
fn check_generic_param(&mut self, cx: &EarlyContext<'_>, param: &ast::GenericParam) {
|
|
warn_if_doc(cx, param.ident.span, "generic parameters", ¶m.attrs);
|
|
}
|
|
|
|
fn check_block(&mut self, cx: &EarlyContext<'_>, block: &ast::Block) {
|
|
warn_if_doc(cx, block.span, "block", &block.attrs());
|
|
}
|
|
|
|
fn check_item(&mut self, cx: &EarlyContext<'_>, item: &ast::Item) {
|
|
if let ast::ItemKind::ForeignMod(_) = item.kind {
|
|
warn_if_doc(cx, item.span, "extern block", &item.attrs);
|
|
}
|
|
}
|
|
}
|
|
|
|
declare_lint! {
|
|
/// The `no_mangle_const_items` lint detects any `const` items with the
|
|
/// [`no_mangle` attribute].
|
|
///
|
|
/// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
|
|
///
|
|
/// ### Example
|
|
///
|
|
/// ```rust,compile_fail
|
|
/// #[no_mangle]
|
|
/// const FOO: i32 = 5;
|
|
/// ```
|
|
///
|
|
/// {{produces}}
|
|
///
|
|
/// ### Explanation
|
|
///
|
|
/// Constants do not have their symbols exported, and therefore, this
|
|
/// probably means you meant to use a [`static`], not a [`const`].
|
|
///
|
|
/// [`static`]: https://doc.rust-lang.org/reference/items/static-items.html
|
|
/// [`const`]: https://doc.rust-lang.org/reference/items/constant-items.html
|
|
NO_MANGLE_CONST_ITEMS,
|
|
Deny,
|
|
"const items will not have their symbols exported"
|
|
}
|
|
|
|
declare_lint! {
|
|
/// The `no_mangle_generic_items` lint detects generic items that must be
|
|
/// mangled.
|
|
///
|
|
/// ### Example
|
|
///
|
|
/// ```rust
|
|
/// #[no_mangle]
|
|
/// fn foo<T>(t: T) {
|
|
///
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// {{produces}}
|
|
///
|
|
/// ### Explanation
|
|
///
|
|
/// A function with generics must have its symbol mangled to accommodate
|
|
/// the generic parameter. The [`no_mangle` attribute] has no effect in
|
|
/// this situation, and should be removed.
|
|
///
|
|
/// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
|
|
NO_MANGLE_GENERIC_ITEMS,
|
|
Warn,
|
|
"generic items must be mangled"
|
|
}
|
|
|
|
declare_lint_pass!(InvalidNoMangleItems => [NO_MANGLE_CONST_ITEMS, NO_MANGLE_GENERIC_ITEMS]);
|
|
|
|
impl<'tcx> LateLintPass<'tcx> for InvalidNoMangleItems {
|
|
fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
|
|
let attrs = cx.tcx.hir().attrs(it.hir_id());
|
|
let check_no_mangle_on_generic_fn = |no_mangle_attr: &ast::Attribute,
|
|
impl_generics: Option<&hir::Generics<'_>>,
|
|
generics: &hir::Generics<'_>,
|
|
span| {
|
|
for param in
|
|
generics.params.iter().chain(impl_generics.map(|g| g.params).into_iter().flatten())
|
|
{
|
|
match param.kind {
|
|
GenericParamKind::Lifetime { .. } => {}
|
|
GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
|
|
cx.struct_span_lint(NO_MANGLE_GENERIC_ITEMS, span, |lint| {
|
|
lint.build("functions generic over types or consts must be mangled")
|
|
.span_suggestion_short(
|
|
no_mangle_attr.span,
|
|
"remove this attribute",
|
|
"",
|
|
// Use of `#[no_mangle]` suggests FFI intent; correct
|
|
// fix may be to monomorphize source by hand
|
|
Applicability::MaybeIncorrect,
|
|
)
|
|
.emit();
|
|
});
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
match it.kind {
|
|
hir::ItemKind::Fn(.., ref generics, _) => {
|
|
if let Some(no_mangle_attr) = cx.sess().find_by_name(attrs, sym::no_mangle) {
|
|
check_no_mangle_on_generic_fn(no_mangle_attr, None, generics, it.span);
|
|
}
|
|
}
|
|
hir::ItemKind::Const(..) => {
|
|
if cx.sess().contains_name(attrs, sym::no_mangle) {
|
|
// Const items do not refer to a particular location in memory, and therefore
|
|
// don't have anything to attach a symbol to
|
|
cx.struct_span_lint(NO_MANGLE_CONST_ITEMS, it.span, |lint| {
|
|
let msg = "const items should never be `#[no_mangle]`";
|
|
let mut err = lint.build(msg);
|
|
|
|
// account for "pub const" (#45562)
|
|
let start = cx
|
|
.tcx
|
|
.sess
|
|
.source_map()
|
|
.span_to_snippet(it.span)
|
|
.map(|snippet| snippet.find("const").unwrap_or(0))
|
|
.unwrap_or(0) as u32;
|
|
// `const` is 5 chars
|
|
let const_span = it.span.with_hi(BytePos(it.span.lo().0 + start + 5));
|
|
err.span_suggestion(
|
|
const_span,
|
|
"try a static value",
|
|
"pub static",
|
|
Applicability::MachineApplicable,
|
|
);
|
|
err.emit();
|
|
});
|
|
}
|
|
}
|
|
hir::ItemKind::Impl(hir::Impl { generics, items, .. }) => {
|
|
for it in *items {
|
|
if let hir::AssocItemKind::Fn { .. } = it.kind {
|
|
if let Some(no_mangle_attr) = cx
|
|
.sess()
|
|
.find_by_name(cx.tcx.hir().attrs(it.id.hir_id()), sym::no_mangle)
|
|
{
|
|
check_no_mangle_on_generic_fn(
|
|
no_mangle_attr,
|
|
Some(generics),
|
|
cx.tcx.hir().get_generics(it.id.def_id).unwrap(),
|
|
it.span,
|
|
);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
}
|
|
|
|
declare_lint! {
|
|
/// The `mutable_transmutes` lint catches transmuting from `&T` to `&mut
|
|
/// T` because it is [undefined behavior].
|
|
///
|
|
/// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
|
|
///
|
|
/// ### Example
|
|
///
|
|
/// ```rust,compile_fail
|
|
/// unsafe {
|
|
/// let y = std::mem::transmute::<&i32, &mut i32>(&5);
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// {{produces}}
|
|
///
|
|
/// ### Explanation
|
|
///
|
|
/// Certain assumptions are made about aliasing of data, and this transmute
|
|
/// violates those assumptions. Consider using [`UnsafeCell`] instead.
|
|
///
|
|
/// [`UnsafeCell`]: https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html
|
|
MUTABLE_TRANSMUTES,
|
|
Deny,
|
|
"transmuting &T to &mut T is undefined behavior, even if the reference is unused"
|
|
}
|
|
|
|
declare_lint_pass!(MutableTransmutes => [MUTABLE_TRANSMUTES]);
|
|
|
|
impl<'tcx> LateLintPass<'tcx> for MutableTransmutes {
|
|
fn check_expr(&mut self, cx: &LateContext<'_>, expr: &hir::Expr<'_>) {
|
|
if let Some((&ty::Ref(_, _, from_mt), &ty::Ref(_, _, to_mt))) =
|
|
get_transmute_from_to(cx, expr).map(|(ty1, ty2)| (ty1.kind(), ty2.kind()))
|
|
{
|
|
if to_mt == hir::Mutability::Mut && from_mt == hir::Mutability::Not {
|
|
let msg = "transmuting &T to &mut T is undefined behavior, \
|
|
even if the reference is unused, consider instead using an UnsafeCell";
|
|
cx.struct_span_lint(MUTABLE_TRANSMUTES, expr.span, |lint| {
|
|
lint.build(msg).emit();
|
|
});
|
|
}
|
|
}
|
|
|
|
fn get_transmute_from_to<'tcx>(
|
|
cx: &LateContext<'tcx>,
|
|
expr: &hir::Expr<'_>,
|
|
) -> Option<(Ty<'tcx>, Ty<'tcx>)> {
|
|
let def = if let hir::ExprKind::Path(ref qpath) = expr.kind {
|
|
cx.qpath_res(qpath, expr.hir_id)
|
|
} else {
|
|
return None;
|
|
};
|
|
if let Res::Def(DefKind::Fn, did) = def {
|
|
if !def_id_is_transmute(cx, did) {
|
|
return None;
|
|
}
|
|
let sig = cx.typeck_results().node_type(expr.hir_id).fn_sig(cx.tcx);
|
|
let from = sig.inputs().skip_binder()[0];
|
|
let to = sig.output().skip_binder();
|
|
return Some((from, to));
|
|
}
|
|
None
|
|
}
|
|
|
|
fn def_id_is_transmute(cx: &LateContext<'_>, def_id: DefId) -> bool {
|
|
cx.tcx.is_intrinsic(def_id) && cx.tcx.item_name(def_id) == sym::transmute
|
|
}
|
|
}
|
|
}
|
|
|
|
declare_lint! {
|
|
/// The `unstable_features` is deprecated and should no longer be used.
|
|
UNSTABLE_FEATURES,
|
|
Allow,
|
|
"enabling unstable features (deprecated. do not use)"
|
|
}
|
|
|
|
declare_lint_pass!(
|
|
/// Forbids using the `#[feature(...)]` attribute
|
|
UnstableFeatures => [UNSTABLE_FEATURES]
|
|
);
|
|
|
|
impl<'tcx> LateLintPass<'tcx> for UnstableFeatures {
|
|
fn check_attribute(&mut self, cx: &LateContext<'_>, attr: &ast::Attribute) {
|
|
if attr.has_name(sym::feature) {
|
|
if let Some(items) = attr.meta_item_list() {
|
|
for item in items {
|
|
cx.struct_span_lint(UNSTABLE_FEATURES, item.span(), |lint| {
|
|
lint.build("unstable feature").emit();
|
|
});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
declare_lint! {
|
|
/// The `unreachable_pub` lint triggers for `pub` items not reachable from
|
|
/// the crate root.
|
|
///
|
|
/// ### Example
|
|
///
|
|
/// ```rust,compile_fail
|
|
/// #![deny(unreachable_pub)]
|
|
/// mod foo {
|
|
/// pub mod bar {
|
|
///
|
|
/// }
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// {{produces}}
|
|
///
|
|
/// ### Explanation
|
|
///
|
|
/// A bare `pub` visibility may be misleading if the item is not actually
|
|
/// publicly exported from the crate. The `pub(crate)` visibility is
|
|
/// recommended to be used instead, which more clearly expresses the intent
|
|
/// that the item is only visible within its own crate.
|
|
///
|
|
/// This lint is "allow" by default because it will trigger for a large
|
|
/// amount existing Rust code, and has some false-positives. Eventually it
|
|
/// is desired for this to become warn-by-default.
