mirror of
https://github.com/rust-lang/rust.git
synced 2024-12-26 15:36:39 +00:00
2020 lines
57 KiB
Rust
2020 lines
57 KiB
Rust
use std::cell::Cell;
|
|
use std::cmp::Ordering::{self, Equal, Greater, Less};
|
|
use std::convert::identity;
|
|
use std::fmt;
|
|
use std::mem;
|
|
use std::panic;
|
|
use std::rc::Rc;
|
|
use std::sync::atomic::{AtomicUsize, Ordering::Relaxed};
|
|
|
|
use rand::distributions::Standard;
|
|
use rand::seq::SliceRandom;
|
|
use rand::{thread_rng, Rng, RngCore};
|
|
|
|
fn square(n: usize) -> usize {
|
|
n * n
|
|
}
|
|
|
|
fn is_odd(n: &usize) -> bool {
|
|
*n % 2 == 1
|
|
}
|
|
|
|
#[test]
|
|
fn test_from_fn() {
|
|
// Test on-stack from_fn.
|
|
let mut v: Vec<_> = (0..3).map(square).collect();
|
|
{
|
|
let v = v;
|
|
assert_eq!(v.len(), 3);
|
|
assert_eq!(v[0], 0);
|
|
assert_eq!(v[1], 1);
|
|
assert_eq!(v[2], 4);
|
|
}
|
|
|
|
// Test on-heap from_fn.
|
|
v = (0..5).map(square).collect();
|
|
{
|
|
let v = v;
|
|
assert_eq!(v.len(), 5);
|
|
assert_eq!(v[0], 0);
|
|
assert_eq!(v[1], 1);
|
|
assert_eq!(v[2], 4);
|
|
assert_eq!(v[3], 9);
|
|
assert_eq!(v[4], 16);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_from_elem() {
|
|
// Test on-stack from_elem.
|
|
let mut v = vec![10, 10];
|
|
{
|
|
let v = v;
|
|
assert_eq!(v.len(), 2);
|
|
assert_eq!(v[0], 10);
|
|
assert_eq!(v[1], 10);
|
|
}
|
|
|
|
// Test on-heap from_elem.
|
|
v = vec![20; 6];
|
|
{
|
|
let v = &v[..];
|
|
assert_eq!(v[0], 20);
|
|
assert_eq!(v[1], 20);
|
|
assert_eq!(v[2], 20);
|
|
assert_eq!(v[3], 20);
|
|
assert_eq!(v[4], 20);
|
|
assert_eq!(v[5], 20);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_is_empty() {
|
|
let xs: [i32; 0] = [];
|
|
assert!(xs.is_empty());
|
|
assert!(![0].is_empty());
|
|
}
|
|
|
|
#[test]
|
|
fn test_len_divzero() {
|
|
type Z = [i8; 0];
|
|
let v0: &[Z] = &[];
|
|
let v1: &[Z] = &[[]];
|
|
let v2: &[Z] = &[[], []];
|
|
assert_eq!(mem::size_of::<Z>(), 0);
|
|
assert_eq!(v0.len(), 0);
|
|
assert_eq!(v1.len(), 1);
|
|
assert_eq!(v2.len(), 2);
|
|
}
|
|
|
|
#[test]
|
|
fn test_get() {
|
|
let mut a = vec![11];
|
|
assert_eq!(a.get(1), None);
|
|
a = vec![11, 12];
|
|
assert_eq!(a.get(1).unwrap(), &12);
|
|
a = vec![11, 12, 13];
|
|
assert_eq!(a.get(1).unwrap(), &12);
|
|
}
|
|
|
|
#[test]
|
|
fn test_first() {
|
|
let mut a = vec![];
|
|
assert_eq!(a.first(), None);
|
|
a = vec![11];
|
|
assert_eq!(a.first().unwrap(), &11);
|
|
a = vec![11, 12];
|
|
assert_eq!(a.first().unwrap(), &11);
|
|
}
|
|
|
|
#[test]
|
|
fn test_first_mut() {
|
|
let mut a = vec![];
|
|
assert_eq!(a.first_mut(), None);
|
|
a = vec![11];
|
|
assert_eq!(*a.first_mut().unwrap(), 11);
|
|
a = vec![11, 12];
|
|
assert_eq!(*a.first_mut().unwrap(), 11);
|
|
}
|
|
|
|
#[test]
|
|
fn test_split_first() {
|
|
let mut a = vec![11];
|
|
let b: &[i32] = &[];
|
|
assert!(b.split_first().is_none());
|
|
assert_eq!(a.split_first(), Some((&11, b)));
|
|
a = vec![11, 12];
|
|
let b: &[i32] = &[12];
|
|
assert_eq!(a.split_first(), Some((&11, b)));
|
|
}
|
|
|
|
#[test]
|
|
fn test_split_first_mut() {
|
|
let mut a = vec![11];
|
|
let b: &mut [i32] = &mut [];
|
|
assert!(b.split_first_mut().is_none());
|
|
assert!(a.split_first_mut() == Some((&mut 11, b)));
|
|
a = vec![11, 12];
|
|
let b: &mut [_] = &mut [12];
|
|
assert!(a.split_first_mut() == Some((&mut 11, b)));
|
|
}
|
|
|
|
#[test]
|
|
fn test_split_last() {
|
|
let mut a = vec![11];
|
|
let b: &[i32] = &[];
|
|
assert!(b.split_last().is_none());
|
|
assert_eq!(a.split_last(), Some((&11, b)));
|
|
a = vec![11, 12];
|
|
let b: &[_] = &[11];
|
|
assert_eq!(a.split_last(), Some((&12, b)));
|
|
}
|
|
|
|
#[test]
|
|
fn test_split_last_mut() {
|
|
let mut a = vec![11];
|
|
let b: &mut [i32] = &mut [];
|
|
assert!(b.split_last_mut().is_none());
|
|
assert!(a.split_last_mut() == Some((&mut 11, b)));
|
|
|
|
a = vec![11, 12];
|
|
let b: &mut [_] = &mut [11];
|
|
assert!(a.split_last_mut() == Some((&mut 12, b)));
|
|
}
|
|
|
|
#[test]
|
|
fn test_last() {
|
|
let mut a = vec![];
|
|
assert_eq!(a.last(), None);
|
|
a = vec![11];
|
|
assert_eq!(a.last().unwrap(), &11);
|
|
a = vec![11, 12];
|
|
assert_eq!(a.last().unwrap(), &12);
|
|
}
|
|
|
|
#[test]
|
|
fn test_last_mut() {
|
|
let mut a = vec![];
|
|
assert_eq!(a.last_mut(), None);
|
|
a = vec![11];
|
|
assert_eq!(*a.last_mut().unwrap(), 11);
|
|
a = vec![11, 12];
|
|
assert_eq!(*a.last_mut().unwrap(), 12);
|
|
}
|
|
|
|
#[test]
|
|
fn test_slice() {
|
|
// Test fixed length vector.
|
|
let vec_fixed = [1, 2, 3, 4];
|
|
let v_a = vec_fixed[1..vec_fixed.len()].to_vec();
|
|
assert_eq!(v_a.len(), 3);
|
|
|
|
assert_eq!(v_a[0], 2);
|
|
assert_eq!(v_a[1], 3);
|
|
assert_eq!(v_a[2], 4);
|
|
|
|
// Test on stack.
|
|
let vec_stack: &[_] = &[1, 2, 3];
|
|
let v_b = vec_stack[1..3].to_vec();
|
|
assert_eq!(v_b.len(), 2);
|
|
|
|
assert_eq!(v_b[0], 2);
|
|
assert_eq!(v_b[1], 3);
|
|
|
|
// Test `Box<[T]>`
|
|
let vec_unique = vec![1, 2, 3, 4, 5, 6];
|
|
let v_d = vec_unique[1..6].to_vec();
|
|
assert_eq!(v_d.len(), 5);
|
|
|
|
assert_eq!(v_d[0], 2);
|
|
assert_eq!(v_d[1], 3);
|
|
assert_eq!(v_d[2], 4);
|
|
assert_eq!(v_d[3], 5);
|
|
assert_eq!(v_d[4], 6);
|
|
}
|
|
|
|
#[test]
|
|
fn test_slice_from() {
|
|
let vec: &[_] = &[1, 2, 3, 4];
|
|
assert_eq!(&vec[..], vec);
|
|
let b: &[_] = &[3, 4];
|
|
assert_eq!(&vec[2..], b);
|
|
let b: &[_] = &[];
|
|
assert_eq!(&vec[4..], b);
|
|
}
|
|
|
|
#[test]
|
|
fn test_slice_to() {
|
|
let vec: &[_] = &[1, 2, 3, 4];
|
|
assert_eq!(&vec[..4], vec);
|
|
let b: &[_] = &[1, 2];
|
|
assert_eq!(&vec[..2], b);
|
|
let b: &[_] = &[];
|
|
assert_eq!(&vec[..0], b);
|
|
}
|
|
|
|
#[test]
|
|
fn test_pop() {
|
|
let mut v = vec![5];
|
|
let e = v.pop();
|
|
assert_eq!(v.len(), 0);
|
|
assert_eq!(e, Some(5));
|
|
let f = v.pop();
|
|
assert_eq!(f, None);
|
|
let g = v.pop();
|
|
assert_eq!(g, None);
|
|
}
|
|
|
|
#[test]
|
|
fn test_swap_remove() {
|
|
let mut v = vec![1, 2, 3, 4, 5];
|
|
let mut e = v.swap_remove(0);
|
|
assert_eq!(e, 1);
|
|
assert_eq!(v, [5, 2, 3, 4]);
|
|
e = v.swap_remove(3);
|
|
assert_eq!(e, 4);
|
|
assert_eq!(v, [5, 2, 3]);
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic]
|
|
fn test_swap_remove_fail() {
|
|
let mut v = vec![1];
|
|
let _ = v.swap_remove(0);
|
|
let _ = v.swap_remove(0);
|
|
}
|
|
|
|
#[test]
|
|
fn test_swap_remove_noncopyable() {
|
|
// Tests that we don't accidentally run destructors twice.
|
|
let mut v: Vec<Box<_>> = Vec::new();
|
|
v.push(box 0);
|
|
v.push(box 0);
|
|
v.push(box 0);
|
|
let mut _e = v.swap_remove(0);
|
|
assert_eq!(v.len(), 2);
|
|
_e = v.swap_remove(1);
|
|
assert_eq!(v.len(), 1);
|
|
_e = v.swap_remove(0);
|
|
assert_eq!(v.len(), 0);
|
|
}
|
|
|
|
#[test]
|
|
fn test_push() {
|
|
// Test on-stack push().
|
|
let mut v = vec![];
|
|
v.push(1);
|
|
assert_eq!(v.len(), 1);
|
|
assert_eq!(v[0], 1);
|
|
|
|
// Test on-heap push().
