mirror of
https://github.com/rust-lang/rust.git
synced 2025-05-14 02:49:40 +00:00
1648 lines
64 KiB
Rust
1648 lines
64 KiB
Rust
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
|
||
// file at the top-level directory of this distribution and at
|
||
// http://rust-lang.org/COPYRIGHT.
|
||
//
|
||
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
||
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
||
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
||
// option. This file may not be copied, modified, or distributed
|
||
// except according to those terms.
|
||
|
||
//! Translate the completed AST to the LLVM IR.
|
||
//!
|
||
//! Some functions here, such as trans_block and trans_expr, return a value --
|
||
//! the result of the translation to LLVM -- while others, such as trans_fn
|
||
//! and trans_item, are called only for the side effect of adding a
|
||
//! particular definition to the LLVM IR output we're producing.
|
||
//!
|
||
//! Hopefully useful general knowledge about trans:
|
||
//!
|
||
//! * There's no way to find out the Ty type of a ValueRef. Doing so
|
||
//! would be "trying to get the eggs out of an omelette" (credit:
|
||
//! pcwalton). You can, instead, find out its TypeRef by calling val_ty,
|
||
//! but one TypeRef corresponds to many `Ty`s; for instance, tup(int, int,
|
||
//! int) and rec(x=int, y=int, z=int) will have the same TypeRef.
|
||
|
||
use super::CrateTranslation;
|
||
use super::ModuleLlvm;
|
||
use super::ModuleSource;
|
||
use super::ModuleTranslation;
|
||
|
||
use assert_module_sources;
|
||
use back::link;
|
||
use back::linker::LinkerInfo;
|
||
use back::symbol_export::{self, ExportedSymbols};
|
||
use llvm::{Linkage, ValueRef, Vector, get_param};
|
||
use llvm;
|
||
use rustc::hir::def_id::{DefId, LOCAL_CRATE};
|
||
use middle::lang_items::StartFnLangItem;
|
||
use rustc::ty::subst::Substs;
|
||
use rustc::traits;
|
||
use rustc::ty::{self, Ty, TyCtxt};
|
||
use rustc::ty::adjustment::CustomCoerceUnsized;
|
||
use rustc::dep_graph::{DepNode, WorkProduct};
|
||
use rustc::hir::map as hir_map;
|
||
use rustc::util::common::time;
|
||
use session::config::{self, NoDebugInfo};
|
||
use rustc_incremental::IncrementalHashesMap;
|
||
use session::{self, DataTypeKind, Session};
|
||
use abi::{self, Abi, FnType};
|
||
use adt;
|
||
use attributes;
|
||
use builder::Builder;
|
||
use callee::{Callee};
|
||
use common::{C_bool, C_bytes_in_context, C_i32, C_uint};
|
||
use collector::{self, TransItemCollectionMode};
|
||
use common::{C_struct_in_context, C_u64, C_undef};
|
||
use common::{CrateContext, FunctionContext};
|
||
use common::{fulfill_obligation};
|
||
use common::{type_is_zero_size, val_ty};
|
||
use common;
|
||
use consts;
|
||
use context::{SharedCrateContext, CrateContextList};
|
||
use debuginfo;
|
||
use declare;
|
||
use machine;
|
||
use machine::{llalign_of_min, llsize_of};
|
||
use meth;
|
||
use mir;
|
||
use monomorphize::{self, Instance};
|
||
use partitioning::{self, PartitioningStrategy, CodegenUnit};
|
||
use symbol_map::SymbolMap;
|
||
use symbol_names_test;
|
||
use trans_item::{TransItem, DefPathBasedNames};
|
||
use type_::Type;
|
||
use type_of;
|
||
use value::Value;
|
||
use Disr;
|
||
use util::nodemap::{NodeSet, FxHashMap, FxHashSet};
|
||
|
||
use libc::c_uint;
|
||
use std::ffi::{CStr, CString};
|
||
use std::rc::Rc;
|
||
use std::str;
|
||
use std::i32;
|
||
use syntax_pos::{Span, DUMMY_SP};
|
||
use syntax::attr;
|
||
use rustc::hir;
|
||
use rustc::ty::layout::{self, Layout};
|
||
use syntax::ast;
|
||
|
||
pub struct StatRecorder<'a, 'tcx: 'a> {
|
||
ccx: &'a CrateContext<'a, 'tcx>,
|
||
name: Option<String>,
|
||
istart: usize,
|
||
}
|
||
|
||
impl<'a, 'tcx> StatRecorder<'a, 'tcx> {
|
||
pub fn new(ccx: &'a CrateContext<'a, 'tcx>, name: String) -> StatRecorder<'a, 'tcx> {
|
||
let istart = ccx.stats().n_llvm_insns.get();
|
||
StatRecorder {
|
||
ccx: ccx,
|
||
name: Some(name),
|
||
istart: istart,
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<'a, 'tcx> Drop for StatRecorder<'a, 'tcx> {
|
||
fn drop(&mut self) {
|
||
if self.ccx.sess().trans_stats() {
|
||
let iend = self.ccx.stats().n_llvm_insns.get();
|
||
self.ccx.stats().fn_stats.borrow_mut()
|
||
.push((self.name.take().unwrap(), iend - self.istart));
|
||
self.ccx.stats().n_fns.set(self.ccx.stats().n_fns.get() + 1);
|
||
// Reset LLVM insn count to avoid compound costs.