|
|
pub UNREACHABLE_PUB,
|
|
Allow,
|
|
"`pub` items not reachable from crate root"
|
|
}
|
|
|
|
declare_lint_pass!(
|
|
/// Lint for items marked `pub` that aren't reachable from other crates.
|
|
UnreachablePub => [UNREACHABLE_PUB]
|
|
);
|
|
|
|
impl UnreachablePub {
|
|
fn perform_lint(
|
|
&self,
|
|
cx: &LateContext<'_>,
|
|
what: &str,
|
|
def_id: LocalDefId,
|
|
span: Span,
|
|
vis_span: Span,
|
|
exportable: bool,
|
|
) {
|
|
let mut applicability = Applicability::MachineApplicable;
|
|
if cx.tcx.visibility(def_id).is_public() && !cx.access_levels.is_reachable(def_id) {
|
|
if vis_span.from_expansion() {
|
|
applicability = Applicability::MaybeIncorrect;
|
|
}
|
|
let def_span = cx.tcx.sess.source_map().guess_head_span(span);
|
|
cx.struct_span_lint(UNREACHABLE_PUB, def_span, |lint| {
|
|
let mut err = lint.build(&format!("unreachable `pub` {}", what));
|
|
|
|
err.span_suggestion(
|
|
vis_span,
|
|
"consider restricting its visibility",
|
|
"pub(crate)",
|
|
applicability,
|
|
);
|
|
if exportable {
|
|
err.help("or consider exporting it for use by other crates");
|
|
}
|
|
err.emit();
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'tcx> LateLintPass<'tcx> for UnreachablePub {
|
|
fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
|
|
// Do not warn for fake `use` statements.
|
|
if let hir::ItemKind::Use(_, hir::UseKind::ListStem) = &item.kind {
|
|
return;
|
|
}
|
|
self.perform_lint(cx, "item", item.def_id, item.span, item.vis_span, true);
|
|
}
|
|
|
|
fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'tcx>) {
|
|
self.perform_lint(
|
|
cx,
|
|
"item",
|
|
foreign_item.def_id,
|
|
foreign_item.span,
|
|
foreign_item.vis_span,
|
|
true,
|
|
);
|
|
}
|
|
|
|
fn check_field_def(&mut self, cx: &LateContext<'_>, field: &hir::FieldDef<'_>) {
|
|
let def_id = cx.tcx.hir().local_def_id(field.hir_id);
|
|
self.perform_lint(cx, "field", def_id, field.span, field.vis_span, false);
|
|
}
|
|
|
|
fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
|
|
// Only lint inherent impl items.
|
|
if cx.tcx.associated_item(impl_item.def_id).trait_item_def_id.is_none() {
|
|
self.perform_lint(
|
|
cx,
|
|
"item",
|
|
impl_item.def_id,
|
|
impl_item.span,
|
|
impl_item.vis_span,
|
|
false,
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
declare_lint! {
|
|
/// The `type_alias_bounds` lint detects bounds in type aliases.
|
|
///
|
|
/// ### Example
|
|
///
|
|
/// ```rust
|
|
/// type SendVec<T: Send> = Vec<T>;
|
|
/// ```
|
|
///
|
|
/// {{produces}}
|
|
///
|
|
/// ### Explanation
|
|
///
|
|
/// The trait bounds in a type alias are currently ignored, and should not
|
|
/// be included to avoid confusion. This was previously allowed
|
|
/// unintentionally; this may become a hard error in the future.
|
|
TYPE_ALIAS_BOUNDS,
|
|
Warn,
|
|
"bounds in type aliases are not enforced"
|
|
}
|
|
|
|
declare_lint_pass!(
|
|
/// Lint for trait and lifetime bounds in type aliases being mostly ignored.
|
|
/// They are relevant when using associated types, but otherwise neither checked
|
|
/// at definition site nor enforced at use site.
|
|
TypeAliasBounds => [TYPE_ALIAS_BOUNDS]
|
|
);
|
|
|
|
impl TypeAliasBounds {
|
|
fn is_type_variable_assoc(qpath: &hir::QPath<'_>) -> bool {
|
|
match *qpath {
|
|
hir::QPath::TypeRelative(ref ty, _) => {
|
|
// If this is a type variable, we found a `T::Assoc`.
|
|
match ty.kind {
|
|
hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => {
|
|
matches!(path.res, Res::Def(DefKind::TyParam, _))
|
|
}
|
|
_ => false,
|
|
}
|
|
}
|
|
hir::QPath::Resolved(..) | hir::QPath::LangItem(..) => false,
|
|
}
|
|
}
|
|
|
|
fn suggest_changing_assoc_types(ty: &hir::Ty<'_>, err: &mut Diagnostic) {
|
|
// Access to associates types should use `<T as Bound>::Assoc`, which does not need a
|
|
// bound. Let's see if this type does that.
|
|
|
|
// We use a HIR visitor to walk the type.
|
|
use rustc_hir::intravisit::{self, Visitor};
|
|
struct WalkAssocTypes<'a> {
|
|
err: &'a mut Diagnostic,
|
|
}
|
|
impl Visitor<'_> for WalkAssocTypes<'_> {
|
|
fn visit_qpath(&mut self, qpath: &hir::QPath<'_>, id: hir::HirId, span: Span) {
|
|
if TypeAliasBounds::is_type_variable_assoc(qpath) {
|
|
self.err.span_help(
|
|
span,
|
|
"use fully disambiguated paths (i.e., `<T as Trait>::Assoc`) to refer to \
|
|
associated types in type aliases",
|
|
);
|
|
}
|
|
intravisit::walk_qpath(self, qpath, id, span)
|
|
}
|
|
}
|
|
|
|
// Let's go for a walk!
|
|
let mut visitor = WalkAssocTypes { err };
|
|
visitor.visit_ty(ty);
|
|
}
|
|
}
|
|
|
|
impl<'tcx> LateLintPass<'tcx> for TypeAliasBounds {
|
|
fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
|
|
let hir::ItemKind::TyAlias(ty, type_alias_generics) = &item.kind else {
|
|
return
|
|
};
|
|
if let hir::TyKind::OpaqueDef(..) = ty.kind {
|
|
// Bounds are respected for `type X = impl Trait`
|
|
return;
|
|
}
|
|
// There must not be a where clause
|
|
if type_alias_generics.predicates.is_empty() {
|
|
return;
|
|
}
|
|
|
|
let mut where_spans = Vec::new();
|
|
let mut inline_spans = Vec::new();
|
|
let mut inline_sugg = Vec::new();
|
|
for p in type_alias_generics.predicates {
|
|
let span = p.span();
|
|
if p.in_where_clause() {
|
|
where_spans.push(span);
|
|
} else {
|
|
for b in p.bounds() {
|
|
inline_spans.push(b.span());
|
|
}
|
|
inline_sugg.push((span, String::new()));
|
|
}
|
|
}
|
|
|
|
let mut suggested_changing_assoc_types = false;
|
|
if !where_spans.is_empty() {
|
|
cx.lint(TYPE_ALIAS_BOUNDS, |lint| {
|
|
let mut err = lint.build("where clauses are not enforced in type aliases");
|
|
err.set_span(where_spans);
|
|
err.span_suggestion(
|
|
type_alias_generics.where_clause_span,
|
|
"the clause will not be checked when the type alias is used, and should be removed",
|
|
"",
|
|
Applicability::MachineApplicable,
|
|
);
|
|
if !suggested_changing_assoc_types {
|
|
TypeAliasBounds::suggest_changing_assoc_types(ty, &mut err);
|
|
suggested_changing_assoc_types = true;
|
|
}
|
|
err.emit();
|
|
});
|
|
}
|
|
|
|
if !inline_spans.is_empty() {
|
|
cx.lint(TYPE_ALIAS_BOUNDS, |lint| {
|
|
let mut err =
|
|
lint.build("bounds on generic parameters are not enforced in type aliases");
|
|
err.set_span(inline_spans);
|
|
err.multipart_suggestion(
|
|
"the bound will not be checked when the type alias is used, and should be removed",
|
|
inline_sugg,
|
|
Applicability::MachineApplicable,
|
|
);
|
|
if !suggested_changing_assoc_types {
|
|
TypeAliasBounds::suggest_changing_assoc_types(ty, &mut err);
|
|
}
|
|
err.emit();
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
declare_lint_pass!(
|
|
/// Lint constants that are erroneous.
|
|
/// Without this lint, we might not get any diagnostic if the constant is
|
|
/// unused within this crate, even though downstream crates can't use it
|
|
/// without producing an error.
|
|
UnusedBrokenConst => []
|
|
);
|
|
|
|
impl<'tcx> LateLintPass<'tcx> for UnusedBrokenConst {
|
|
fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
|
|
match it.kind {
|
|
hir::ItemKind::Const(_, body_id) => {
|
|
let def_id = cx.tcx.hir().body_owner_def_id(body_id).to_def_id();
|
|
// trigger the query once for all constants since that will already report the errors
|
|
cx.tcx.ensure().const_eval_poly(def_id);
|
|
}
|
|
hir::ItemKind::Static(_, _, body_id) => {
|
|
let def_id = cx.tcx.hir().body_owner_def_id(body_id).to_def_id();
|
|
cx.tcx.ensure().eval_static_initializer(def_id);
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
}
|
|
|
|
declare_lint! {
|
|
/// The `trivial_bounds` lint detects trait bounds that don't depend on
|
|
/// any type parameters.
|
|
///
|
|
/// ### Example
|
|
///
|
|
/// ```rust
|
|
/// #![feature(trivial_bounds)]
|
|
/// pub struct A where i32: Copy;
|
|
/// ```
|
|
///
|
|
/// {{produces}}
|
|
///
|
|
/// ### Explanation
|
|
///
|
|
/// Usually you would not write a trait bound that you know is always
|
|
/// true, or never true. However, when using macros, the macro may not
|
|
/// know whether or not the constraint would hold or not at the time when
|
|
/// generating the code. Currently, the compiler does not alert you if the
|
|
/// constraint is always true, and generates an error if it is never true.
|
|
/// The `trivial_bounds` feature changes this to be a warning in both
|
|
/// cases, giving macros more freedom and flexibility to generate code,
|
|
/// while still providing a signal when writing non-macro code that
|
|
/// something is amiss.
|
|
///
|
|
/// See [RFC 2056] for more details. This feature is currently only
|
|
/// available on the nightly channel, see [tracking issue #48214].
|
|
///
|
|
/// [RFC 2056]: https://github.com/rust-lang/rfcs/blob/master/text/2056-allow-trivial-where-clause-constraints.md
|
|
/// [tracking issue #48214]: https://github.com/rust-lang/rust/issues/48214
|
|
TRIVIAL_BOUNDS,
|
|
Warn,
|
|
"these bounds don't depend on an type parameters"
|
|
}
|
|
|
|
declare_lint_pass!(
|
|
/// Lint for trait and lifetime bounds that don't depend on type parameters
|
|
/// which either do nothing, or stop the item from being used.