|
|
v.push(2);
|
|
assert_eq!(v.len(), 2);
|
|
assert_eq!(v[0], 1);
|
|
assert_eq!(v[1], 2);
|
|
}
|
|
|
|
#[test]
|
|
fn test_truncate() {
|
|
let mut v: Vec<Box<_>> = vec![box 6, box 5, box 4];
|
|
v.truncate(1);
|
|
let v = v;
|
|
assert_eq!(v.len(), 1);
|
|
assert_eq!(*(v[0]), 6);
|
|
// If the unsafe block didn't drop things properly, we blow up here.
|
|
}
|
|
|
|
#[test]
|
|
fn test_clear() {
|
|
let mut v: Vec<Box<_>> = vec![box 6, box 5, box 4];
|
|
v.clear();
|
|
assert_eq!(v.len(), 0);
|
|
// If the unsafe block didn't drop things properly, we blow up here.
|
|
}
|
|
|
|
#[test]
|
|
fn test_retain() {
|
|
let mut v = vec![1, 2, 3, 4, 5];
|
|
v.retain(is_odd);
|
|
assert_eq!(v, [1, 3, 5]);
|
|
}
|
|
|
|
#[test]
|
|
fn test_binary_search() {
|
|
assert_eq!([1, 2, 3, 4, 5].binary_search(&5).ok(), Some(4));
|
|
assert_eq!([1, 2, 3, 4, 5].binary_search(&4).ok(), Some(3));
|
|
assert_eq!([1, 2, 3, 4, 5].binary_search(&3).ok(), Some(2));
|
|
assert_eq!([1, 2, 3, 4, 5].binary_search(&2).ok(), Some(1));
|
|
assert_eq!([1, 2, 3, 4, 5].binary_search(&1).ok(), Some(0));
|
|
|
|
assert_eq!([2, 4, 6, 8, 10].binary_search(&1).ok(), None);
|
|
assert_eq!([2, 4, 6, 8, 10].binary_search(&5).ok(), None);
|
|
assert_eq!([2, 4, 6, 8, 10].binary_search(&4).ok(), Some(1));
|
|
assert_eq!([2, 4, 6, 8, 10].binary_search(&10).ok(), Some(4));
|
|
|
|
assert_eq!([2, 4, 6, 8].binary_search(&1).ok(), None);
|
|
assert_eq!([2, 4, 6, 8].binary_search(&5).ok(), None);
|
|
assert_eq!([2, 4, 6, 8].binary_search(&4).ok(), Some(1));
|
|
assert_eq!([2, 4, 6, 8].binary_search(&8).ok(), Some(3));
|
|
|
|
assert_eq!([2, 4, 6].binary_search(&1).ok(), None);
|
|
assert_eq!([2, 4, 6].binary_search(&5).ok(), None);
|
|
assert_eq!([2, 4, 6].binary_search(&4).ok(), Some(1));
|
|
assert_eq!([2, 4, 6].binary_search(&6).ok(), Some(2));
|
|
|
|
assert_eq!([2, 4].binary_search(&1).ok(), None);
|
|
assert_eq!([2, 4].binary_search(&5).ok(), None);
|
|
assert_eq!([2, 4].binary_search(&2).ok(), Some(0));
|
|
assert_eq!([2, 4].binary_search(&4).ok(), Some(1));
|
|
|
|
assert_eq!([2].binary_search(&1).ok(), None);
|
|
assert_eq!([2].binary_search(&5).ok(), None);
|
|
assert_eq!([2].binary_search(&2).ok(), Some(0));
|
|
|
|
assert_eq!([].binary_search(&1).ok(), None);
|
|
assert_eq!([].binary_search(&5).ok(), None);
|
|
|
|
assert!([1, 1, 1, 1, 1].binary_search(&1).ok() != None);
|
|
assert!([1, 1, 1, 1, 2].binary_search(&1).ok() != None);
|
|
assert!([1, 1, 1, 2, 2].binary_search(&1).ok() != None);
|
|
assert!([1, 1, 2, 2, 2].binary_search(&1).ok() != None);
|
|
assert_eq!([1, 2, 2, 2, 2].binary_search(&1).ok(), Some(0));
|
|
|
|
assert_eq!([1, 2, 3, 4, 5].binary_search(&6).ok(), None);
|
|
assert_eq!([1, 2, 3, 4, 5].binary_search(&0).ok(), None);
|
|
}
|
|
|
|
#[test]
|
|
fn test_reverse() {
|
|
let mut v = vec![10, 20];
|
|
assert_eq!(v[0], 10);
|
|
assert_eq!(v[1], 20);
|
|
v.reverse();
|
|
assert_eq!(v[0], 20);
|
|
assert_eq!(v[1], 10);
|
|
|
|
let mut v3 = Vec::<i32>::new();
|
|
v3.reverse();
|
|
assert!(v3.is_empty());
|
|
|
|
// check the 1-byte-types path
|
|
let mut v = (-50..51i8).collect::<Vec<_>>();
|
|
v.reverse();
|
|
assert_eq!(v, (-50..51i8).rev().collect::<Vec<_>>());
|
|
|
|
// check the 2-byte-types path
|
|
let mut v = (-50..51i16).collect::<Vec<_>>();
|
|
v.reverse();
|
|
assert_eq!(v, (-50..51i16).rev().collect::<Vec<_>>());
|
|
}
|
|
|
|
#[test]
|
|
#[cfg_attr(miri, ignore)] // Miri is too slow
|
|
fn test_sort() {
|
|
let mut rng = thread_rng();
|
|
|
|
for len in (2..25).chain(500..510) {
|
|
for &modulus in &[5, 10, 100, 1000] {
|
|
for _ in 0..10 {
|
|
let orig: Vec<_> =
|
|
rng.sample_iter::<i32, _>(&Standard).map(|x| x % modulus).take(len).collect();
|
|
|
|
// Sort in default order.
|
|
let mut v = orig.clone();
|
|
v.sort();
|
|
assert!(v.windows(2).all(|w| w[0] <= w[1]));
|
|
|
|
// Sort in ascending order.
|
|
let mut v = orig.clone();
|
|
v.sort_by(|a, b| a.cmp(b));
|
|
assert!(v.windows(2).all(|w| w[0] <= w[1]));
|
|
|
|
// Sort in descending order.
|
|
let mut v = orig.clone();
|
|
v.sort_by(|a, b| b.cmp(a));
|
|
assert!(v.windows(2).all(|w| w[0] >= w[1]));
|
|
|
|
// Sort in lexicographic order.
|
|
let mut v1 = orig.clone();
|
|
let mut v2 = orig.clone();
|
|
v1.sort_by_key(|x| x.to_string());
|
|
v2.sort_by_cached_key(|x| x.to_string());
|
|
assert!(v1.windows(2).all(|w| w[0].to_string() <= w[1].to_string()));
|
|
assert!(v1 == v2);
|
|
|
|
// Sort with many pre-sorted runs.
|
|
let mut v = orig.clone();
|
|
v.sort();
|
|
v.reverse();
|
|
for _ in 0..5 {
|
|
let a = rng.gen::<usize>() % len;
|
|
let b = rng.gen::<usize>() % len;
|
|
if a < b {
|
|
v[a..b].reverse();
|
|
} else {
|
|
v.swap(a, b);
|
|
}
|
|
}
|
|
v.sort();
|
|
assert!(v.windows(2).all(|w| w[0] <= w[1]));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Sort using a completely random comparison function.
|
|
// This will reorder the elements *somehow*, but won't panic.
|
|
let mut v = [0; 500];
|
|
for i in 0..v.len() {
|
|
v[i] = i as i32;
|
|
}
|
|
v.sort_by(|_, _| *[Less, Equal, Greater].choose(&mut rng).unwrap());
|
|
v.sort();
|
|
for i in 0..v.len() {
|
|
assert_eq!(v[i], i as i32);
|
|
}
|
|
|
|
// Should not panic.
|
|
[0i32; 0].sort();
|
|
[(); 10].sort();
|
|
[(); 100].sort();
|
|
|
|
let mut v = [0xDEADBEEFu64];
|
|
v.sort();
|
|
assert!(v == [0xDEADBEEF]);
|
|
}
|
|
|
|
#[test]
|
|
fn test_sort_stability() {
|
|
// Miri is too slow
|
|
let large_range = if cfg!(miri) { 0..0 } else { 500..510 };
|
|
let rounds = if cfg!(miri) { 1 } else { 10 };
|
|
|
|
for len in (2..25).chain(large_range) {
|
|
for _ in 0..rounds {
|
|
let mut counts = [0; 10];
|
|
|
|
// create a vector like [(6, 1), (5, 1), (6, 2), ...],
|
|
// where the first item of each tuple is random, but
|
|
// the second item represents which occurrence of that
|
|
// number this element is, i.e., the second elements
|
|
// will occur in sorted order.
|
|
let orig: Vec<_> = (0..len)
|
|
.map(|_| {
|
|
let n = thread_rng().gen::<usize>() % 10;
|
|
counts[n] += 1;
|
|
(n, counts[n])
|
|
})
|
|
.collect();
|
|
|
|
let mut v = orig.clone();
|
|
// Only sort on the first element, so an unstable sort
|
|
// may mix up the counts.
|
|
v.sort_by(|&(a, _), &(b, _)| a.cmp(&b));
|
|
|
|
// This comparison includes the count (the second item
|
|
// of the tuple), so elements with equal first items
|
|
// will need to be ordered with increasing
|
|
// counts... i.e., exactly asserting that this sort is
|
|
// stable.