|
|
TrivialConstraints => [TRIVIAL_BOUNDS]
|
|
);
|
|
|
|
impl<'tcx> LateLintPass<'tcx> for TrivialConstraints {
|
|
fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'tcx>) {
|
|
use rustc_middle::ty::fold::TypeFoldable;
|
|
use rustc_middle::ty::PredicateKind::*;
|
|
|
|
if cx.tcx.features().trivial_bounds {
|
|
let predicates = cx.tcx.predicates_of(item.def_id);
|
|
for &(predicate, span) in predicates.predicates {
|
|
let predicate_kind_name = match predicate.kind().skip_binder() {
|
|
Trait(..) => "trait",
|
|
TypeOutlives(..) |
|
|
RegionOutlives(..) => "lifetime",
|
|
|
|
// Ignore projections, as they can only be global
|
|
// if the trait bound is global
|
|
Projection(..) |
|
|
// Ignore bounds that a user can't type
|
|
WellFormed(..) |
|
|
ObjectSafe(..) |
|
|
ClosureKind(..) |
|
|
Subtype(..) |
|
|
Coerce(..) |
|
|
ConstEvaluatable(..) |
|
|
ConstEquate(..) |
|
|
TypeWellFormedFromEnv(..) => continue,
|
|
};
|
|
if predicate.is_global() {
|
|
cx.struct_span_lint(TRIVIAL_BOUNDS, span, |lint| {
|
|
lint.build(&format!(
|
|
"{} bound {} does not depend on any type \
|
|
or lifetime parameters",
|
|
predicate_kind_name, predicate
|
|
))
|
|
.emit();
|
|
});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
declare_lint_pass!(
|
|
/// Does nothing as a lint pass, but registers some `Lint`s
|
|
/// which are used by other parts of the compiler.
|
|
SoftLints => [
|
|
WHILE_TRUE,
|
|
BOX_POINTERS,
|
|
NON_SHORTHAND_FIELD_PATTERNS,
|
|
UNSAFE_CODE,
|
|
MISSING_DOCS,
|
|
MISSING_COPY_IMPLEMENTATIONS,
|
|
MISSING_DEBUG_IMPLEMENTATIONS,
|
|
ANONYMOUS_PARAMETERS,
|
|
UNUSED_DOC_COMMENTS,
|
|
NO_MANGLE_CONST_ITEMS,
|
|
NO_MANGLE_GENERIC_ITEMS,
|
|
MUTABLE_TRANSMUTES,
|
|
UNSTABLE_FEATURES,
|
|
UNREACHABLE_PUB,
|
|
TYPE_ALIAS_BOUNDS,
|
|
TRIVIAL_BOUNDS
|
|
]
|
|
);
|
|
|
|
declare_lint! {
|
|
/// The `ellipsis_inclusive_range_patterns` lint detects the [`...` range
|
|
/// pattern], which is deprecated.
|
|
///
|
|
/// [`...` range pattern]: https://doc.rust-lang.org/reference/patterns.html#range-patterns
|
|
///
|
|
/// ### Example
|
|
///
|
|
/// ```rust,edition2018
|
|
/// let x = 123;
|
|
/// match x {
|
|
/// 0...100 => {}
|
|
/// _ => {}
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// {{produces}}
|
|
///
|
|
/// ### Explanation
|
|
///
|
|
/// The `...` range pattern syntax was changed to `..=` to avoid potential
|
|
/// confusion with the [`..` range expression]. Use the new form instead.
|
|
///
|
|
/// [`..` range expression]: https://doc.rust-lang.org/reference/expressions/range-expr.html
|
|
pub ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
|
|
Warn,
|
|
"`...` range patterns are deprecated",
|
|
@future_incompatible = FutureIncompatibleInfo {
|
|
reference: "<https://doc.rust-lang.org/nightly/edition-guide/rust-2021/warnings-promoted-to-error.html>",
|
|
reason: FutureIncompatibilityReason::EditionError(Edition::Edition2021),
|
|
};
|
|
}
|
|
|
|
#[derive(Default)]
|
|
pub struct EllipsisInclusiveRangePatterns {
|
|
/// If `Some(_)`, suppress all subsequent pattern
|
|
/// warnings for better diagnostics.
|
|
node_id: Option<ast::NodeId>,
|
|
}
|
|
|
|
impl_lint_pass!(EllipsisInclusiveRangePatterns => [ELLIPSIS_INCLUSIVE_RANGE_PATTERNS]);
|
|
|
|
impl EarlyLintPass for EllipsisInclusiveRangePatterns {
|
|
fn check_pat(&mut self, cx: &EarlyContext<'_>, pat: &ast::Pat) {
|
|
if self.node_id.is_some() {
|
|
// Don't recursively warn about patterns inside range endpoints.
|
|
return;
|
|
}
|
|
|
|
use self::ast::{PatKind, RangeSyntax::DotDotDot};
|
|
|
|
/// If `pat` is a `...` pattern, return the start and end of the range, as well as the span
|
|
/// corresponding to the ellipsis.
|
|
fn matches_ellipsis_pat(pat: &ast::Pat) -> Option<(Option<&Expr>, &Expr, Span)> {
|
|
match &pat.kind {
|
|
PatKind::Range(
|
|
a,
|
|
Some(b),
|
|
Spanned { span, node: RangeEnd::Included(DotDotDot) },
|
|
) => Some((a.as_deref(), b, *span)),
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
let (parenthesise, endpoints) = match &pat.kind {
|
|
PatKind::Ref(subpat, _) => (true, matches_ellipsis_pat(&subpat)),
|
|
_ => (false, matches_ellipsis_pat(pat)),
|
|
};
|
|
|
|
if let Some((start, end, join)) = endpoints {
|
|
let msg = "`...` range patterns are deprecated";
|
|
let suggestion = "use `..=` for an inclusive range";
|
|
if parenthesise {
|
|
self.node_id = Some(pat.id);
|
|
let end = expr_to_string(&end);
|
|
let replace = match start {
|
|
Some(start) => format!("&({}..={})", expr_to_string(&start), end),
|
|
None => format!("&(..={})", end),
|
|
};
|
|
if join.edition() >= Edition::Edition2021 {
|
|
let mut err =
|
|
rustc_errors::struct_span_err!(cx.sess(), pat.span, E0783, "{}", msg,);
|
|
err.span_suggestion(
|
|
pat.span,
|
|
suggestion,
|
|
replace,
|
|
Applicability::MachineApplicable,
|
|
)
|
|
.emit();
|
|
} else {
|
|
cx.struct_span_lint(ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, pat.span, |lint| {
|
|
lint.build(msg)
|
|
.span_suggestion(
|
|
pat.span,
|
|
suggestion,
|
|
replace,
|
|
Applicability::MachineApplicable,
|
|
)
|
|
.emit();
|
|
});
|
|
}
|
|
} else {
|
|
let replace = "..=";
|
|
if join.edition() >= Edition::Edition2021 {
|
|
let mut err =
|
|
rustc_errors::struct_span_err!(cx.sess(), pat.span, E0783, "{}", msg,);
|
|
err.span_suggestion_short(
|
|
join,
|
|
suggestion,
|
|
replace,
|
|
Applicability::MachineApplicable,
|
|
)
|
|
.emit();
|
|
} else {
|
|
cx.struct_span_lint(ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, join, |lint| {
|
|
lint.build(msg)
|
|
.span_suggestion_short(
|
|
join,
|
|
suggestion,
|
|
replace,
|
|
Applicability::MachineApplicable,
|
|
)
|
|
.emit();
|
|
});
|
|
}
|
|
};
|
|
}
|
|
}
|
|
|
|
fn check_pat_post(&mut self, _cx: &EarlyContext<'_>, pat: &ast::Pat) {
|
|
if let Some(node_id) = self.node_id {
|
|
if pat.id == node_id {
|
|
self.node_id = None
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
declare_lint! {
|
|
/// The `unnameable_test_items` lint detects [`#[test]`][test] functions
|
|
/// that are not able to be run by the test harness because they are in a
|
|
/// position where they are not nameable.
|
|
///
|
|
/// [test]: https://doc.rust-lang.org/reference/attributes/testing.html#the-test-attribute
|
|
///
|
|
/// ### Example
|
|
///
|
|
/// ```rust,test
|
|
/// fn main() {
|
|
/// #[test]
|
|
/// fn foo() {
|
|
/// // This test will not fail because it does not run.
|
|
/// assert_eq!(1, 2);
|
|
/// }
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// {{produces}}
|
|
///
|
|
/// ### Explanation
|
|
///
|
|
/// In order for the test harness to run a test, the test function must be
|
|
/// located in a position where it can be accessed from the crate root.
|
|
/// This generally means it must be defined in a module, and not anywhere
|
|
/// else such as inside another function. The compiler previously allowed
|
|
/// this without an error, so a lint was added as an alert that a test is
|
|
/// not being used. Whether or not this should be allowed has not yet been
|
|
/// decided, see [RFC 2471] and [issue #36629].
|
|
///
|
|
/// [RFC 2471]: https://github.com/rust-lang/rfcs/pull/2471#issuecomment-397414443
|
|
/// [issue #36629]: https://github.com/rust-lang/rust/issues/36629
|
|
UNNAMEABLE_TEST_ITEMS,
|
|
Warn,
|
|
"detects an item that cannot be named being marked as `#[test_case]`",
|
|
report_in_external_macro
|
|
}
|
|
|
|
pub struct UnnameableTestItems {
|
|
boundary: Option<LocalDefId>, // Id of the item under which things are not nameable
|
|
items_nameable: bool,
|
|
}
|
|
|
|
impl_lint_pass!(UnnameableTestItems => [UNNAMEABLE_TEST_ITEMS]);
|
|
|
|
impl UnnameableTestItems {
|
|
pub fn new() -> Self {
|
|
Self { boundary: None, items_nameable: true }
|
|
}
|
|
}
|
|
|
|
impl<'tcx> LateLintPass<'tcx> for UnnameableTestItems {
|
|
fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
|
|
if self.items_nameable {
|
|
if let hir::ItemKind::Mod(..) = it.kind {
|
|
} else {
|
|
self.items_nameable = false;
|
|
self.boundary = Some(it.def_id);
|
|
}
|
|
return;
|
|
}
|
|
|
|
let attrs = cx.tcx.hir().attrs(it.hir_id());
|
|
if let Some(attr) = cx.sess().find_by_name(attrs, sym::rustc_test_marker) {
|
|
cx.struct_span_lint(UNNAMEABLE_TEST_ITEMS, attr.span, |lint| {
|
|
lint.build("cannot test inner items").emit();
|
|
});
|
|
}
|
|
}
|
|
|
|
fn check_item_post(&mut self, _cx: &LateContext<'_>, it: &hir::Item<'_>) {
|
|
if !self.items_nameable && self.boundary == Some(it.def_id) {
|
|
self.items_nameable = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
declare_lint! {
|
|
/// The `keyword_idents` lint detects edition keywords being used as an
|
|
/// identifier.