|
|
assert!(v.windows(2).all(|w| w[0] <= w[1]));
|
|
|
|
let mut v = orig.clone();
|
|
v.sort_by_cached_key(|&(x, _)| x);
|
|
assert!(v.windows(2).all(|w| w[0] <= w[1]));
|
|
}
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_rotate_left() {
|
|
let expected: Vec<_> = (0..13).collect();
|
|
let mut v = Vec::new();
|
|
|
|
// no-ops
|
|
v.clone_from(&expected);
|
|
v.rotate_left(0);
|
|
assert_eq!(v, expected);
|
|
v.rotate_left(expected.len());
|
|
assert_eq!(v, expected);
|
|
let mut zst_array = [(), (), ()];
|
|
zst_array.rotate_left(2);
|
|
|
|
// happy path
|
|
v = (5..13).chain(0..5).collect();
|
|
v.rotate_left(8);
|
|
assert_eq!(v, expected);
|
|
|
|
let expected: Vec<_> = (0..1000).collect();
|
|
|
|
// small rotations in large slice, uses ptr::copy
|
|
v = (2..1000).chain(0..2).collect();
|
|
v.rotate_left(998);
|
|
assert_eq!(v, expected);
|
|
v = (998..1000).chain(0..998).collect();
|
|
v.rotate_left(2);
|
|
assert_eq!(v, expected);
|
|
|
|
// non-small prime rotation, has a few rounds of swapping
|
|
v = (389..1000).chain(0..389).collect();
|
|
v.rotate_left(1000 - 389);
|
|
assert_eq!(v, expected);
|
|
}
|
|
|
|
#[test]
|
|
fn test_rotate_right() {
|
|
let expected: Vec<_> = (0..13).collect();
|
|
let mut v = Vec::new();
|
|
|
|
// no-ops
|
|
v.clone_from(&expected);
|
|
v.rotate_right(0);
|
|
assert_eq!(v, expected);
|
|
v.rotate_right(expected.len());
|
|
assert_eq!(v, expected);
|
|
let mut zst_array = [(), (), ()];
|
|
zst_array.rotate_right(2);
|
|
|
|
// happy path
|
|
v = (5..13).chain(0..5).collect();
|
|
v.rotate_right(5);
|
|
assert_eq!(v, expected);
|
|
|
|
let expected: Vec<_> = (0..1000).collect();
|
|
|
|
// small rotations in large slice, uses ptr::copy
|
|
v = (2..1000).chain(0..2).collect();
|
|
v.rotate_right(2);
|
|
assert_eq!(v, expected);
|
|
v = (998..1000).chain(0..998).collect();
|
|
v.rotate_right(998);
|
|
assert_eq!(v, expected);
|
|
|
|
// non-small prime rotation, has a few rounds of swapping
|
|
v = (389..1000).chain(0..389).collect();
|
|
v.rotate_right(389);
|
|
assert_eq!(v, expected);
|
|
}
|
|
|
|
#[test]
|
|
fn test_concat() {
|
|
let v: [Vec<i32>; 0] = [];
|
|
let c = v.concat();
|
|
assert_eq!(c, []);
|
|
let d = [vec![1], vec![2, 3]].concat();
|
|
assert_eq!(d, [1, 2, 3]);
|
|
|
|
let v: &[&[_]] = &[&[1], &[2, 3]];
|
|
assert_eq!(v.join(&0), [1, 0, 2, 3]);
|
|
let v: &[&[_]] = &[&[1], &[2], &[3]];
|
|
assert_eq!(v.join(&0), [1, 0, 2, 0, 3]);
|
|
}
|
|
|
|
#[test]
|
|
fn test_join() {
|
|
let v: [Vec<i32>; 0] = [];
|
|
assert_eq!(v.join(&0), []);
|
|
assert_eq!([vec![1], vec![2, 3]].join(&0), [1, 0, 2, 3]);
|
|
assert_eq!([vec![1], vec![2], vec![3]].join(&0), [1, 0, 2, 0, 3]);
|
|
|
|
let v: [&[_]; 2] = [&[1], &[2, 3]];
|
|
assert_eq!(v.join(&0), [1, 0, 2, 3]);
|
|
let v: [&[_]; 3] = [&[1], &[2], &[3]];
|
|
assert_eq!(v.join(&0), [1, 0, 2, 0, 3]);
|
|
}
|
|
|
|
#[test]
|
|
fn test_join_nocopy() {
|
|
let v: [String; 0] = [];
|
|
assert_eq!(v.join(","), "");
|
|
assert_eq!(["a".to_string(), "ab".into()].join(","), "a,ab");
|
|
assert_eq!(["a".to_string(), "ab".into(), "abc".into()].join(","), "a,ab,abc");
|
|
assert_eq!(["a".to_string(), "ab".into(), "".into()].join(","), "a,ab,");
|
|
}
|
|
|
|
#[test]
|
|
fn test_insert() {
|
|
let mut a = vec![1, 2, 4];
|
|
a.insert(2, 3);
|
|
assert_eq!(a, [1, 2, 3, 4]);
|
|
|
|
let mut a = vec![1, 2, 3];
|
|
a.insert(0, 0);
|
|
assert_eq!(a, [0, 1, 2, 3]);
|
|
|
|
let mut a = vec![1, 2, 3];
|
|
a.insert(3, 4);
|
|
assert_eq!(a, [1, 2, 3, 4]);
|
|
|
|
let mut a = vec![];
|
|
a.insert(0, 1);
|
|
assert_eq!(a, [1]);
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic]
|
|
fn test_insert_oob() {
|
|
let mut a = vec![1, 2, 3];
|
|
a.insert(4, 5);
|
|
}
|
|
|
|
#[test]
|
|
fn test_remove() {
|
|
let mut a = vec![1, 2, 3, 4];
|
|
|
|
assert_eq!(a.remove(2), 3);
|
|
assert_eq!(a, [1, 2, 4]);
|
|
|
|
assert_eq!(a.remove(2), 4);
|
|
assert_eq!(a, [1, 2]);
|
|
|
|
assert_eq!(a.remove(0), 1);
|
|
assert_eq!(a, [2]);
|
|
|
|
assert_eq!(a.remove(0), 2);
|
|
assert_eq!(a, []);
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic]
|
|
fn test_remove_fail() {
|
|
let mut a = vec![1];
|
|
let _ = a.remove(0);
|
|
let _ = a.remove(0);
|
|
}
|
|
|
|
#[test]
|
|
fn test_capacity() {
|
|
let mut v = vec![0];
|
|
v.reserve_exact(10);
|
|
assert!(v.capacity() >= 11);
|
|
}
|
|
|
|
#[test]
|
|
fn test_slice_2() {
|
|
let v = vec![1, 2, 3, 4, 5];
|
|
let v = &v[1..3];
|
|
assert_eq!(v.len(), 2);
|
|
assert_eq!(v[0], 2);
|
|
assert_eq!(v[1], 3);
|
|
}
|
|
|
|
macro_rules! assert_order {
|
|
(Greater, $a:expr, $b:expr) => {
|
|
assert_eq!($a.cmp($b), Greater);
|
|
assert!($a > $b);
|
|
};
|
|
(Less, $a:expr, $b:expr) => {
|
|
assert_eq!($a.cmp($b), Less);
|
|
assert!($a < $b);
|
|
};
|
|
(Equal, $a:expr, $b:expr) => {
|
|
assert_eq!($a.cmp($b), Equal);
|
|
assert_eq!($a, $b);
|
|
};
|
|
}
|
|
|
|
#[test]
|
|
fn test_total_ord_u8() {
|
|
let c = &[1u8, 2, 3];
|
|
assert_order!(Greater, &[1u8, 2, 3, 4][..], &c[..]);
|
|
let c = &[1u8, 2, 3, 4];
|
|
assert_order!(Less, &[1u8, 2, 3][..], &c[..]);
|
|
let c = &[1u8, 2, 3, 6];
|
|
assert_order!(Equal, &[1u8, 2, 3, 6][..], &c[..]);
|
|
let c = &[1u8, 2, 3, 4, 5, 6];
|
|
assert_order!(Less, &[1u8, 2, 3, 4, 5, 5, 5, 5][..], &c[..]);
|
|
let c = &[1u8, 2, 3, 4];
|
|
assert_order!(Greater, &[2u8, 2][..], &c[..]);
|
|
}
|
|
|
|
#[test]
|
|
fn test_total_ord_i32() {
|
|
let c = &[1, 2, 3];
|
|
assert_order!(Greater, &[1, 2, 3, 4][..], &c[..]);
|
|
let c = &[1, 2, 3, 4];
|
|
assert_order!(Less, &[1, 2, 3][..], &c[..]);
|
|
let c = &[1, 2, 3, 6];
|
|
assert_order!(Equal, &[1, 2, 3, 6][..], &c[..]);
|
|
let c = &[1, 2, 3, 4, 5, 6];
|
|
assert_order!(Less, &[1, 2, 3, 4, 5, 5, 5, 5][..], &c[..]);
|
|
let c = &[1, 2, 3, 4];
|
|
assert_order!(Greater, &[2, 2][..], &c[..]);
|
|
}
|
|
|
|
#[test]
|
|
fn test_iterator() {
|
|
let xs = [1, 2, 5, 10, 11];
|
|
let mut it = xs.iter();
|
|
assert_eq!(it.size_hint(), (5, Some(5)));
|
|
assert_eq!(it.next().unwrap(), &1);
|
|
assert_eq!(it.size_hint(), (4, Some(4)));
|
|
assert_eq!(it.next().unwrap(), &2);
|
|
assert_eq!(it.size_hint(), (3, Some(3)));
|
|
assert_eq!(it.next().unwrap(), &5);
|
|
assert_eq!(it.size_hint(), (2, Some(2)));
|
|
assert_eq!(it.next().unwrap(), &10);
|
|
assert_eq!(it.size_hint(), (1, Some(1)));
|
|
assert_eq!(it.next().unwrap(), &11);
|
|
assert_eq!(it.size_hint(), (0, Some(0)));
|
|
assert!(it.next().is_none());
|
|
}
|
|
|
|
#[test]
|
|
fn test_iter_size_hints() {
|
|
let mut xs = [1, 2, 5, 10, 11];
|
|
assert_eq!(xs.iter().size_hint(), (5, Some(5)));
|
|
assert_eq!(xs.iter_mut().size_hint(), (5, Some(5)));
|
|
}
|
|
|
|
#[test]
|
|
fn test_iter_as_slice() {
|
|
let xs = [1, 2, 5, 10, 11];
|
|
let mut iter = xs.iter();
|
|
assert_eq!(iter.as_slice(), &[1, 2, 5, 10, 11]);
|
|
iter.next();
|
|
assert_eq!(iter.as_slice(), &[2, 5, 10, 11]);
|
|
}
|
|
|
|
#[test]
|
|
fn test_iter_as_ref() {
|
|
let xs = [1, 2, 5, 10, 11];
|
|
let mut iter = xs.iter();
|
|
assert_eq!(iter.as_ref(), &[1, 2, 5, 10, 11]);
|
|
iter.next();
|
|
assert_eq!(iter.as_ref(), &[2, 5, 10, 11]);
|
|
}
|
|
|
|
#[test]
|
|
fn test_iter_clone() {
|
|
let xs = [1, 2, 5];
|
|
let mut it = xs.iter();
|
|
it.next();
|
|
let mut jt = it.clone();
|
|
assert_eq!(it.next(), jt.next());
|
|
assert_eq!(it.next(), jt.next());
|
|
assert_eq!(it.next(), jt.next());
|
|
}
|
|
|
|
#[test]
|
|
fn test_iter_is_empty() {
|
|
let xs = [1, 2, 5, 10, 11];
|
|
for i in 0..xs.len() {
|
|
for j in i..xs.len() {
|
|
assert_eq!(xs[i..j].iter().is_empty(), xs[i..j].is_empty());
|
|
}
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_mut_iterator() {
|
|
let mut xs = [1, 2, 3, 4, 5];
|
|
for x in &mut xs {
|
|
*x += 1;
|
|
}
|
|
assert!(xs == [2, 3, 4, 5, 6])
|
|
}
|
|
|
|
#[test]
|
|
fn test_rev_iterator() {
|
|
let xs = [1, 2, 5, 10, 11];
|
|
let ys = [11, 10, 5, 2, 1];
|
|
let mut i = 0;
|
|
for &x in xs.iter().rev() {
|
|
assert_eq!(x, ys[i]);
|
|
i += 1;
|
|
}
|
|
assert_eq!(i, 5);
|
|
}
|
|
|
|
#[test]
|
|
fn test_mut_rev_iterator() {
|
|
let mut xs = [1, 2, 3, 4, 5];
|
|
for (i, x) in xs.iter_mut().rev().enumerate() {
|
|
*x += i;
|
|
}
|
|
assert!(xs == [5, 5, 5, 5, 5])
|
|
}
|
|
|
|
#[test]
|
|
fn test_move_iterator() {
|
|
let xs = vec![1, 2, 3, 4, 5];
|
|
assert_eq!(xs.into_iter().fold(0, |a: usize, b: usize| 10 * a + b), 12345);
|
|
}
|
|
|
|
#[test]
|
|
fn test_move_rev_iterator() {
|
|
let xs = vec![1, 2, 3, 4, 5];
|
|
assert_eq!(xs.into_iter().rev().fold(0, |a: usize, b: usize| 10 * a + b), 54321);
|
|
}
|
|
|
|
#[test]
|
|
fn test_splitator() {
|
|
let xs = &[1, 2, 3, 4, 5];
|
|
|
|
let splits: &[&[_]] = &[&[1], &[3], &[5]];
|
|
assert_eq!(xs.split(|x| *x % 2 == 0).collect::<Vec<_>>(), splits);
|
|
let splits: &[&[_]] = &[&[], &[2, 3, 4, 5]];
|
|
assert_eq!(xs.split(|x| *x == 1).collect::<Vec<_>>(), splits);
|
|
let splits: &[&[_]] = &[&[1, 2, 3, 4], &[]];
|
|
assert_eq!(xs.split(|x| *x == 5).collect::<Vec<_>>(), splits);
|
|
let splits: &[&[_]] = &[&[1, 2, 3, 4, 5]];
|
|
assert_eq!(xs.split(|x| *x == 10).collect::<Vec<_>>(), splits);
|
|
let splits: &[&[_]] = &[&[], &[], &[], &[], &[], &[]];
|
|
assert_eq!(xs.split(|_| true).collect::<Vec<&[i32]>>(), splits);
|
|
|
|
let xs: &[i32] = &[];
|
|
let splits: &[&[i32]] = &[&[]];
|
|
assert_eq!(xs.split(|x| *x == 5).collect::<Vec<&[i32]>>(), splits);
|
|
}
|
|
|
|
#[test]
|
|
fn test_splitator_inclusive() {
|
|
let xs = &[1, 2, 3, 4, 5];
|
|
|
|
let splits: &[&[_]] = &[&[1, 2], &[3, 4], &[5]];
|
|
assert_eq!(xs.split_inclusive(|x| *x % 2 == 0).collect::<Vec<_>>(), splits);
|
|
let splits: &[&[_]] = &[&[1], &[2, 3, 4, 5]];
|
|
assert_eq!(xs.split_inclusive(|x| *x == 1).collect::<Vec<_>>(), splits);
|
|
let splits: &[&[_]] = &[&[1, 2, 3, 4, 5]];
|
|
assert_eq!(xs.split_inclusive(|x| *x == 5).collect::<Vec<_>>(), splits);
|
|
let splits: &[&[_]] = &[&[1, 2, 3, 4, 5]];
|
|
assert_eq!(xs.split_inclusive(|x| *x == 10).collect::<Vec<_>>(), splits);
|
|
let splits: &[&[_]] = &[&[1], &[2], &[3], &[4], &[5]];
|
|
assert_eq!(xs.split_inclusive(|_| true).collect::<Vec<&[i32]>>(), splits);
|
|
|
|
let xs: &[i32] = &[];
|
|
let splits: &[&[i32]] = &[&[]];
|
|
assert_eq!(xs.split_inclusive(|x| *x == 5).collect::<Vec<&[i32]>>(), splits);
|
|
}
|
|
|
|
#[test]
|
|
fn test_splitator_inclusive_reverse() {
|
|
let xs = &[1, 2, 3, 4, 5];
|
|
|
|
let splits: &[&[_]] = &[&[5], &[3, 4], &[1, 2]];
|
|
assert_eq!(xs.split_inclusive(|x| *x % 2 == 0).rev().collect::<Vec<_>>(), splits);
|
|
let splits: &[&[_]] = &[&[2, 3, 4, 5], &[1]];
|
|
assert_eq!(xs.split_inclusive(|x| *x == 1).rev().collect::<Vec<_>>(), splits);
|
|
let splits: &[&[_]] = &[&[1, 2, 3, 4, 5]];
|
|
assert_eq!(xs.split_inclusive(|x| *x == 5).rev().collect::<Vec<_>>(), splits);
|
|
let splits: &[&[_]] = &[&[1, 2, 3, 4, 5]];
|
|
assert_eq!(xs.split_inclusive(|x| *x == 10).rev().collect::<Vec<_>>(), splits);
|
|
let splits: &[&[_]] = &[&[5], &[4], &[3], &[2], &[1]];
|
|
assert_eq!(xs.split_inclusive(|_| true).rev().collect::<Vec<_>>(), splits);
|
|
|
|
let xs: &[i32] = &[];
|
|
let splits: &[&[i32]] = &[&[]];
|
|
assert_eq!(xs.split_inclusive(|x| *x == 5).rev().collect::<Vec<_>>(), splits);
|
|
}
|
|
|
|
#[test]
|
|
fn test_splitator_mut_inclusive() {
|
|
let xs = &mut [1, 2, 3, 4, 5];
|
|
|
|
let splits: &[&[_]] = &[&[1, 2], &[3, 4], &[5]];
|
|
assert_eq!(xs.split_inclusive_mut(|x| *x % 2 == 0).collect::<Vec<_>>(), splits);
|
|
let splits: &[&[_]] = &[&[1], &[2, 3, 4, 5]];
|
|
assert_eq!(xs.split_inclusive_mut(|x| *x == 1).collect::<Vec<_>>(), splits);
|
|
let splits: &[&[_]] = &[&[1, 2, 3, 4, 5]];
|
|
assert_eq!(xs.split_inclusive_mut(|x| *x == 5).collect::<Vec<_>>(), splits);
|
|
let splits: &[&[_]] = &[&[1, 2, 3, 4, 5]];
|
|
assert_eq!(xs.split_inclusive_mut(|x| *x == 10).collect::<Vec<_>>(), splits);
|
|
let splits: &[&[_]] = &[&[1], &[2], &[3], &[4], &[5]];
|
|
assert_eq!(xs.split_inclusive_mut(|_| true).collect::<Vec<_>>(), splits);
|
|
|
|
let xs: &mut [i32] = &mut [];
|
|
let splits: &[&[i32]] = &[&[]];
|
|
assert_eq!(xs.split_inclusive_mut(|x| *x == 5).collect::<Vec<_>>(), splits);
|
|
}
|
|
|
|
#[test]
|
|
fn test_splitator_mut_inclusive_reverse() {
|
|
let xs = &mut [1, 2, 3, 4, 5];
|
|
|
|
let splits: &[&[_]] = &[&[5], &[3, 4], &[1, 2]];
|
|
assert_eq!(xs.split_inclusive_mut(|x| *x % 2 == 0).rev().collect::<Vec<_>>(), splits);
|
|
let splits: &[&[_]] = &[&[2, 3, 4, 5], &[1]];
|
|
assert_eq!(xs.split_inclusive_mut(|x| *x == 1).rev().collect::<Vec<_>>(), splits);
|
|
let splits: &[&[_]] = &[&[1, 2, 3, 4, 5]];
|
|
assert_eq!(xs.split_inclusive_mut(|x| *x == 5).rev().collect::<Vec<_>>(), splits);
|
|
let splits: &[&[_]] = &[&[1, 2, 3, 4, 5]];
|
|
assert_eq!(xs.split_inclusive_mut(|x| *x == 10).rev().collect::<Vec<_>>(), splits);
|
|
let splits: &[&[_]] = &[&[5], &[4], &[3], &[2], &[1]];
|
|
assert_eq!(xs.split_inclusive_mut(|_| true).rev().collect::<Vec<_>>(), splits);
|
|
|
|
let xs: &mut [i32] = &mut [];
|
|
let splits: &[&[i32]] = &[&[]];
|
|
assert_eq!(xs.split_inclusive_mut(|x| *x == 5).rev().collect::<Vec<_>>(), splits);
|
|
}
|
|
|
|
#[test]
|
|
fn test_splitnator() {
|
|
let xs = &[1, 2, 3, 4, 5];
|
|
|
|
let splits: &[&[_]] = &[&[1, 2, 3, 4, 5]];
|
|
assert_eq!(xs.splitn(1, |x| *x % 2 == 0).collect::<Vec<_>>(), splits);
|
|
let splits: &[&[_]] = &[&[1], &[3, 4, 5]];
|
|
assert_eq!(xs.splitn(2, |x| *x % 2 == 0).collect::<Vec<_>>(), splits);
|
|
let splits: &[&[_]] = &[&[], &[], &[], &[4, 5]];
|
|
assert_eq!(xs.splitn(4, |_| true).collect::<Vec<_>>(), splits);
|
|
|
|
let xs: &[i32] = &[];
|
|
let splits: &[&[i32]] = &[&[]];
|
|
assert_eq!(xs.splitn(2, |x| *x == 5).collect::<Vec<_>>(), splits);
|
|
}
|
|
|
|
#[test]
|
|
fn test_splitnator_mut() {
|
|
let xs = &mut [1, 2, 3, 4, 5];
|
|
|
|
let splits: &[&mut [_]] = &[&mut [1, 2, 3, 4, 5]];
|
|
assert_eq!(xs.splitn_mut(1, |x| *x % 2 == 0).collect::<Vec<_>>(), splits);
|
|
let splits: &[&mut [_]] = &[&mut [1], &mut [3, 4, 5]];
|
|
assert_eq!(xs.splitn_mut(2, |x| *x % 2 == 0).collect::<Vec<_>>(), splits);
|
|
let splits: &[&mut [_]] = &[&mut [], &mut [], &mut [], &mut [4, 5]];
|
|
assert_eq!(xs.splitn_mut(4, |_| true).collect::<Vec<_>>(), splits);
|
|
|
|
let xs: &mut [i32] = &mut [];
|
|
let splits: &[&mut [i32]] = &[&mut []];
|
|
assert_eq!(xs.splitn_mut(2, |x| *x == 5).collect::<Vec<_>>(), splits);
|
|
}
|
|
|
|
#[test]
|
|
fn test_rsplitator() {
|
|
let xs = &[1, 2, 3, 4, 5];
|
|
|
|
let splits: &[&[_]] = &[&[5], &[3], &[1]];
|
|
assert_eq!(xs.split(|x| *x % 2 == 0).rev().collect::<Vec<_>>(), splits);
|
|
let splits: &[&[_]] = &[&[2, 3, 4, 5], &[]];
|
|
assert_eq!(xs.split(|x| *x == 1).rev().collect::<Vec<_>>(), splits);
|
|
let splits: &[&[_]] = &[&[], &[1, 2, 3, 4]];
|
|
assert_eq!(xs.split(|x| *x == 5).rev().collect::<Vec<_>>(), splits);
|
|
let splits: &[&[_]] = &[&[1, 2, 3, 4, 5]];
|
|
assert_eq!(xs.split(|x| *x == 10).rev().collect::<Vec<_>>(), splits);
|
|
|
|
let xs: &[i32] = &[];
|
|
let splits: &[&[i32]] = &[&[]];
|
|
assert_eq!(xs.split(|x| *x == 5).rev().collect::<Vec<&[i32]>>(), splits);
|
|
}
|
|
|
|
#[test]
|
|
fn test_rsplitnator() {
|
|
let xs = &[1, 2, 3, 4, 5];
|
|
|
|
let splits: &[&[_]] = &[&[1, 2, 3, 4, 5]];
|
|
assert_eq!(xs.rsplitn(1, |x| *x % 2 == 0).collect::<Vec<_>>(), splits);
|
|
let splits: &[&[_]] = &[&[5], &[1, 2, 3]];
|
|
assert_eq!(xs.rsplitn(2, |x| *x % 2 == 0).collect::<Vec<_>>(), splits);
|
|
let splits: &[&[_]] = &[&[], &[], &[], &[1, 2]];