|
|
///
|
|
/// ### Example
|
|
///
|
|
/// ```rust,edition2015,compile_fail
|
|
/// #![deny(keyword_idents)]
|
|
/// // edition 2015
|
|
/// fn dyn() {}
|
|
/// ```
|
|
///
|
|
/// {{produces}}
|
|
///
|
|
/// ### Explanation
|
|
///
|
|
/// Rust [editions] allow the language to evolve without breaking
|
|
/// backwards compatibility. This lint catches code that uses new keywords
|
|
/// that are added to the language that are used as identifiers (such as a
|
|
/// variable name, function name, etc.). If you switch the compiler to a
|
|
/// new edition without updating the code, then it will fail to compile if
|
|
/// you are using a new keyword as an identifier.
|
|
///
|
|
/// You can manually change the identifiers to a non-keyword, or use a
|
|
/// [raw identifier], for example `r#dyn`, to transition to a new edition.
|
|
///
|
|
/// This lint solves the problem automatically. It is "allow" by default
|
|
/// because the code is perfectly valid in older editions. The [`cargo
|
|
/// fix`] tool with the `--edition` flag will switch this lint to "warn"
|
|
/// and automatically apply the suggested fix from the compiler (which is
|
|
/// to use a raw identifier). This provides a completely automated way to
|
|
/// update old code for a new edition.
|
|
///
|
|
/// [editions]: https://doc.rust-lang.org/edition-guide/
|
|
/// [raw identifier]: https://doc.rust-lang.org/reference/identifiers.html
|
|
/// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
|
|
pub KEYWORD_IDENTS,
|
|
Allow,
|
|
"detects edition keywords being used as an identifier",
|
|
@future_incompatible = FutureIncompatibleInfo {
|
|
reference: "issue #49716 <https://github.com/rust-lang/rust/issues/49716>",
|
|
reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018),
|
|
};
|
|
}
|
|
|
|
declare_lint_pass!(
|
|
/// Check for uses of edition keywords used as an identifier.
|
|
KeywordIdents => [KEYWORD_IDENTS]
|
|
);
|
|
|
|
struct UnderMacro(bool);
|
|
|
|
impl KeywordIdents {
|
|
fn check_tokens(&mut self, cx: &EarlyContext<'_>, tokens: TokenStream) {
|
|
for tt in tokens.into_trees() {
|
|
match tt {
|
|
// Only report non-raw idents.
|
|
TokenTree::Token(token) => {
|
|
if let Some((ident, false)) = token.ident() {
|
|
self.check_ident_token(cx, UnderMacro(true), ident);
|
|
}
|
|
}
|
|
TokenTree::Delimited(_, _, tts) => self.check_tokens(cx, tts),
|
|
}
|
|
}
|
|
}
|
|
|
|
fn check_ident_token(
|
|
&mut self,
|
|
cx: &EarlyContext<'_>,
|
|
UnderMacro(under_macro): UnderMacro,
|
|
ident: Ident,
|
|
) {
|
|
let next_edition = match cx.sess().edition() {
|
|
Edition::Edition2015 => {
|
|
match ident.name {
|
|
kw::Async | kw::Await | kw::Try => Edition::Edition2018,
|
|
|
|
// rust-lang/rust#56327: Conservatively do not
|
|
// attempt to report occurrences of `dyn` within
|
|
// macro definitions or invocations, because `dyn`
|
|
// can legitimately occur as a contextual keyword
|
|
// in 2015 code denoting its 2018 meaning, and we
|
|
// do not want rustfix to inject bugs into working
|
|
// code by rewriting such occurrences.
|
|
//
|
|
// But if we see `dyn` outside of a macro, we know
|
|
// its precise role in the parsed AST and thus are
|
|
// assured this is truly an attempt to use it as
|
|
// an identifier.
|
|
kw::Dyn if !under_macro => Edition::Edition2018,
|
|
|
|
_ => return,
|
|
}
|
|
}
|
|
|
|
// There are no new keywords yet for the 2018 edition and beyond.
|
|
_ => return,
|
|
};
|
|
|
|
// Don't lint `r#foo`.
|
|
if cx.sess().parse_sess.raw_identifier_spans.borrow().contains(&ident.span) {
|
|
return;
|
|
}
|
|
|
|
cx.struct_span_lint(KEYWORD_IDENTS, ident.span, |lint| {
|
|
lint.build(&format!("`{}` is a keyword in the {} edition", ident, next_edition))
|
|
.span_suggestion(
|
|
ident.span,
|
|
"you can use a raw identifier to stay compatible",
|
|
format!("r#{}", ident),
|
|
Applicability::MachineApplicable,
|
|
)
|
|
.emit();
|
|
});
|
|
}
|
|
}
|
|
|
|
impl EarlyLintPass for KeywordIdents {
|
|
fn check_mac_def(&mut self, cx: &EarlyContext<'_>, mac_def: &ast::MacroDef, _id: ast::NodeId) {
|
|
self.check_tokens(cx, mac_def.body.inner_tokens());
|
|
}
|
|
fn check_mac(&mut self, cx: &EarlyContext<'_>, mac: &ast::MacCall) {
|
|
self.check_tokens(cx, mac.args.inner_tokens());
|
|
}
|
|
fn check_ident(&mut self, cx: &EarlyContext<'_>, ident: Ident) {
|
|
self.check_ident_token(cx, UnderMacro(false), ident);
|
|
}
|
|
}
|
|
|
|
declare_lint_pass!(ExplicitOutlivesRequirements => [EXPLICIT_OUTLIVES_REQUIREMENTS]);
|
|
|
|
impl ExplicitOutlivesRequirements {
|
|
fn lifetimes_outliving_lifetime<'tcx>(
|
|
inferred_outlives: &'tcx [(ty::Predicate<'tcx>, Span)],
|
|
index: u32,
|
|
) -> Vec<ty::Region<'tcx>> {
|
|
inferred_outlives
|
|
.iter()
|
|
.filter_map(|(pred, _)| match pred.kind().skip_binder() {
|
|
ty::PredicateKind::RegionOutlives(ty::OutlivesPredicate(a, b)) => match *a {
|
|
ty::ReEarlyBound(ebr) if ebr.index == index => Some(b),
|
|
_ => None,
|
|
},
|
|
_ => None,
|
|
})
|
|
.collect()
|
|
}
|
|
|
|
fn lifetimes_outliving_type<'tcx>(
|
|
inferred_outlives: &'tcx [(ty::Predicate<'tcx>, Span)],
|
|
index: u32,
|
|
) -> Vec<ty::Region<'tcx>> {
|
|
inferred_outlives
|
|
.iter()
|
|
.filter_map(|(pred, _)| match pred.kind().skip_binder() {
|
|
ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(a, b)) => {
|
|
a.is_param(index).then_some(b)
|
|
}
|
|
_ => None,
|
|
})
|
|
.collect()
|
|
}
|
|
|
|
fn collect_outlives_bound_spans<'tcx>(
|
|
&self,
|
|
tcx: TyCtxt<'tcx>,
|
|
bounds: &hir::GenericBounds<'_>,
|
|
inferred_outlives: &[ty::Region<'tcx>],
|
|
) -> Vec<(usize, Span)> {
|
|
use rustc_middle::middle::resolve_lifetime::Region;
|
|
|
|
bounds
|
|
.iter()
|
|
.enumerate()
|
|
.filter_map(|(i, bound)| {
|
|
if let hir::GenericBound::Outlives(lifetime) = bound {
|
|
let is_inferred = match tcx.named_region(lifetime.hir_id) {
|
|
Some(Region::EarlyBound(index, ..)) => inferred_outlives.iter().any(|r| {
|
|
if let ty::ReEarlyBound(ebr) = **r { ebr.index == index } else { false }
|
|
}),
|
|
_ => false,
|
|
};
|
|
is_inferred.then_some((i, bound.span()))
|
|
} else {
|
|
None
|
|
}
|
|
})
|
|
.filter(|(_, span)| !in_external_macro(tcx.sess, *span))
|
|
.collect()
|
|
}
|
|
|
|
fn consolidate_outlives_bound_spans(
|
|
&self,
|
|
lo: Span,
|
|
bounds: &hir::GenericBounds<'_>,
|
|
bound_spans: Vec<(usize, Span)>,
|
|
) -> Vec<Span> {
|
|
if bounds.is_empty() {
|
|
return Vec::new();
|
|
}
|
|
if bound_spans.len() == bounds.len() {
|
|
let (_, last_bound_span) = bound_spans[bound_spans.len() - 1];
|
|
// If all bounds are inferable, we want to delete the colon, so
|
|
// start from just after the parameter (span passed as argument)
|
|
vec![lo.to(last_bound_span)]
|
|
} else {
|
|
let mut merged = Vec::new();
|
|
let mut last_merged_i = None;
|
|
|
|
let mut from_start = true;
|
|
for (i, bound_span) in bound_spans {
|
|
match last_merged_i {
|
|
// If the first bound is inferable, our span should also eat the leading `+`.