|
|
assert_eq!(xs.rsplitn(4, |_| true).collect::<Vec<_>>(), splits);
|
|
|
|
let xs: &[i32] = &[];
|
|
let splits: &[&[i32]] = &[&[]];
|
|
assert_eq!(xs.rsplitn(2, |x| *x == 5).collect::<Vec<&[i32]>>(), splits);
|
|
assert!(xs.rsplitn(0, |x| *x % 2 == 0).next().is_none());
|
|
}
|
|
|
|
#[test]
|
|
fn test_split_iterators_size_hint() {
|
|
#[derive(Copy, Clone)]
|
|
enum Bounds {
|
|
Lower,
|
|
Upper,
|
|
}
|
|
fn assert_tight_size_hints(mut it: impl Iterator, which: Bounds, ctx: impl fmt::Display) {
|
|
match which {
|
|
Bounds::Lower => {
|
|
let mut lower_bounds = vec![it.size_hint().0];
|
|
while let Some(_) = it.next() {
|
|
lower_bounds.push(it.size_hint().0);
|
|
}
|
|
let target: Vec<_> = (0..lower_bounds.len()).rev().collect();
|
|
assert_eq!(lower_bounds, target, "lower bounds incorrect or not tight: {}", ctx);
|
|
}
|
|
Bounds::Upper => {
|
|
let mut upper_bounds = vec![it.size_hint().1];
|
|
while let Some(_) = it.next() {
|
|
upper_bounds.push(it.size_hint().1);
|
|
}
|
|
let target: Vec<_> = (0..upper_bounds.len()).map(Some).rev().collect();
|
|
assert_eq!(upper_bounds, target, "upper bounds incorrect or not tight: {}", ctx);
|
|
}
|
|
}
|
|
}
|
|
|
|
for len in 0..=2 {
|
|
let mut v: Vec<u8> = (0..len).collect();
|
|
|
|
// p: predicate, b: bound selection
|
|
for (p, b) in [
|
|
// with a predicate always returning false, the split*-iterators
|
|
// become maximally short, so the size_hint lower bounds are tight
|
|
((|_| false) as fn(&_) -> _, Bounds::Lower),
|
|
// with a predicate always returning true, the split*-iterators
|
|
// become maximally long, so the size_hint upper bounds are tight
|
|
((|_| true) as fn(&_) -> _, Bounds::Upper),
|
|
] {
|
|
use assert_tight_size_hints as a;
|
|
use format_args as f;
|
|
|
|
a(v.split(p), b, "split");
|
|
a(v.split_mut(p), b, "split_mut");
|
|
a(v.split_inclusive(p), b, "split_inclusive");
|
|
a(v.split_inclusive_mut(p), b, "split_inclusive_mut");
|
|
a(v.rsplit(p), b, "rsplit");
|
|
a(v.rsplit_mut(p), b, "rsplit_mut");
|
|
|
|
for n in 0..=3 {
|
|
a(v.splitn(n, p), b, f!("splitn, n = {}", n));
|
|
a(v.splitn_mut(n, p), b, f!("splitn_mut, n = {}", n));
|
|
a(v.rsplitn(n, p), b, f!("rsplitn, n = {}", n));
|
|
a(v.rsplitn_mut(n, p), b, f!("rsplitn_mut, n = {}", n));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_windowsator() {
|
|
let v = &[1, 2, 3, 4];
|
|
|
|
let wins: &[&[_]] = &[&[1, 2], &[2, 3], &[3, 4]];
|
|
assert_eq!(v.windows(2).collect::<Vec<_>>(), wins);
|
|
|
|
let wins: &[&[_]] = &[&[1, 2, 3], &[2, 3, 4]];
|
|
assert_eq!(v.windows(3).collect::<Vec<_>>(), wins);
|
|
assert!(v.windows(6).next().is_none());
|
|
|
|
let wins: &[&[_]] = &[&[3, 4], &[2, 3], &[1, 2]];
|
|
assert_eq!(v.windows(2).rev().collect::<Vec<&[_]>>(), wins);
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic]
|
|
fn test_windowsator_0() {
|
|
let v = &[1, 2, 3, 4];
|
|
let _it = v.windows(0);
|
|
}
|
|
|
|
#[test]
|
|
fn test_chunksator() {
|
|
let v = &[1, 2, 3, 4, 5];
|
|
|
|
assert_eq!(v.chunks(2).len(), 3);
|
|
|
|
let chunks: &[&[_]] = &[&[1, 2], &[3, 4], &[5]];
|
|
assert_eq!(v.chunks(2).collect::<Vec<_>>(), chunks);
|
|
let chunks: &[&[_]] = &[&[1, 2, 3], &[4, 5]];
|
|
assert_eq!(v.chunks(3).collect::<Vec<_>>(), chunks);
|
|
let chunks: &[&[_]] = &[&[1, 2, 3, 4, 5]];
|
|
assert_eq!(v.chunks(6).collect::<Vec<_>>(), chunks);
|
|
|
|
let chunks: &[&[_]] = &[&[5], &[3, 4], &[1, 2]];
|
|
assert_eq!(v.chunks(2).rev().collect::<Vec<_>>(), chunks);
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic]
|
|
fn test_chunksator_0() {
|
|
let v = &[1, 2, 3, 4];
|
|
let _it = v.chunks(0);
|
|
}
|
|
|
|
#[test]
|
|
fn test_chunks_exactator() {
|
|
let v = &[1, 2, 3, 4, 5];
|
|
|
|
assert_eq!(v.chunks_exact(2).len(), 2);
|
|
|
|
let chunks: &[&[_]] = &[&[1, 2], &[3, 4]];
|
|
assert_eq!(v.chunks_exact(2).collect::<Vec<_>>(), chunks);
|
|
let chunks: &[&[_]] = &[&[1, 2, 3]];
|
|
assert_eq!(v.chunks_exact(3).collect::<Vec<_>>(), chunks);
|
|
let chunks: &[&[_]] = &[];
|
|
assert_eq!(v.chunks_exact(6).collect::<Vec<_>>(), chunks);
|
|
|
|
let chunks: &[&[_]] = &[&[3, 4], &[1, 2]];
|
|
assert_eq!(v.chunks_exact(2).rev().collect::<Vec<_>>(), chunks);
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic]
|
|
fn test_chunks_exactator_0() {
|
|
let v = &[1, 2, 3, 4];
|
|
let _it = v.chunks_exact(0);
|
|
}
|
|
|
|
#[test]
|
|
fn test_rchunksator() {
|
|
let v = &[1, 2, 3, 4, 5];
|
|
|
|
assert_eq!(v.rchunks(2).len(), 3);
|
|
|
|
let chunks: &[&[_]] = &[&[4, 5], &[2, 3], &[1]];
|
|
assert_eq!(v.rchunks(2).collect::<Vec<_>>(), chunks);
|
|
let chunks: &[&[_]] = &[&[3, 4, 5], &[1, 2]];
|
|
assert_eq!(v.rchunks(3).collect::<Vec<_>>(), chunks);
|
|
let chunks: &[&[_]] = &[&[1, 2, 3, 4, 5]];
|
|
assert_eq!(v.rchunks(6).collect::<Vec<_>>(), chunks);
|
|
|
|
let chunks: &[&[_]] = &[&[1], &[2, 3], &[4, 5]];
|
|
assert_eq!(v.rchunks(2).rev().collect::<Vec<_>>(), chunks);
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic]
|
|
fn test_rchunksator_0() {
|
|
let v = &[1, 2, 3, 4];
|
|
let _it = v.rchunks(0);
|
|
}
|
|
|
|
#[test]
|
|
fn test_rchunks_exactator() {
|
|
let v = &[1, 2, 3, 4, 5];
|
|
|
|
assert_eq!(v.rchunks_exact(2).len(), 2);
|
|
|
|
let chunks: &[&[_]] = &[&[4, 5], &[2, 3]];
|
|
assert_eq!(v.rchunks_exact(2).collect::<Vec<_>>(), chunks);
|
|
let chunks: &[&[_]] = &[&[3, 4, 5]];
|
|
assert_eq!(v.rchunks_exact(3).collect::<Vec<_>>(), chunks);
|
|
let chunks: &[&[_]] = &[];
|
|
assert_eq!(v.rchunks_exact(6).collect::<Vec<_>>(), chunks);
|
|
|
|
let chunks: &[&[_]] = &[&[2, 3], &[4, 5]];
|
|
assert_eq!(v.rchunks_exact(2).rev().collect::<Vec<_>>(), chunks);
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic]
|
|
fn test_rchunks_exactator_0() {
|
|
let v = &[1, 2, 3, 4];
|
|
let _it = v.rchunks_exact(0);
|
|
}
|
|
|
|
#[test]
|
|
fn test_reverse_part() {
|
|
let mut values = [1, 2, 3, 4, 5];
|
|
values[1..4].reverse();
|
|
assert!(values == [1, 4, 3, 2, 5]);
|
|
}
|
|
|
|
#[test]
|
|
fn test_show() {
|
|
macro_rules! test_show_vec {
|
|
($x:expr, $x_str:expr) => {{
|
|
let (x, x_str) = ($x, $x_str);
|
|
assert_eq!(format!("{:?}", x), x_str);
|
|
assert_eq!(format!("{:?}", x), x_str);
|
|
}};
|
|
}
|
|
let empty = Vec::<i32>::new();
|
|
test_show_vec!(empty, "[]");
|
|
test_show_vec!(vec![1], "[1]");
|
|
test_show_vec!(vec![1, 2, 3], "[1, 2, 3]");
|
|
test_show_vec!(vec![vec![], vec![1], vec![1, 1]], "[[], [1], [1, 1]]");
|
|
|
|
let empty_mut: &mut [i32] = &mut [];
|
|
test_show_vec!(empty_mut, "[]");
|
|
let v = &mut [1];
|
|
test_show_vec!(v, "[1]");
|
|
let v = &mut [1, 2, 3];
|
|
test_show_vec!(v, "[1, 2, 3]");
|
|
let v: &mut [&mut [_]] = &mut [&mut [], &mut [1], &mut [1, 1]];
|
|
test_show_vec!(v, "[[], [1], [1, 1]]");
|
|
}
|
|
|
|
#[test]
|
|
fn test_vec_default() {
|
|
macro_rules! t {
|
|
($ty:ty) => {{
|
|
let v: $ty = Default::default();
|
|
assert!(v.is_empty());
|
|
}};
|
|
}
|
|
|
|
t!(&[i32]);
|
|
t!(Vec<i32>);
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic]
|
|
fn test_overflow_does_not_cause_segfault() {
|
|
let mut v = vec![];
|
|
v.reserve_exact(!0);
|
|
v.push(1);
|
|
v.push(2);
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic]
|
|
fn test_overflow_does_not_cause_segfault_managed() {
|
|
let mut v = vec![Rc::new(1)];
|
|
v.reserve_exact(!0);
|
|
v.push(Rc::new(2));
|
|
}
|
|
|
|
#[test]
|
|
fn test_mut_split_at() {
|
|
let mut values = [1, 2, 3, 4, 5];
|
|
{
|
|
let (left, right) = values.split_at_mut(2);
|
|
{
|
|
let left: &[_] = left;
|
|
assert!(left[..left.len()] == [1, 2]);
|
|
}
|
|
for p in left {
|
|
*p += 1;
|
|
}
|
|
|
|
{
|
|
let right: &[_] = right;
|
|
assert!(right[..right.len()] == [3, 4, 5]);
|
|
}
|
|
for p in right {
|
|
*p += 2;
|
|
}
|
|
}
|
|
|
|
assert!(values == [2, 3, 5, 6, 7]);
|
|
}
|
|
|
|
#[derive(Clone, PartialEq)]
|
|
struct Foo;
|
|
|
|
#[test]
|
|
fn test_iter_zero_sized() {
|
|
let mut v = vec![Foo, Foo, Foo];
|
|
assert_eq!(v.len(), 3);
|
|
let mut cnt = 0;
|
|
|
|
for f in &v {
|
|
assert!(*f == Foo);
|
|
cnt += 1;
|
|
}
|
|
assert_eq!(cnt, 3);
|
|
|
|
for f in &v[1..3] {
|
|
assert!(*f == Foo);
|
|
cnt += 1;
|
|
}
|
|
assert_eq!(cnt, 5);
|
|
|
|
for f in &mut v {
|
|
assert!(*f == Foo);
|
|
cnt += 1;
|
|
}
|
|
assert_eq!(cnt, 8);
|
|
|
|
for f in v {
|
|
assert!(f == Foo);
|
|
cnt += 1;
|
|
}
|
|
assert_eq!(cnt, 11);
|
|
|
|
let xs: [Foo; 3] = [Foo, Foo, Foo];
|
|
cnt = 0;
|
|
for f in &xs {
|
|
assert!(*f == Foo);
|
|
cnt += 1;
|
|
}
|
|
assert!(cnt == 3);
|
|
}
|
|
|
|
#[test]
|
|
fn test_shrink_to_fit() {
|
|
let mut xs = vec![0, 1, 2, 3];
|
|
for i in 4..100 {
|
|
xs.push(i)
|
|
}
|
|
assert_eq!(xs.capacity(), 128);
|
|
xs.shrink_to_fit();
|
|
assert_eq!(xs.capacity(), 100);
|
|
assert_eq!(xs, (0..100).collect::<Vec<_>>());
|
|
}
|
|
|
|
#[test]
|
|
fn test_starts_with() {
|
|
assert!(b"foobar".starts_with(b"foo"));
|
|
assert!(!b"foobar".starts_with(b"oob"));
|
|
assert!(!b"foobar".starts_with(b"bar"));
|
|
assert!(!b"foo".starts_with(b"foobar"));
|
|
assert!(!b"bar".starts_with(b"foobar"));
|
|
assert!(b"foobar".starts_with(b"foobar"));
|
|
let empty: &[u8] = &[];
|
|
assert!(empty.starts_with(empty));
|
|
assert!(!empty.starts_with(b"foo"));
|
|
assert!(b"foobar".starts_with(empty));
|
|
}
|
|
|
|
#[test]
|
|
fn test_ends_with() {
|
|
assert!(b"foobar".ends_with(b"bar"));
|
|
assert!(!b"foobar".ends_with(b"oba"));
|
|
assert!(!b"foobar".ends_with(b"foo"));
|
|
assert!(!b"foo".ends_with(b"foobar"));
|
|
assert!(!b"bar".ends_with(b"foobar"));
|
|
assert!(b"foobar".ends_with(b"foobar"));
|
|
let empty: &[u8] = &[];
|
|
assert!(empty.ends_with(empty));
|
|
assert!(!empty.ends_with(b"foo"));
|
|
assert!(b"foobar".ends_with(empty));
|
|
}
|
|
|
|
#[test]
|
|
fn test_mut_splitator() {
|
|
let mut xs = [0, 1, 0, 2, 3, 0, 0, 4, 5, 0];
|
|
assert_eq!(xs.split_mut(|x| *x == 0).count(), 6);
|
|
for slice in xs.split_mut(|x| *x == 0) {
|
|
slice.reverse();
|
|
}
|
|
assert!(xs == [0, 1, 0, 3, 2, 0, 0, 5, 4, 0]);
|
|
|
|
let mut xs = [0, 1, 0, 2, 3, 0, 0, 4, 5, 0, 6, 7];
|
|
for slice in xs.split_mut(|x| *x == 0).take(5) {
|
|
slice.reverse();
|
|
}
|
|
assert!(xs == [0, 1, 0, 3, 2, 0, 0, 5, 4, 0, 6, 7]);
|
|
}
|
|
|
|
#[test]
|
|
fn test_mut_splitator_rev() {
|
|
let mut xs = [1, 2, 0, 3, 4, 0, 0, 5, 6, 0];
|
|
for slice in xs.split_mut(|x| *x == 0).rev().take(4) {
|
|
slice.reverse();
|
|
}
|
|
assert!(xs == [1, 2, 0, 4, 3, 0, 0, 6, 5, 0]);
|
|
}
|
|
|
|
#[test]
|
|
fn test_get_mut() {
|
|
let mut v = [0, 1, 2];
|
|
assert_eq!(v.get_mut(3), None);
|
|
v.get_mut(1).map(|e| *e = 7);
|
|
assert_eq!(v[1], 7);
|
|
let mut x = 2;
|
|
assert_eq!(v.get_mut(2), Some(&mut x));
|
|
}
|
|
|
|
#[test]
|
|
fn test_mut_chunks() {
|
|
let mut v = [0, 1, 2, 3, 4, 5, 6];
|
|
assert_eq!(v.chunks_mut(3).len(), 3);
|
|
for (i, chunk) in v.chunks_mut(3).enumerate() {
|
|
for x in chunk {
|
|
*x = i as u8;
|
|
}
|
|
}
|
|
let result = [0, 0, 0, 1, 1, 1, 2];
|
|
assert_eq!(v, result);
|
|
}
|
|
|
|
#[test]
|
|
fn test_mut_chunks_rev() {
|
|
let mut v = [0, 1, 2, 3, 4, 5, 6];
|
|
for (i, chunk) in v.chunks_mut(3).rev().enumerate() {
|
|
for x in chunk {
|
|
*x = i as u8;
|
|
}
|
|
}
|
|
let result = [2, 2, 2, 1, 1, 1, 0];
|
|
assert_eq!(v, result);
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic]
|
|
fn test_mut_chunks_0() {
|
|
let mut v = [1, 2, 3, 4];
|
|
let _it = v.chunks_mut(0);
|
|
}
|
|
|
|
#[test]
|
|
fn test_mut_chunks_exact() {
|
|
let mut v = [0, 1, 2, 3, 4, 5, 6];
|
|
assert_eq!(v.chunks_exact_mut(3).len(), 2);
|
|
for (i, chunk) in v.chunks_exact_mut(3).enumerate() {
|
|
for x in chunk {
|
|
*x = i as u8;
|
|
}
|
|
}
|
|
let result = [0, 0, 0, 1, 1, 1, 6];
|
|
assert_eq!(v, result);
|
|
}
|
|
|
|
#[test]
|
|
fn test_mut_chunks_exact_rev() {
|
|
let mut v = [0, 1, 2, 3, 4, 5, 6];
|
|
for (i, chunk) in v.chunks_exact_mut(3).rev().enumerate() {
|
|
for x in chunk {
|
|
*x = i as u8;
|
|
}
|
|
}
|
|
let result = [1, 1, 1, 0, 0, 0, 6];
|
|
assert_eq!(v, result);
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic]
|
|
fn test_mut_chunks_exact_0() {
|
|
let mut v = [1, 2, 3, 4];
|
|
let _it = v.chunks_exact_mut(0);
|
|
}
|
|
|
|
#[test]
|
|
fn test_mut_rchunks() {
|
|
let mut v = [0, 1, 2, 3, 4, 5, 6];
|
|
assert_eq!(v.rchunks_mut(3).len(), 3);
|
|
for (i, chunk) in v.rchunks_mut(3).enumerate() {
|
|
for x in chunk {
|
|
*x = i as u8;
|
|
}
|
|
}
|
|
let result = [2, 1, 1, 1, 0, 0, 0];
|
|
assert_eq!(v, result);
|
|
}
|
|
|
|
#[test]
|
|
fn test_mut_rchunks_rev() {
|
|
let mut v = [0, 1, 2, 3, 4, 5, 6];
|
|
for (i, chunk) in v.rchunks_mut(3).rev().enumerate() {
|
|
for x in chunk {
|
|
*x = i as u8;
|
|
}
|
|
}
|
|
let result = [0, 1, 1, 1, 2, 2, 2];
|
|
assert_eq!(v, result);
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic]
|
|
fn test_mut_rchunks_0() {
|
|
let mut v = [1, 2, 3, 4];
|
|
let _it = v.rchunks_mut(0);
|
|
}
|
|
|
|
#[test]
|
|
fn test_mut_rchunks_exact() {
|
|
let mut v = [0, 1, 2, 3, 4, 5, 6];
|
|
assert_eq!(v.rchunks_exact_mut(3).len(), 2);
|
|
for (i, chunk) in v.rchunks_exact_mut(3).enumerate() {
|
|
for x in chunk {
|
|
*x = i as u8;
|
|
}
|
|
}
|
|
let result = [0, 1, 1, 1, 0, 0, 0];
|
|
assert_eq!(v, result);
|
|
}
|
|
|
|
#[test]
|
|
fn test_mut_rchunks_exact_rev() {
|
|
let mut v = [0, 1, 2, 3, 4, 5, 6];
|
|
for (i, chunk) in v.rchunks_exact_mut(3).rev().enumerate() {
|
|
for x in chunk {
|
|
*x = i as u8;
|
|
}
|
|
}
|
|
let result = [0, 0, 0, 0, 1, 1, 1];
|
|
assert_eq!(v, result);
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic]
|
|
fn test_mut_rchunks_exact_0() {
|
|
let mut v = [1, 2, 3, 4];
|
|
let _it = v.rchunks_exact_mut(0);
|
|
}
|
|
|
|
#[test]
|
|
fn test_mut_last() {
|
|
let mut x = [1, 2, 3, 4, 5];
|
|
let h = x.last_mut();
|
|
assert_eq!(*h.unwrap(), 5);
|
|
|
|
let y: &mut [i32] = &mut [];
|
|
assert!(y.last_mut().is_none());
|
|
}
|
|
|
|
#[test]
|
|
fn test_to_vec() {
|
|
let xs: Box<_> = box [1, 2, 3];
|
|
let ys = xs.to_vec();
|
|
assert_eq!(ys, [1, 2, 3]);
|
|
}
|
|
|
|
#[test]
|
|
fn test_in_place_iterator_specialization() {
|
|
let src: Box<[usize]> = box [1, 2, 3];
|
|
let src_ptr = src.as_ptr();
|
|
let sink: Box<_> = src.into_vec().into_iter().map(std::convert::identity).collect();
|
|
let sink_ptr = sink.as_ptr();
|
|
assert_eq!(src_ptr, sink_ptr);
|
|
}
|
|
|
|
#[test]
|
|
fn test_box_slice_clone() {
|
|
let data = vec![vec![0, 1], vec![0], vec![1]];
|
|
let data2 = data.clone().into_boxed_slice().clone().to_vec();
|
|
|
|
assert_eq!(data, data2);
|
|
}
|
|
|
|
#[test]
|
|
#[allow(unused_must_use)] // here, we care about the side effects of `.clone()`
|
|
#[cfg_attr(target_os = "emscripten", ignore)]
|
|
fn test_box_slice_clone_panics() {
|
|
use std::sync::atomic::{AtomicUsize, Ordering};
|
|
use std::sync::Arc;
|
|
|
|
struct Canary {
|
|
count: Arc<AtomicUsize>,
|
|
panics: bool,
|
|
}
|
|
|
|
impl Drop for Canary {
|
|
fn drop(&mut self) {
|
|
self.count.fetch_add(1, Ordering::SeqCst);
|
|
}
|
|
}
|
|
|
|
impl Clone for Canary {
|
|
fn clone(&self) -> Self {
|
|
if self.panics {
|
|
panic!()
|
|
}
|
|
|
|
Canary { count: self.count.clone(), panics: self.panics }
|
|
}
|
|
}
|
|
|
|
let drop_count = Arc::new(AtomicUsize::new(0));
|
|
let canary = Canary { count: drop_count.clone(), panics: false };
|
|
let panic = Canary { count: drop_count.clone(), panics: true };
|
|
|
|
std::panic::catch_unwind(move || {
|
|
// When xs is dropped, +5.