|
|
None if i == 0 => {
|
|
merged.push(bound_span.to(bounds[1].span().shrink_to_lo()));
|
|
last_merged_i = Some(0);
|
|
}
|
|
// If consecutive bounds are inferable, merge their spans
|
|
Some(h) if i == h + 1 => {
|
|
if let Some(tail) = merged.last_mut() {
|
|
// Also eat the trailing `+` if the first
|
|
// more-than-one bound is inferable
|
|
let to_span = if from_start && i < bounds.len() {
|
|
bounds[i + 1].span().shrink_to_lo()
|
|
} else {
|
|
bound_span
|
|
};
|
|
*tail = tail.to(to_span);
|
|
last_merged_i = Some(i);
|
|
} else {
|
|
bug!("another bound-span visited earlier");
|
|
}
|
|
}
|
|
_ => {
|
|
// When we find a non-inferable bound, subsequent inferable bounds
|
|
// won't be consecutive from the start (and we'll eat the leading
|
|
// `+` rather than the trailing one)
|
|
from_start = false;
|
|
merged.push(bounds[i - 1].span().shrink_to_hi().to(bound_span));
|
|
last_merged_i = Some(i);
|
|
}
|
|
}
|
|
}
|
|
merged
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'tcx> LateLintPass<'tcx> for ExplicitOutlivesRequirements {
|
|
fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'_>) {
|
|
use rustc_middle::middle::resolve_lifetime::Region;
|
|
|
|
let def_id = item.def_id;
|
|
if let hir::ItemKind::Struct(_, ref hir_generics)
|
|
| hir::ItemKind::Enum(_, ref hir_generics)
|
|
| hir::ItemKind::Union(_, ref hir_generics) = item.kind
|
|
{
|
|
let inferred_outlives = cx.tcx.inferred_outlives_of(def_id);
|
|
if inferred_outlives.is_empty() {
|
|
return;
|
|
}
|
|
|
|
let ty_generics = cx.tcx.generics_of(def_id);
|
|
|
|
let mut bound_count = 0;
|
|
let mut lint_spans = Vec::new();
|
|
let mut where_lint_spans = Vec::new();
|
|
let mut dropped_predicate_count = 0;
|
|
let num_predicates = hir_generics.predicates.len();
|
|
for (i, where_predicate) in hir_generics.predicates.iter().enumerate() {
|
|
let (relevant_lifetimes, bounds, span, in_where_clause) = match where_predicate {
|
|
hir::WherePredicate::RegionPredicate(predicate) => {
|
|
if let Some(Region::EarlyBound(index, ..)) =
|
|
cx.tcx.named_region(predicate.lifetime.hir_id)
|
|
{
|
|
(
|
|
Self::lifetimes_outliving_lifetime(inferred_outlives, index),
|
|
&predicate.bounds,
|
|
predicate.span,
|
|
predicate.in_where_clause,
|
|
)
|
|
} else {
|
|
continue;
|
|
}
|
|
}
|
|
hir::WherePredicate::BoundPredicate(predicate) => {
|
|
// FIXME we can also infer bounds on associated types,
|
|
// and should check for them here.
|
|
match predicate.bounded_ty.kind {
|
|
hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => {
|
|
let Res::Def(DefKind::TyParam, def_id) = path.res else {
|
|
continue
|
|
};
|
|
let index = ty_generics.param_def_id_to_index[&def_id];
|
|
(
|
|
Self::lifetimes_outliving_type(inferred_outlives, index),
|
|
&predicate.bounds,
|
|
predicate.span,
|
|
predicate.origin == PredicateOrigin::WhereClause,
|
|
)
|
|
}
|
|
_ => {
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
_ => continue,
|
|
};
|
|
if relevant_lifetimes.is_empty() {
|
|
continue;
|
|
}
|
|
|
|
let bound_spans =
|
|
self.collect_outlives_bound_spans(cx.tcx, bounds, &relevant_lifetimes);
|
|
bound_count += bound_spans.len();
|
|
|
|
let drop_predicate = bound_spans.len() == bounds.len();
|
|
if drop_predicate {
|
|
dropped_predicate_count += 1;
|
|
}
|
|
|
|
if drop_predicate && !in_where_clause {
|
|
lint_spans.push(span);
|
|
} else if drop_predicate && i + 1 < num_predicates {
|
|
// If all the bounds on a predicate were inferable and there are
|
|
// further predicates, we want to eat the trailing comma.
|
|
let next_predicate_span = hir_generics.predicates[i + 1].span();
|
|
where_lint_spans.push(span.to(next_predicate_span.shrink_to_lo()));
|
|
} else {
|
|
where_lint_spans.extend(self.consolidate_outlives_bound_spans(
|
|
span.shrink_to_lo(),
|
|
bounds,
|
|
bound_spans,
|
|
));
|
|
}
|
|
}
|
|
|
|
// If all predicates are inferable, drop the entire clause
|
|
// (including the `where`)
|
|
if hir_generics.has_where_clause_predicates && dropped_predicate_count == num_predicates
|
|
{
|
|
let where_span = hir_generics.where_clause_span;
|
|
// Extend the where clause back to the closing `>` of the
|
|
// generics, except for tuple struct, which have the `where`
|
|
// after the fields of the struct.
|
|
let full_where_span =
|
|
if let hir::ItemKind::Struct(hir::VariantData::Tuple(..), _) = item.kind {
|
|
where_span
|
|
} else {
|
|
hir_generics.span.shrink_to_hi().to(where_span)
|
|
};
|
|
lint_spans.push(full_where_span);
|
|
} else {
|
|
lint_spans.extend(where_lint_spans);
|
|
}
|
|
|
|
if !lint_spans.is_empty() {
|
|
cx.struct_span_lint(EXPLICIT_OUTLIVES_REQUIREMENTS, lint_spans.clone(), |lint| {
|
|
lint.build("outlives requirements can be inferred")
|
|
.multipart_suggestion(
|
|
if bound_count == 1 {
|
|
"remove this bound"
|
|
} else {
|
|
"remove these bounds"
|
|
},
|
|
lint_spans
|
|
.into_iter()
|
|
.map(|span| (span, String::new()))
|
|
.collect::<Vec<_>>(),
|
|
Applicability::MachineApplicable,
|
|
)
|
|
.emit();
|
|
});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
declare_lint! {
|
|
/// The `incomplete_features` lint detects unstable features enabled with
|
|
/// the [`feature` attribute] that may function improperly in some or all
|
|
/// cases.
|
|
///
|
|
/// [`feature` attribute]: https://doc.rust-lang.org/nightly/unstable-book/
|
|
///
|
|
/// ### Example
|
|
///
|
|
/// ```rust
|
|
/// #![feature(generic_const_exprs)]
|
|
/// ```
|
|
///
|
|
/// {{produces}}
|
|
///
|
|
/// ### Explanation
|
|
///
|
|
/// Although it is encouraged for people to experiment with unstable
|
|
/// features, some of them are known to be incomplete or faulty. This lint
|
|
/// is a signal that the feature has not yet been finished, and you may
|
|
/// experience problems with it.
|
|
pub INCOMPLETE_FEATURES,
|
|
Warn,
|
|
"incomplete features that may function improperly in some or all cases"
|
|
}
|
|
|
|
declare_lint_pass!(
|
|
/// Check for used feature gates in `INCOMPLETE_FEATURES` in `rustc_feature/src/active.rs`.
|
|
IncompleteFeatures => [INCOMPLETE_FEATURES]
|
|
);
|
|
|
|
impl EarlyLintPass for IncompleteFeatures {
|
|
fn check_crate(&mut self, cx: &EarlyContext<'_>, _: &ast::Crate) {
|
|
let features = cx.sess().features_untracked();
|
|
features
|
|
.declared_lang_features
|
|
.iter()
|
|
.map(|(name, span, _)| (name, span))
|
|
.chain(features.declared_lib_features.iter().map(|(name, span)| (name, span)))
|
|
.filter(|(&name, _)| features.incomplete(name))
|
|
.for_each(|(&name, &span)| {
|
|
cx.struct_span_lint(INCOMPLETE_FEATURES, span, |lint| {
|
|
let mut builder = lint.build(&format!(
|
|
"the feature `{}` is incomplete and may not be safe to use \
|
|
and/or cause compiler crashes",
|
|
name,
|
|
));
|
|
if let Some(n) = rustc_feature::find_feature_issue(name, GateIssue::Language) {
|
|
builder.note(&format!(
|
|
"see issue #{} <https://github.com/rust-lang/rust/issues/{}> \
|
|
for more information",
|
|
n, n,
|
|
));
|
|
}
|
|
if HAS_MIN_FEATURES.contains(&name) {
|
|
builder.help(&format!(
|
|
"consider using `min_{}` instead, which is more stable and complete",
|
|
name,
|
|
));
|
|
}
|
|
builder.emit();
|
|
})
|
|
});
|
|
}
|
|
}
|
|
|
|
const HAS_MIN_FEATURES: &[Symbol] = &[sym::specialization];
|
|
|
|
declare_lint! {
|
|
/// The `invalid_value` lint detects creating a value that is not valid,
|
|
/// such as a null reference.
|
|
///
|
|
/// ### Example
|
|
///
|
|
/// ```rust,no_run
|
|
/// # #![allow(unused)]
|
|
/// unsafe {
|
|
/// let x: &'static i32 = std::mem::zeroed();
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// {{produces}}
|
|
///
|
|
/// ### Explanation
|
|
///
|
|
/// In some situations the compiler can detect that the code is creating
|
|
/// an invalid value, which should be avoided.
|
|
///
|
|
/// In particular, this lint will check for improper use of
|
|
/// [`mem::zeroed`], [`mem::uninitialized`], [`mem::transmute`], and
|
|
/// [`MaybeUninit::assume_init`] that can cause [undefined behavior]. The
|
|
/// lint should provide extra information to indicate what the problem is
|
|
/// and a possible solution.
|
|
///
|
|
/// [`mem::zeroed`]: https://doc.rust-lang.org/std/mem/fn.zeroed.html
|
|
/// [`mem::uninitialized`]: https://doc.rust-lang.org/std/mem/fn.uninitialized.html
|
|
/// [`mem::transmute`]: https://doc.rust-lang.org/std/mem/fn.transmute.html
|
|
/// [`MaybeUninit::assume_init`]: https://doc.rust-lang.org/std/mem/union.MaybeUninit.html#method.assume_init
|
|
/// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
|
|
pub INVALID_VALUE,
|
|
Warn,
|
|
"an invalid value is being created (such as a null reference)"
|
|
}
|
|
|
|
declare_lint_pass!(InvalidValue => [INVALID_VALUE]);
|
|
|
|
impl<'tcx> LateLintPass<'tcx> for InvalidValue {
|
|
fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
|
|
#[derive(Debug, Copy, Clone, PartialEq)]
|
|
enum InitKind {
|
|
Zeroed,
|
|
Uninit,
|
|
}
|
|
|
|
/// Information about why a type cannot be initialized this way.
|
|
/// Contains an error message and optionally a span to point at.
|
|
type InitError = (String, Option<Span>);
|
|
|
|
/// Test if this constant is all-0.
|
|
fn is_zero(expr: &hir::Expr<'_>) -> bool {
|
|
use hir::ExprKind::*;
|
|
use rustc_ast::LitKind::*;
|
|
match &expr.kind {
|
|
Lit(lit) => {
|
|
if let Int(i, _) = lit.node {
|
|
i == 0
|
|
} else {
|
|
false
|
|
}
|
|
}
|
|
Tup(tup) => tup.iter().all(is_zero),
|
|
_ => false,
|
|
}
|
|
}
|
|
|
|
/// Determine if this expression is a "dangerous initialization".
|
|
fn is_dangerous_init(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> Option<InitKind> {
|
|
if let hir::ExprKind::Call(ref path_expr, ref args) = expr.kind {
|
|
// Find calls to `mem::{uninitialized,zeroed}` methods.
|
|
if let hir::ExprKind::Path(ref qpath) = path_expr.kind {
|
|
let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
|
|
match cx.tcx.get_diagnostic_name(def_id) {
|
|
Some(sym::mem_zeroed) => return Some(InitKind::Zeroed),
|
|
Some(sym::mem_uninitialized) => return Some(InitKind::Uninit),
|
|
Some(sym::transmute) if is_zero(&args[0]) => return Some(InitKind::Zeroed),
|
|
_ => {}
|
|
}
|
|
}
|
|
} else if let hir::ExprKind::MethodCall(_, ref args, _) = expr.kind {
|
|
// Find problematic calls to `MaybeUninit::assume_init`.
|
|
let def_id = cx.typeck_results().type_dependent_def_id(expr.hir_id)?;
|
|
if cx.tcx.is_diagnostic_item(sym::assume_init, def_id) {
|
|
// This is a call to *some* method named `assume_init`.
|
|
// See if the `self` parameter is one of the dangerous constructors.
|
|
if let hir::ExprKind::Call(ref path_expr, _) = args[0].kind {
|
|
if let hir::ExprKind::Path(ref qpath) = path_expr.kind {
|
|
let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
|
|
match cx.tcx.get_diagnostic_name(def_id) {
|
|
Some(sym::maybe_uninit_zeroed) => return Some(InitKind::Zeroed),
|
|
Some(sym::maybe_uninit_uninit) => return Some(InitKind::Uninit),
|
|
_ => {}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
None
|
|
}
|
|
|
|
/// Test if this enum has several actually "existing" variants.
|
|
/// Zero-sized uninhabited variants do not always have a tag assigned and thus do not "exist".
|
|
fn is_multi_variant<'tcx>(adt: ty::AdtDef<'tcx>) -> bool {
|
|
// As an approximation, we only count dataless variants. Those are definitely inhabited.
|
|
let existing_variants = adt.variants().iter().filter(|v| v.fields.is_empty()).count();
|
|
existing_variants > 1
|
|
}
|
|
|
|
/// Return `Some` only if we are sure this type does *not*
|
|
/// allow zero initialization.
|
|
fn ty_find_init_error<'tcx>(
|
|
cx: &LateContext<'tcx>,
|
|
ty: Ty<'tcx>,
|
|
init: InitKind,
|
|
) -> Option<InitError> {
|
|
use rustc_type_ir::sty::TyKind::*;
|
|
match ty.kind() {
|
|
// Primitive types that don't like 0 as a value.
|
|
Ref(..) => Some(("references must be non-null".to_string(), None)),
|
|
Adt(..) if ty.is_box() => Some(("`Box` must be non-null".to_string(), None)),
|
|
FnPtr(..) => Some(("function pointers must be non-null".to_string(), None)),
|
|
Never => Some(("the `!` type has no valid value".to_string(), None)),
|
|
RawPtr(tm) if matches!(tm.ty.kind(), Dynamic(..)) =>
|
|
// raw ptr to dyn Trait
|
|
{
|
|
Some(("the vtable of a wide raw pointer must be non-null".to_string(), None))
|
|
}
|
|
// Primitive types with other constraints.
|
|
Bool if init == InitKind::Uninit => {
|
|
Some(("booleans must be either `true` or `false`".to_string(), None))
|
|
}
|
|
Char if init == InitKind::Uninit => {
|
|
Some(("characters must be a valid Unicode codepoint".to_string(), None))
|
|
}
|
|
// Recurse and checks for some compound types.
|
|
Adt(adt_def, substs) if !adt_def.is_union() => {
|
|
// First check if this ADT has a layout attribute (like `NonNull` and friends).
|
|
use std::ops::Bound;
|
|
match cx.tcx.layout_scalar_valid_range(adt_def.did()) {
|
|
// We exploit here that `layout_scalar_valid_range` will never
|
|
// return `Bound::Excluded`. (And we have tests checking that we
|
|
// handle the attribute correctly.)
|
|
(Bound::Included(lo), _) if lo > 0 => {
|
|
return Some((format!("`{}` must be non-null", ty), None));
|
|
}
|
|
(Bound::Included(_), _) | (_, Bound::Included(_))
|
|
if init == InitKind::Uninit =>
|
|
{
|
|
return Some((
|
|
format!(
|
|
"`{}` must be initialized inside its custom valid range",
|
|
ty,
|
|
),
|
|
None,
|
|
));
|
|
}
|
|
_ => {}
|
|
}
|
|
// Now, recurse.
|
|
match adt_def.variants().len() {
|
|
0 => Some(("enums with no variants have no valid value".to_string(), None)),
|
|
1 => {
|
|
// Struct, or enum with exactly one variant.
|
|
// Proceed recursively, check all fields.
|
|
let variant = &adt_def.variant(VariantIdx::from_u32(0));
|
|
variant.fields.iter().find_map(|field| {
|
|
ty_find_init_error(cx, field.ty(cx.tcx, substs), init).map(
|
|
|(mut msg, span)| {
|
|
if span.is_none() {
|
|
// Point to this field, should be helpful for figuring
|
|
// out where the source of the error is.
|
|
let span = cx.tcx.def_span(field.did);
|
|
write!(
|
|
&mut msg,
|
|
" (in this {} field)",
|
|
adt_def.descr()
|
|
)
|
|
.unwrap();
|
|
(msg, Some(span))
|
|
} else {
|
|
// Just forward.
|
|
(msg, span)
|
|
}
|
|
},
|
|
)
|
|
})
|
|
}
|
|
// Multi-variant enum.
|
|
_ => {
|
|
if init == InitKind::Uninit && is_multi_variant(*adt_def) {
|
|
let span = cx.tcx.def_span(adt_def.did());
|
|
Some((
|
|
"enums have to be initialized to a variant".to_string(),
|
|
Some(span),
|
|
))
|
|
} else {
|
|
// In principle, for zero-initialization we could figure out which variant corresponds
|
|
// to tag 0, and check that... but for now we just accept all zero-initializations.
|
|
None
|
|
}
|
|
}
|
|
}
|
|
}
|
|
Tuple(..) => {
|
|
// Proceed recursively, check all fields.
|
|
ty.tuple_fields().iter().find_map(|field| ty_find_init_error(cx, field, init))
|
|
}
|
|
Array(ty, len) => {
|
|
if matches!(len.try_eval_usize(cx.tcx, cx.param_env), Some(v) if v > 0) {
|
|
// Array length known at array non-empty -- recurse.
|
|
ty_find_init_error(cx, *ty, init)
|
|
} else {
|
|
// Empty array or size unknown.
|
|
None
|
|
}
|
|
}
|
|
// Conservative fallback.
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
if let Some(init) = is_dangerous_init(cx, expr) {
|
|
// This conjures an instance of a type out of nothing,
|
|
// using zeroed or uninitialized memory.
|
|
// We are extremely conservative with what we warn about.
|
|
let conjured_ty = cx.typeck_results().expr_ty(expr);
|
|
if let Some((msg, span)) =
|
|
with_no_trimmed_paths!(ty_find_init_error(cx, conjured_ty, init))
|
|
{
|
|
cx.struct_span_lint(INVALID_VALUE, expr.span, |lint| {
|
|
let mut err = lint.build(&format!(
|
|
"the type `{}` does not permit {}",
|
|
conjured_ty,
|
|
match init {
|
|
InitKind::Zeroed => "zero-initialization",
|
|
InitKind::Uninit => "being left uninitialized",
|
|
},
|
|
));
|
|
err.span_label(expr.span, "this code causes undefined behavior when executed");
|
|
err.span_label(
|
|
expr.span,
|
|
"help: use `MaybeUninit<T>` instead, \
|
|
and only call `assume_init` after initialization is done",
|
|
);
|
|
if let Some(span) = span {
|
|
err.span_note(span, &msg);
|
|
} else {
|
|
err.note(&msg);
|
|
}
|
|
err.emit();
|
|
});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
declare_lint! {
|
|
/// The `clashing_extern_declarations` lint detects when an `extern fn`
|
|
/// has been declared with the same name but different types.
|
|
///
|
|
/// ### Example
|
|
///
|
|
/// ```rust
|
|
/// mod m {
|
|
/// extern "C" {
|
|
/// fn foo();
|
|
/// }
|
|
/// }
|
|
///
|
|
/// extern "C" {
|
|
/// fn foo(_: u32);
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// {{produces}}
|
|
///
|
|
/// ### Explanation
|
|
///
|
|
/// Because two symbols of the same name cannot be resolved to two
|
|
/// different functions at link time, and one function cannot possibly
|
|
/// have two types, a clashing extern declaration is almost certainly a
|
|
/// mistake. Check to make sure that the `extern` definitions are correct
|
|
/// and equivalent, and possibly consider unifying them in one location.
|
|
///
|
|
/// This lint does not run between crates because a project may have
|
|
/// dependencies which both rely on the same extern function, but declare
|
|
/// it in a different (but valid) way. For example, they may both declare
|
|
/// an opaque type for one or more of the arguments (which would end up
|
|
/// distinct types), or use types that are valid conversions in the
|
|
/// language the `extern fn` is defined in. In these cases, the compiler
|
|
/// can't say that the clashing declaration is incorrect.
|
|
pub CLASHING_EXTERN_DECLARATIONS,
|
|
Warn,
|
|
"detects when an extern fn has been declared with the same name but different types"
|
|
}
|
|
|
|
pub struct ClashingExternDeclarations {
|
|
/// Map of function symbol name to the first-seen hir id for that symbol name.. If seen_decls
|
|
/// contains an entry for key K, it means a symbol with name K has been seen by this lint and
|
|
/// the symbol should be reported as a clashing declaration.
|
|
// FIXME: Technically, we could just store a &'tcx str here without issue; however, the
|
|
// `impl_lint_pass` macro doesn't currently support lints parametric over a lifetime.
|
|
seen_decls: FxHashMap<Symbol, HirId>,
|
|
}
|
|
|
|
/// Differentiate between whether the name for an extern decl came from the link_name attribute or
|
|
/// just from declaration itself. This is important because we don't want to report clashes on
|
|
/// symbol name if they don't actually clash because one or the other links against a symbol with a
|
|
/// different name.
|
|
enum SymbolName {
|
|
/// The name of the symbol + the span of the annotation which introduced the link name.
|
|
Link(Symbol, Span),
|
|
/// No link name, so just the name of the symbol.
|
|
Normal(Symbol),
|
|
}
|
|
|
|
impl SymbolName {
|
|
fn get_name(&self) -> Symbol {
|
|
match self {
|
|
SymbolName::Link(s, _) | SymbolName::Normal(s) => *s,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl ClashingExternDeclarations {
|
|
pub(crate) fn new() -> Self {
|
|
ClashingExternDeclarations { seen_decls: FxHashMap::default() }
|
|
}
|
|
/// Insert a new foreign item into the seen set. If a symbol with the same name already exists
|
|
/// for the item, return its HirId without updating the set.