|
|
let xs =
|
|
vec![canary.clone(), canary.clone(), canary.clone(), panic, canary].into_boxed_slice();
|
|
|
|
// When panic is cloned, +3.
|
|
xs.clone();
|
|
})
|
|
.unwrap_err();
|
|
|
|
// Total = 8
|
|
assert_eq!(drop_count.load(Ordering::SeqCst), 8);
|
|
}
|
|
|
|
#[test]
|
|
fn test_copy_from_slice() {
|
|
let src = [0, 1, 2, 3, 4, 5];
|
|
let mut dst = [0; 6];
|
|
dst.copy_from_slice(&src);
|
|
assert_eq!(src, dst)
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic(expected = "source slice length (4) does not match destination slice length (5)")]
|
|
fn test_copy_from_slice_dst_longer() {
|
|
let src = [0, 1, 2, 3];
|
|
let mut dst = [0; 5];
|
|
dst.copy_from_slice(&src);
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic(expected = "source slice length (4) does not match destination slice length (3)")]
|
|
fn test_copy_from_slice_dst_shorter() {
|
|
let src = [0, 1, 2, 3];
|
|
let mut dst = [0; 3];
|
|
dst.copy_from_slice(&src);
|
|
}
|
|
|
|
const MAX_LEN: usize = 80;
|
|
|
|
static DROP_COUNTS: [AtomicUsize; MAX_LEN] = [
|
|
// FIXME(RFC 1109): AtomicUsize is not Copy.
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
AtomicUsize::new(0),
|
|
];
|
|
|
|
static VERSIONS: AtomicUsize = AtomicUsize::new(0);
|
|
|
|
#[derive(Clone, Eq)]
|
|
struct DropCounter {
|
|
x: u32,
|
|
id: usize,
|
|
version: Cell<usize>,
|
|
}
|
|
|
|
impl PartialEq for DropCounter {
|
|
fn eq(&self, other: &Self) -> bool {
|
|
self.partial_cmp(other) == Some(Ordering::Equal)
|
|
}
|
|
}
|
|
|
|
impl PartialOrd for DropCounter {
|
|
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
|
|
self.version.set(self.version.get() + 1);
|
|
other.version.set(other.version.get() + 1);
|
|
VERSIONS.fetch_add(2, Relaxed);
|
|
self.x.partial_cmp(&other.x)
|
|
}
|
|
}
|
|
|
|
impl Ord for DropCounter {
|
|
fn cmp(&self, other: &Self) -> Ordering {
|
|
self.partial_cmp(other).unwrap()
|
|
}
|
|
}
|
|
|
|
impl Drop for DropCounter {
|
|
fn drop(&mut self) {
|
|
DROP_COUNTS[self.id].fetch_add(1, Relaxed);
|
|
VERSIONS.fetch_sub(self.version.get(), Relaxed);
|
|
}
|
|
}
|
|
|
|
macro_rules! test {
|
|
($input:ident, $func:ident) => {
|
|
let len = $input.len();
|
|
|
|
// Work out the total number of comparisons required to sort
|
|
// this array...
|
|
let mut count = 0usize;
|
|
$input.to_owned().$func(|a, b| {
|
|
count += 1;
|
|
a.cmp(b)
|
|
});
|
|
|
|
// ... and then panic on each and every single one.
|
|
for panic_countdown in 0..count {
|
|
// Refresh the counters.
|
|
VERSIONS.store(0, Relaxed);
|
|
for i in 0..len {
|
|
DROP_COUNTS[i].store(0, Relaxed);
|
|
}
|
|
|
|
let v = $input.to_owned();
|
|
let _ = std::panic::catch_unwind(move || {
|
|
let mut v = v;
|
|
let mut panic_countdown = panic_countdown;
|
|
v.$func(|a, b| {
|
|
if panic_countdown == 0 {
|
|
SILENCE_PANIC.with(|s| s.set(true));
|
|
panic!();
|
|
}
|
|
panic_countdown -= 1;
|
|
a.cmp(b)
|
|
})
|
|
});
|
|
|
|
// Check that the number of things dropped is exactly
|
|
// what we expect (i.e., the contents of `v`).
|
|
for (i, c) in DROP_COUNTS.iter().enumerate().take(len) {
|
|
let count = c.load(Relaxed);
|
|
assert!(count == 1, "found drop count == {} for i == {}, len == {}", count, i, len);
|
|
}
|
|
|
|
// Check that the most recent versions of values were dropped.
|
|
assert_eq!(VERSIONS.load(Relaxed), 0);
|
|
}
|
|
};
|
|
}
|
|
|
|
thread_local!(static SILENCE_PANIC: Cell<bool> = Cell::new(false));
|
|
|
|
#[test]
|
|
#[cfg_attr(target_os = "emscripten", ignore)] // no threads
|
|
fn panic_safe() {
|
|
let prev = panic::take_hook();
|
|
panic::set_hook(Box::new(move |info| {
|
|
if !SILENCE_PANIC.with(|s| s.get()) {
|
|
prev(info);
|
|
}
|
|
}));
|
|
|
|
let mut rng = thread_rng();
|
|
|
|
// Miri is too slow (but still need to `chain` to make the types match)
|
|
let lens = if cfg!(miri) { (1..10).chain(0..0) } else { (1..20).chain(70..MAX_LEN) };
|
|
let moduli: &[u32] = if cfg!(miri) { &[5] } else { &[5, 20, 50] };
|
|
|
|
for len in lens {
|
|
for &modulus in moduli {
|
|
for &has_runs in &[false, true] {
|
|
let mut input = (0..len)
|
|
.map(|id| DropCounter {
|
|
x: rng.next_u32() % modulus,
|
|
id: id,
|
|
version: Cell::new(0),
|
|
})
|
|
.collect::<Vec<_>>();
|
|
|
|
if has_runs {
|
|
for c in &mut input {
|
|
c.x = c.id as u32;
|
|
}
|
|
|
|
for _ in 0..5 {
|
|
let a = rng.gen::<usize>() % len;
|
|
let b = rng.gen::<usize>() % len;
|
|
if a < b {
|
|
input[a..b].reverse();
|
|
} else {
|
|
input.swap(a, b);
|
|
}
|
|
}
|
|
}
|
|
|
|
test!(input, sort_by);
|
|
test!(input, sort_unstable_by);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Set default panic hook again.
|
|
drop(panic::take_hook());
|
|
}
|
|
|
|
#[test]
|
|
fn repeat_generic_slice() {
|
|
assert_eq!([1, 2].repeat(2), vec![1, 2, 1, 2]);
|
|
assert_eq!([1, 2, 3, 4].repeat(0), vec![]);
|
|
assert_eq!([1, 2, 3, 4].repeat(1), vec![1, 2, 3, 4]);
|
|
assert_eq!([1, 2, 3, 4].repeat(3), vec![1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4]);
|
|
}
|
|
|
|
#[test]
|
|
#[allow(unreachable_patterns)]
|
|
fn subslice_patterns() {
|
|
// This test comprehensively checks the passing static and dynamic semantics
|
|
// of subslice patterns `..`, `x @ ..`, `ref x @ ..`, and `ref mut @ ..`
|
|
// in slice patterns `[$($pat), $(,)?]` .
|
|
|
|
#[derive(PartialEq, Debug, Clone)]
|
|
struct N(u8);
|
|
|
|
macro_rules! n {
|
|
($($e:expr),* $(,)?) => {
|
|
[$(N($e)),*]
|
|
}
|
|
}
|
|
|
|
macro_rules! c {
|
|
($inp:expr, $typ:ty, $out:expr $(,)?) => {
|
|
assert_eq!($out, identity::<$typ>($inp))
|
|
};
|
|
}
|
|
|
|
macro_rules! m {
|
|
($e:expr, $p:pat => $b:expr) => {
|
|
match $e {
|
|
$p => $b,
|
|
_ => panic!(),
|
|
}
|
|
};
|
|
}
|
|
|
|
// == Slices ==
|
|
|
|
// Matching slices using `ref` patterns:
|
|
let mut v = vec![N(0), N(1), N(2), N(3), N(4)];
|
|
let mut vc = (0..=4).collect::<Vec<u8>>();
|
|
|
|
let [..] = v[..]; // Always matches.
|
|
m!(v[..], [N(0), ref sub @ .., N(4)] => c!(sub, &[N], n![1, 2, 3]));
|
|
m!(v[..], [N(0), ref sub @ ..] => c!(sub, &[N], n![1, 2, 3, 4]));
|
|
m!(v[..], [ref sub @ .., N(4)] => c!(sub, &[N], n![0, 1, 2, 3]));
|
|
m!(v[..], [ref sub @ .., _, _, _, _, _] => c!(sub, &[N], &n![] as &[N]));
|
|
m!(v[..], [_, _, _, _, _, ref sub @ ..] => c!(sub, &[N], &n![] as &[N]));
|
|
m!(vc[..], [x, .., y] => c!((x, y), (u8, u8), (0, 4)));
|
|
|
|
// Matching slices using `ref mut` patterns:
|
|
let [..] = v[..]; // Always matches.