|
|
fn insert(&mut self, tcx: TyCtxt<'_>, fi: &hir::ForeignItem<'_>) -> Option<HirId> {
|
|
let did = fi.def_id.to_def_id();
|
|
let instance = Instance::new(did, ty::List::identity_for_item(tcx, did));
|
|
let name = Symbol::intern(tcx.symbol_name(instance).name);
|
|
if let Some(&hir_id) = self.seen_decls.get(&name) {
|
|
// Avoid updating the map with the new entry when we do find a collision. We want to
|
|
// make sure we're always pointing to the first definition as the previous declaration.
|
|
// This lets us avoid emitting "knock-on" diagnostics.
|
|
Some(hir_id)
|
|
} else {
|
|
self.seen_decls.insert(name, fi.hir_id())
|
|
}
|
|
}
|
|
|
|
/// Get the name of the symbol that's linked against for a given extern declaration. That is,
|
|
/// the name specified in a #[link_name = ...] attribute if one was specified, else, just the
|
|
/// symbol's name.
|
|
fn name_of_extern_decl(tcx: TyCtxt<'_>, fi: &hir::ForeignItem<'_>) -> SymbolName {
|
|
if let Some((overridden_link_name, overridden_link_name_span)) =
|
|
tcx.codegen_fn_attrs(fi.def_id).link_name.map(|overridden_link_name| {
|
|
// FIXME: Instead of searching through the attributes again to get span
|
|
// information, we could have codegen_fn_attrs also give span information back for
|
|
// where the attribute was defined. However, until this is found to be a
|
|
// bottleneck, this does just fine.
|
|
(
|
|
overridden_link_name,
|
|
tcx.get_attr(fi.def_id.to_def_id(), sym::link_name).unwrap().span,
|
|
)
|
|
})
|
|
{
|
|
SymbolName::Link(overridden_link_name, overridden_link_name_span)
|
|
} else {
|
|
SymbolName::Normal(fi.ident.name)
|
|
}
|
|
}
|
|
|
|
/// Checks whether two types are structurally the same enough that the declarations shouldn't
|
|
/// clash. We need this so we don't emit a lint when two modules both declare an extern struct,
|
|
/// with the same members (as the declarations shouldn't clash).
|
|
fn structurally_same_type<'tcx>(
|
|
cx: &LateContext<'tcx>,
|
|
a: Ty<'tcx>,
|
|
b: Ty<'tcx>,
|
|
ckind: CItemKind,
|
|
) -> bool {
|
|
fn structurally_same_type_impl<'tcx>(
|
|
seen_types: &mut FxHashSet<(Ty<'tcx>, Ty<'tcx>)>,
|
|
cx: &LateContext<'tcx>,
|
|
a: Ty<'tcx>,
|
|
b: Ty<'tcx>,
|
|
ckind: CItemKind,
|
|
) -> bool {
|
|
debug!("structurally_same_type_impl(cx, a = {:?}, b = {:?})", a, b);
|
|
let tcx = cx.tcx;
|
|
|
|
// Given a transparent newtype, reach through and grab the inner
|
|
// type unless the newtype makes the type non-null.
|
|
let non_transparent_ty = |ty: Ty<'tcx>| -> Ty<'tcx> {
|
|
let mut ty = ty;
|
|
loop {
|
|
if let ty::Adt(def, substs) = *ty.kind() {
|
|
let is_transparent = def.repr().transparent();
|
|
let is_non_null = crate::types::nonnull_optimization_guaranteed(tcx, def);
|
|
debug!(
|
|
"non_transparent_ty({:?}) -- type is transparent? {}, type is non-null? {}",
|
|
ty, is_transparent, is_non_null
|
|
);
|
|
if is_transparent && !is_non_null {
|
|
debug_assert!(def.variants().len() == 1);
|
|
let v = &def.variant(VariantIdx::new(0));
|
|
ty = transparent_newtype_field(tcx, v)
|
|
.expect(
|
|
"single-variant transparent structure with zero-sized field",
|
|
)
|
|
.ty(tcx, substs);
|
|
continue;
|
|
}
|
|
}
|
|
debug!("non_transparent_ty -> {:?}", ty);
|
|
return ty;
|
|
}
|
|
};
|
|
|
|
let a = non_transparent_ty(a);
|
|
let b = non_transparent_ty(b);
|
|
|
|
if !seen_types.insert((a, b)) {
|
|
// We've encountered a cycle. There's no point going any further -- the types are
|
|
// structurally the same.
|
|
return true;
|
|
}
|
|
let tcx = cx.tcx;
|
|
if a == b {
|
|
// All nominally-same types are structurally same, too.
|
|
true
|
|
} else {
|
|
// Do a full, depth-first comparison between the two.
|
|
use rustc_type_ir::sty::TyKind::*;
|
|
let a_kind = a.kind();
|
|
let b_kind = b.kind();
|
|
|
|
let compare_layouts = |a, b| -> Result<bool, LayoutError<'tcx>> {
|
|
debug!("compare_layouts({:?}, {:?})", a, b);
|
|
let a_layout = &cx.layout_of(a)?.layout.abi();
|
|
let b_layout = &cx.layout_of(b)?.layout.abi();
|
|
debug!(
|
|
"comparing layouts: {:?} == {:?} = {}",
|
|
a_layout,
|
|
b_layout,
|
|
a_layout == b_layout
|
|
);
|
|
Ok(a_layout == b_layout)
|
|
};
|
|
|
|
#[allow(rustc::usage_of_ty_tykind)]
|
|
let is_primitive_or_pointer = |kind: &ty::TyKind<'_>| {
|
|
kind.is_primitive() || matches!(kind, RawPtr(..) | Ref(..))
|
|
};
|
|
|
|
ensure_sufficient_stack(|| {
|
|
match (a_kind, b_kind) {
|
|
(Adt(a_def, _), Adt(b_def, _)) => {
|
|
// We can immediately rule out these types as structurally same if
|
|
// their layouts differ.
|
|
match compare_layouts(a, b) {
|
|
Ok(false) => return false,
|
|
_ => (), // otherwise, continue onto the full, fields comparison
|
|
}
|
|
|
|
// Grab a flattened representation of all fields.
|
|
let a_fields = a_def.variants().iter().flat_map(|v| v.fields.iter());
|
|
let b_fields = b_def.variants().iter().flat_map(|v| v.fields.iter());
|
|
|
|
// Perform a structural comparison for each field.
|
|
a_fields.eq_by(
|
|
b_fields,
|
|
|&ty::FieldDef { did: a_did, .. },
|
|
&ty::FieldDef { did: b_did, .. }| {
|
|
structurally_same_type_impl(
|
|
seen_types,
|
|
cx,
|
|
tcx.type_of(a_did),
|
|
tcx.type_of(b_did),
|
|
ckind,
|
|
)
|
|
},
|
|
)
|
|
}
|
|
(Array(a_ty, a_const), Array(b_ty, b_const)) => {
|
|
// For arrays, we also check the constness of the type.
|
|
a_const.kind() == b_const.kind()
|
|
&& structurally_same_type_impl(seen_types, cx, *a_ty, *b_ty, ckind)
|
|
}
|
|
(Slice(a_ty), Slice(b_ty)) => {
|
|
structurally_same_type_impl(seen_types, cx, *a_ty, *b_ty, ckind)
|
|
}
|
|
(RawPtr(a_tymut), RawPtr(b_tymut)) => {
|
|
a_tymut.mutbl == b_tymut.mutbl
|
|
&& structurally_same_type_impl(
|
|
seen_types, cx, a_tymut.ty, b_tymut.ty, ckind,
|
|
)
|
|
}
|
|
(Ref(_a_region, a_ty, a_mut), Ref(_b_region, b_ty, b_mut)) => {
|
|
// For structural sameness, we don't need the region to be same.
|
|
a_mut == b_mut
|
|
&& structurally_same_type_impl(seen_types, cx, *a_ty, *b_ty, ckind)
|
|
}
|
|
(FnDef(..), FnDef(..)) => {
|
|
let a_poly_sig = a.fn_sig(tcx);
|
|
let b_poly_sig = b.fn_sig(tcx);
|
|
|
|
// As we don't compare regions, skip_binder is fine.
|
|
let a_sig = a_poly_sig.skip_binder();
|
|
let b_sig = b_poly_sig.skip_binder();
|
|
|
|
(a_sig.abi, a_sig.unsafety, a_sig.c_variadic)
|
|
== (b_sig.abi, b_sig.unsafety, b_sig.c_variadic)
|
|
&& a_sig.inputs().iter().eq_by(b_sig.inputs().iter(), |a, b| {
|
|
structurally_same_type_impl(seen_types, cx, *a, *b, ckind)
|
|
})
|
|
&& structurally_same_type_impl(
|
|
seen_types,
|
|
cx,
|
|
a_sig.output(),
|
|
b_sig.output(),
|
|
ckind,
|
|
)
|
|
}
|
|
(Tuple(a_substs), Tuple(b_substs)) => {
|
|
a_substs.iter().eq_by(b_substs.iter(), |a_ty, b_ty| {
|
|
structurally_same_type_impl(seen_types, cx, a_ty, b_ty, ckind)
|
|
})
|
|
}
|
|
// For these, it's not quite as easy to define structural-sameness quite so easily.
|
|
// For the purposes of this lint, take the conservative approach and mark them as
|
|
// not structurally same.
|
|
(Dynamic(..), Dynamic(..))
|
|
| (Error(..), Error(..))
|
|
| (Closure(..), Closure(..))
|
|
| (Generator(..), Generator(..))
|
|
| (GeneratorWitness(..), GeneratorWitness(..))
|
|
| (Projection(..), Projection(..))
|
|
| (Opaque(..), Opaque(..)) => false,
|
|
|
|
// These definitely should have been caught above.
|
|
(Bool, Bool) | (Char, Char) | (Never, Never) | (Str, Str) => unreachable!(),
|
|
|
|
// An Adt and a primitive or pointer type. This can be FFI-safe if non-null
|
|
// enum layout optimisation is being applied.
|
|
(Adt(..), other_kind) | (other_kind, Adt(..))
|
|
if is_primitive_or_pointer(other_kind) =>
|
|
{
|
|
let (primitive, adt) =
|
|
if is_primitive_or_pointer(a.kind()) { (a, b) } else { (b, a) };
|
|
if let Some(ty) = crate::types::repr_nullable_ptr(cx, adt, ckind) {
|
|
ty == primitive
|
|
} else {
|
|
compare_layouts(a, b).unwrap_or(false)
|
|
}
|
|
}
|
|
// Otherwise, just compare the layouts. This may fail to lint for some
|
|
// incompatible types, but at the very least, will stop reads into
|
|
// uninitialised memory.
|
|
_ => compare_layouts(a, b).unwrap_or(false),
|
|
}
|
|
})
|
|
}
|
|
}
|
|
let mut seen_types = FxHashSet::default();
|
|
structurally_same_type_impl(&mut seen_types, cx, a, b, ckind)
|
|
}
|
|
}
|
|
|
|
impl_lint_pass!(ClashingExternDeclarations => [CLASHING_EXTERN_DECLARATIONS]);
|
|
|
|
impl<'tcx> LateLintPass<'tcx> for ClashingExternDeclarations {
|
|
fn check_foreign_item(&mut self, cx: &LateContext<'tcx>, this_fi: &hir::ForeignItem<'_>) {
|
|
trace!("ClashingExternDeclarations: check_foreign_item: {:?}", this_fi);
|
|
if let ForeignItemKind::Fn(..) = this_fi.kind {
|
|
let tcx = cx.tcx;
|
|
if let Some(existing_hid) = self.insert(tcx, this_fi) {
|
|
let existing_decl_ty = tcx.type_of(tcx.hir().local_def_id(existing_hid));
|
|
let this_decl_ty = tcx.type_of(this_fi.def_id);
|
|
debug!(
|
|
"ClashingExternDeclarations: Comparing existing {:?}: {:?} to this {:?}: {:?}",
|
|
existing_hid, existing_decl_ty, this_fi.def_id, this_decl_ty
|
|
);
|
|
// Check that the declarations match.
|
|
if !Self::structurally_same_type(
|
|
cx,
|
|
existing_decl_ty,
|
|
this_decl_ty,
|
|
CItemKind::Declaration,
|
|
) {
|
|
let orig_fi = tcx.hir().expect_foreign_item(existing_hid.expect_owner());
|
|
let orig = Self::name_of_extern_decl(tcx, orig_fi);
|
|
|
|
// We want to ensure that we use spans for both decls that include where the
|
|
// name was defined, whether that was from the link_name attribute or not.
|
|
let get_relevant_span =
|
|
|fi: &hir::ForeignItem<'_>| match Self::name_of_extern_decl(tcx, fi) {
|
|
SymbolName::Normal(_) => fi.span,
|
|
SymbolName::Link(_, annot_span) => fi.span.to(annot_span),
|
|
};
|
|
// Finally, emit the diagnostic.
|
|
tcx.struct_span_lint_hir(
|
|
CLASHING_EXTERN_DECLARATIONS,
|
|
this_fi.hir_id(),
|
|
get_relevant_span(this_fi),
|
|
|lint| {
|
|
let mut expected_str = DiagnosticStyledString::new();
|
|
expected_str.push(existing_decl_ty.fn_sig(tcx).to_string(), false);
|
|
let mut found_str = DiagnosticStyledString::new();
|
|
found_str.push(this_decl_ty.fn_sig(tcx).to_string(), true);
|
|
|
|
lint.build(&format!(
|
|
"`{}` redeclare{} with a different signature",
|
|
this_fi.ident.name,
|
|
if orig.get_name() == this_fi.ident.name {
|
|
"d".to_string()
|
|
} else {
|
|
format!("s `{}`", orig.get_name())
|
|
}
|
|
))
|
|
.span_label(
|
|
get_relevant_span(orig_fi),
|
|
&format!("`{}` previously declared here", orig.get_name()),
|
|
)
|
|
.span_label(
|
|
get_relevant_span(this_fi),
|
|
"this signature doesn't match the previous declaration",
|
|
)
|
|
.note_expected_found(&"", expected_str, &"", found_str)
|
|
.emit();
|
|
},
|
|
);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
declare_lint! {
|
|
/// The `deref_nullptr` lint detects when an null pointer is dereferenced,
|
|
/// which causes [undefined behavior].
|
|
///
|
|
/// ### Example
|
|
///
|
|
/// ```rust,no_run
|
|
/// # #![allow(unused)]
|
|
/// use std::ptr;
|
|
/// unsafe {
|
|
/// let x = &*ptr::null::<i32>();
|
|
/// let x = ptr::addr_of!(*ptr::null::<i32>());
|
|
/// let x = *(0 as *const i32);
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// {{produces}}
|
|
///
|
|
/// ### Explanation
|
|
///
|
|
/// Dereferencing a null pointer causes [undefined behavior] even as a place expression,
|
|
/// like `&*(0 as *const i32)` or `addr_of!(*(0 as *const i32))`.
|
|
///
|
|
/// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
|
|
pub DEREF_NULLPTR,
|
|
Warn,
|
|
"detects when an null pointer is dereferenced"
|
|
}
|
|
|
|
declare_lint_pass!(DerefNullPtr => [DEREF_NULLPTR]);
|
|
|
|
impl<'tcx> LateLintPass<'tcx> for DerefNullPtr {
|
|
fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
|
|
/// test if expression is a null ptr
|
|
fn is_null_ptr(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> bool {
|
|
match &expr.kind {
|
|
rustc_hir::ExprKind::Cast(ref expr, ref ty) => {
|
|
if let rustc_hir::TyKind::Ptr(_) = ty.kind {
|
|
return is_zero(expr) || is_null_ptr(cx, expr);
|
|
}
|
|
}
|
|
// check for call to `core::ptr::null` or `core::ptr::null_mut`
|
|
rustc_hir::ExprKind::Call(ref path, _) => {
|
|
if let rustc_hir::ExprKind::Path(ref qpath) = path.kind {
|
|
if let Some(def_id) = cx.qpath_res(qpath, path.hir_id).opt_def_id() {
|
|
return matches!(
|
|
cx.tcx.get_diagnostic_name(def_id),
|
|
Some(sym::ptr_null | sym::ptr_null_mut)
|
|
);
|
|
}
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
false
|
|
}
|
|
|
|
/// test if expression is the literal `0`
|
|
fn is_zero(expr: &hir::Expr<'_>) -> bool {
|
|
match &expr.kind {
|
|
rustc_hir::ExprKind::Lit(ref lit) => {
|
|
if let LitKind::Int(a, _) = lit.node {
|
|
return a == 0;
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
false
|
|
}
|
|
|
|
if let rustc_hir::ExprKind::Unary(rustc_hir::UnOp::Deref, expr_deref) = expr.kind {
|
|
if is_null_ptr(cx, expr_deref) {
|
|
cx.struct_span_lint(DEREF_NULLPTR, expr.span, |lint| {
|
|
let mut err = lint.build("dereferencing a null pointer");
|
|
err.span_label(expr.span, "this code causes undefined behavior when executed");
|
|
err.emit();
|
|
});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
declare_lint! {
|
|
/// The `named_asm_labels` lint detects the use of named labels in the
|
|
/// inline `asm!` macro.
|
|
///
|
|
/// ### Example
|
|
///
|
|
/// ```rust,compile_fail
|
|
/// use std::arch::asm;
|
|
///
|
|
/// fn main() {
|
|
/// unsafe {
|
|
/// asm!("foo: bar");
|
|
/// }
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// {{produces}}
|
|
///
|
|
/// ### Explanation
|
|
///
|
|
/// LLVM is allowed to duplicate inline assembly blocks for any
|
|
/// reason, for example when it is in a function that gets inlined. Because
|
|
/// of this, GNU assembler [local labels] *must* be used instead of labels
|
|
/// with a name. Using named labels might cause assembler or linker errors.
|
|
///
|
|
/// See the explanation in [Rust By Example] for more details.
|
|
///
|
|
/// [local labels]: https://sourceware.org/binutils/docs/as/Symbol-Names.html#Local-Labels
|
|
/// [Rust By Example]: https://doc.rust-lang.org/nightly/rust-by-example/unsafe/asm.html#labels
|
|
pub NAMED_ASM_LABELS,
|
|
Deny,
|
|
"named labels in inline assembly",
|
|
}
|
|
|
|
declare_lint_pass!(NamedAsmLabels => [NAMED_ASM_LABELS]);
|
|
|
|
impl<'tcx> LateLintPass<'tcx> for NamedAsmLabels {
|
|
fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'tcx>) {
|
|
if let hir::Expr {
|
|
kind: hir::ExprKind::InlineAsm(hir::InlineAsm { template_strs, .. }),
|
|
..
|
|
} = expr
|
|
{
|
|
for (template_sym, template_snippet, template_span) in template_strs.iter() {
|
|
let template_str = template_sym.as_str();
|
|
let find_label_span = |needle: &str| -> Option<Span> {
|
|
if let Some(template_snippet) = template_snippet {
|
|
let snippet = template_snippet.as_str();
|
|
if let Some(pos) = snippet.find(needle) {
|
|
let end = pos
|
|
+ snippet[pos..]
|
|
.find(|c| c == ':')
|
|
.unwrap_or(snippet[pos..].len() - 1);
|
|
let inner = InnerSpan::new(pos, end);
|
|
return Some(template_span.from_inner(inner));
|
|
}
|
|
}
|
|
|
|
None
|
|
};
|
|
|
|
let mut found_labels = Vec::new();
|
|
|
|
// A semicolon might not actually be specified as a separator for all targets, but it seems like LLVM accepts it always
|
|
let statements = template_str.split(|c| matches!(c, '\n' | ';'));
|
|
for statement in statements {
|
|
// If there's a comment, trim it from the statement
|
|
let statement = statement.find("//").map_or(statement, |idx| &statement[..idx]);
|
|
let mut start_idx = 0;
|
|
for (idx, _) in statement.match_indices(':') {
|
|
let possible_label = statement[start_idx..idx].trim();
|
|
let mut chars = possible_label.chars();
|
|
let Some(c) = chars.next() else {
|
|
// Empty string means a leading ':' in this section, which is not a label
|
|
break
|
|
};
|
|
// A label starts with an alphabetic character or . or _ and continues with alphanumeric characters, _, or $
|
|
if (c.is_alphabetic() || matches!(c, '.' | '_'))
|
|
&& chars.all(|c| c.is_alphanumeric() || matches!(c, '_' | '$'))
|
|
{
|
|
found_labels.push(possible_label);
|
|
} else {
|
|
// If we encounter a non-label, there cannot be any further labels, so stop checking
|
|
break;
|
|
}
|
|
|
|
start_idx = idx + 1;
|
|
}
|
|
}
|
|
|
|
debug!("NamedAsmLabels::check_expr(): found_labels: {:#?}", &found_labels);
|
|
|
|
if found_labels.len() > 0 {
|
|
let spans = found_labels
|
|
.into_iter()
|
|
.filter_map(|label| find_label_span(label))
|
|
.collect::<Vec<Span>>();
|
|
// If there were labels but we couldn't find a span, combine the warnings and use the template span
|
|
let target_spans: MultiSpan =
|
|
if spans.len() > 0 { spans.into() } else { (*template_span).into() };
|
|
|
|
cx.lookup_with_diagnostics(
|
|
NAMED_ASM_LABELS,
|
|
Some(target_spans),
|
|
|diag| {
|
|
let mut err =
|
|
diag.build("avoid using named labels in inline assembly");
|
|
err.emit();
|
|
},
|
|
BuiltinLintDiagnostics::NamedAsmLabel(
|
|
"only local labels of the form `<number>:` should be used in inline asm"
|
|
.to_string(),
|
|
),
|
|
);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|