|
|
m!(v[..], [N(0), ref mut sub @ .., N(4)] => c!(sub, &mut [N], n![1, 2, 3]));
|
|
m!(v[..], [N(0), ref mut sub @ ..] => c!(sub, &mut [N], n![1, 2, 3, 4]));
|
|
m!(v[..], [ref mut sub @ .., N(4)] => c!(sub, &mut [N], n![0, 1, 2, 3]));
|
|
m!(v[..], [ref mut sub @ .., _, _, _, _, _] => c!(sub, &mut [N], &mut n![] as &mut [N]));
|
|
m!(v[..], [_, _, _, _, _, ref mut sub @ ..] => c!(sub, &mut [N], &mut n![] as &mut [N]));
|
|
m!(vc[..], [x, .., y] => c!((x, y), (u8, u8), (0, 4)));
|
|
|
|
// Matching slices using default binding modes (&):
|
|
let [..] = &v[..]; // Always matches.
|
|
m!(&v[..], [N(0), sub @ .., N(4)] => c!(sub, &[N], n![1, 2, 3]));
|
|
m!(&v[..], [N(0), sub @ ..] => c!(sub, &[N], n![1, 2, 3, 4]));
|
|
m!(&v[..], [sub @ .., N(4)] => c!(sub, &[N], n![0, 1, 2, 3]));
|
|
m!(&v[..], [sub @ .., _, _, _, _, _] => c!(sub, &[N], &n![] as &[N]));
|
|
m!(&v[..], [_, _, _, _, _, sub @ ..] => c!(sub, &[N], &n![] as &[N]));
|
|
m!(&vc[..], [x, .., y] => c!((x, y), (&u8, &u8), (&0, &4)));
|
|
|
|
// Matching slices using default binding modes (&mut):
|
|
let [..] = &mut v[..]; // Always matches.
|
|
m!(&mut v[..], [N(0), sub @ .., N(4)] => c!(sub, &mut [N], n![1, 2, 3]));
|
|
m!(&mut v[..], [N(0), sub @ ..] => c!(sub, &mut [N], n![1, 2, 3, 4]));
|
|
m!(&mut v[..], [sub @ .., N(4)] => c!(sub, &mut [N], n![0, 1, 2, 3]));
|
|
m!(&mut v[..], [sub @ .., _, _, _, _, _] => c!(sub, &mut [N], &mut n![] as &mut [N]));
|
|
m!(&mut v[..], [_, _, _, _, _, sub @ ..] => c!(sub, &mut [N], &mut n![] as &mut [N]));
|
|
m!(&mut vc[..], [x, .., y] => c!((x, y), (&mut u8, &mut u8), (&mut 0, &mut 4)));
|
|
|
|
// == Arrays ==
|
|
let mut v = n![0, 1, 2, 3, 4];
|
|
let vc = [0, 1, 2, 3, 4];
|
|
|
|
// Matching arrays by value:
|
|
m!(v.clone(), [N(0), sub @ .., N(4)] => c!(sub, [N; 3], n![1, 2, 3]));
|
|
m!(v.clone(), [N(0), sub @ ..] => c!(sub, [N; 4], n![1, 2, 3, 4]));
|
|
m!(v.clone(), [sub @ .., N(4)] => c!(sub, [N; 4], n![0, 1, 2, 3]));
|
|
m!(v.clone(), [sub @ .., _, _, _, _, _] => c!(sub, [N; 0], n![] as [N; 0]));
|
|
m!(v.clone(), [_, _, _, _, _, sub @ ..] => c!(sub, [N; 0], n![] as [N; 0]));
|
|
m!(v.clone(), [x, .., y] => c!((x, y), (N, N), (N(0), N(4))));
|
|
m!(v.clone(), [..] => ());
|
|
|
|
// Matching arrays by ref patterns:
|
|
m!(v, [N(0), ref sub @ .., N(4)] => c!(sub, &[N; 3], &n![1, 2, 3]));
|
|
m!(v, [N(0), ref sub @ ..] => c!(sub, &[N; 4], &n![1, 2, 3, 4]));
|
|
m!(v, [ref sub @ .., N(4)] => c!(sub, &[N; 4], &n![0, 1, 2, 3]));
|
|
m!(v, [ref sub @ .., _, _, _, _, _] => c!(sub, &[N; 0], &n![] as &[N; 0]));
|
|
m!(v, [_, _, _, _, _, ref sub @ ..] => c!(sub, &[N; 0], &n![] as &[N; 0]));
|
|
m!(vc, [x, .., y] => c!((x, y), (u8, u8), (0, 4)));
|
|
|
|
// Matching arrays by ref mut patterns:
|
|
m!(v, [N(0), ref mut sub @ .., N(4)] => c!(sub, &mut [N; 3], &mut n![1, 2, 3]));
|
|
m!(v, [N(0), ref mut sub @ ..] => c!(sub, &mut [N; 4], &mut n![1, 2, 3, 4]));
|
|
m!(v, [ref mut sub @ .., N(4)] => c!(sub, &mut [N; 4], &mut n![0, 1, 2, 3]));
|
|
m!(v, [ref mut sub @ .., _, _, _, _, _] => c!(sub, &mut [N; 0], &mut n![] as &mut [N; 0]));
|
|
m!(v, [_, _, _, _, _, ref mut sub @ ..] => c!(sub, &mut [N; 0], &mut n![] as &mut [N; 0]));
|
|
|
|
// Matching arrays by default binding modes (&):
|
|
m!(&v, [N(0), sub @ .., N(4)] => c!(sub, &[N; 3], &n![1, 2, 3]));
|
|
m!(&v, [N(0), sub @ ..] => c!(sub, &[N; 4], &n![1, 2, 3, 4]));
|
|
m!(&v, [sub @ .., N(4)] => c!(sub, &[N; 4], &n![0, 1, 2, 3]));
|
|
m!(&v, [sub @ .., _, _, _, _, _] => c!(sub, &[N; 0], &n![] as &[N; 0]));
|
|
m!(&v, [_, _, _, _, _, sub @ ..] => c!(sub, &[N; 0], &n![] as &[N; 0]));
|
|
m!(&v, [..] => ());
|
|
m!(&v, [x, .., y] => c!((x, y), (&N, &N), (&N(0), &N(4))));
|
|
|
|
// Matching arrays by default binding modes (&mut):
|
|
m!(&mut v, [N(0), sub @ .., N(4)] => c!(sub, &mut [N; 3], &mut n![1, 2, 3]));
|
|
m!(&mut v, [N(0), sub @ ..] => c!(sub, &mut [N; 4], &mut n![1, 2, 3, 4]));
|
|
m!(&mut v, [sub @ .., N(4)] => c!(sub, &mut [N; 4], &mut n![0, 1, 2, 3]));
|
|
m!(&mut v, [sub @ .., _, _, _, _, _] => c!(sub, &mut [N; 0], &mut n![] as &[N; 0]));
|
|
m!(&mut v, [_, _, _, _, _, sub @ ..] => c!(sub, &mut [N; 0], &mut n![] as &[N; 0]));
|
|
m!(&mut v, [..] => ());
|
|
m!(&mut v, [x, .., y] => c!((x, y), (&mut N, &mut N), (&mut N(0), &mut N(4))));
|
|
}
|
|
|
|
#[test]
|
|
fn test_group_by() {
|
|
let slice = &[1, 1, 1, 3, 3, 2, 2, 2, 1, 0];
|
|
|
|
let mut iter = slice.group_by(|a, b| a == b);
|
|
assert_eq!(iter.next(), Some(&[1, 1, 1][..]));
|
|
assert_eq!(iter.next(), Some(&[3, 3][..]));
|
|
assert_eq!(iter.next(), Some(&[2, 2, 2][..]));
|
|
assert_eq!(iter.next(), Some(&[1][..]));
|
|
assert_eq!(iter.next(), Some(&[0][..]));
|
|
assert_eq!(iter.next(), None);
|
|
|
|
let mut iter = slice.group_by(|a, b| a == b);
|
|
assert_eq!(iter.next_back(), Some(&[0][..]));
|
|
assert_eq!(iter.next_back(), Some(&[1][..]));
|
|
assert_eq!(iter.next_back(), Some(&[2, 2, 2][..]));
|
|
assert_eq!(iter.next_back(), Some(&[3, 3][..]));
|
|
assert_eq!(iter.next_back(), Some(&[1, 1, 1][..]));
|
|
assert_eq!(iter.next_back(), None);
|
|
|
|
let mut iter = slice.group_by(|a, b| a == b);
|
|
assert_eq!(iter.next(), Some(&[1, 1, 1][..]));
|
|
assert_eq!(iter.next_back(), Some(&[0][..]));
|
|
assert_eq!(iter.next(), Some(&[3, 3][..]));
|
|
assert_eq!(iter.next_back(), Some(&[1][..]));
|
|
assert_eq!(iter.next(), Some(&[2, 2, 2][..]));
|
|
assert_eq!(iter.next_back(), None);
|
|
}
|
|
|
|
#[test]
|
|
fn test_group_by_mut() {
|
|
let slice = &mut [1, 1, 1, 3, 3, 2, 2, 2, 1, 0];
|
|
|
|
let mut iter = slice.group_by_mut(|a, b| a == b);
|
|
assert_eq!(iter.next(), Some(&mut [1, 1, 1][..]));
|
|
assert_eq!(iter.next(), Some(&mut [3, 3][..]));
|
|
assert_eq!(iter.next(), Some(&mut [2, 2, 2][..]));
|
|
assert_eq!(iter.next(), Some(&mut [1][..]));
|
|
assert_eq!(iter.next(), Some(&mut [0][..]));
|
|
assert_eq!(iter.next(), None);
|
|
|
|
let mut iter = slice.group_by_mut(|a, b| a == b);
|
|
assert_eq!(iter.next_back(), Some(&mut [0][..]));
|
|
assert_eq!(iter.next_back(), Some(&mut [1][..]));
|
|
assert_eq!(iter.next_back(), Some(&mut [2, 2, 2][..]));
|
|
assert_eq!(iter.next_back(), Some(&mut [3, 3][..]));
|
|
assert_eq!(iter.next_back(), Some(&mut [1, 1, 1][..]));
|
|
assert_eq!(iter.next_back(), None);
|
|
|
|
let mut iter = slice.group_by_mut(|a, b| a == b);
|
|
assert_eq!(iter.next(), Some(&mut [1, 1, 1][..]));
|
|
assert_eq!(iter.next_back(), Some(&mut [0][..]));
|
|
assert_eq!(iter.next(), Some(&mut [3, 3][..]));
|
|
assert_eq!(iter.next_back(), Some(&mut [1][..]));
|
|
assert_eq!(iter.next(), Some(&mut [2, 2, 2][..]));
|
|
assert_eq!(iter.next_back(), None);
|
|
}
|