|
||
self.ccx.stats().n_llvm_insns.set(self.istart);
|
||
}
|
||
}
|
||
}
|
||
|
||
pub fn get_meta(bcx: &Builder, fat_ptr: ValueRef) -> ValueRef {
|
||
bcx.struct_gep(fat_ptr, abi::FAT_PTR_EXTRA)
|
||
}
|
||
|
||
pub fn get_dataptr(bcx: &Builder, fat_ptr: ValueRef) -> ValueRef {
|
||
bcx.struct_gep(fat_ptr, abi::FAT_PTR_ADDR)
|
||
}
|
||
|
||
pub fn bin_op_to_icmp_predicate(op: hir::BinOp_,
|
||
signed: bool)
|
||
-> llvm::IntPredicate {
|
||
match op {
|
||
hir::BiEq => llvm::IntEQ,
|
||
hir::BiNe => llvm::IntNE,
|
||
hir::BiLt => if signed { llvm::IntSLT } else { llvm::IntULT },
|
||
hir::BiLe => if signed { llvm::IntSLE } else { llvm::IntULE },
|
||
hir::BiGt => if signed { llvm::IntSGT } else { llvm::IntUGT },
|
||
hir::BiGe => if signed { llvm::IntSGE } else { llvm::IntUGE },
|
||
op => {
|
||
bug!("comparison_op_to_icmp_predicate: expected comparison operator, \
|
||
found {:?}",
|
||
op)
|
||
}
|
||
}
|
||
}
|
||
|
||
pub fn bin_op_to_fcmp_predicate(op: hir::BinOp_) -> llvm::RealPredicate {
|
||
match op {
|
||
hir::BiEq => llvm::RealOEQ,
|
||
hir::BiNe => llvm::RealUNE,
|
||
hir::BiLt => llvm::RealOLT,
|
||
hir::BiLe => llvm::RealOLE,
|
||
hir::BiGt => llvm::RealOGT,
|
||
hir::BiGe => llvm::RealOGE,
|
||
op => {
|
||
bug!("comparison_op_to_fcmp_predicate: expected comparison operator, \
|
||
found {:?}",
|
||
op);
|
||
}
|
||
}
|
||
}
|
||
|
||
pub fn compare_simd_types<'a, 'tcx>(
|
||
bcx: &Builder<'a, 'tcx>,
|
||
lhs: ValueRef,
|
||
rhs: ValueRef,
|
||
t: Ty<'tcx>,
|
||
ret_ty: Type,
|
||
op: hir::BinOp_
|
||
) -> ValueRef {
|
||
let signed = match t.sty {
|
||
ty::TyFloat(_) => {
|
||
let cmp = bin_op_to_fcmp_predicate(op);
|
||
return bcx.sext(bcx.fcmp(cmp, lhs, rhs), ret_ty);
|
||
},
|
||
ty::TyUint(_) => false,
|
||
ty::TyInt(_) => true,
|
||
_ => bug!("compare_simd_types: invalid SIMD type"),
|
||
};
|
||
|
||
let cmp = bin_op_to_icmp_predicate(op, signed);
|
||
// LLVM outputs an `< size x i1 >`, so we need to perform a sign extension
|
||
// to get the correctly sized type. This will compile to a single instruction
|
||
// once the IR is converted to assembly if the SIMD instruction is supported
|
||
// by the target architecture.
|
||
bcx.sext(bcx.icmp(cmp, lhs, rhs), ret_ty)
|
||
}
|
||
|
||
/// Retrieve the information we are losing (making dynamic) in an unsizing
|
||
/// adjustment.
|
||
///
|
||
/// The `old_info` argument is a bit funny. It is intended for use
|
||
/// in an upcast, where the new vtable for an object will be drived
|
||
/// from the old one.
|
||
pub fn unsized_info<'ccx, 'tcx>(ccx: &CrateContext<'ccx, 'tcx>,
|
||
source: Ty<'tcx>,
|
||
target: Ty<'tcx>,
|
||
old_info: Option<ValueRef>)
|
||
-> ValueRef {
|
||
let (source, target) = ccx.tcx().struct_lockstep_tails(source, target);
|
||
match (&source.sty, &target.sty) {
|
||
(&ty::TyArray(_, len), &ty::TySlice(_)) => C_uint(ccx, len),
|
||
(&ty::TyDynamic(..), &ty::TyDynamic(..)) => {
|
||
// For now, upcasts are limited to changes in marker
|
||
// traits, and hence never actually require an actual
|
||
// change to the vtable.
|
||
old_info.expect("unsized_info: missing old info for trait upcast")
|
||
}
|
||
(_, &ty::TyDynamic(ref data, ..)) => {
|
||
consts::ptrcast(meth::get_vtable(ccx, source, data.principal()),
|
||
Type::vtable_ptr(ccx))
|
||
}
|
||
_ => bug!("unsized_info: invalid unsizing {:?} -> {:?}",
|
||
source,
|
||
target),
|
||
}
|
||
}
|
||
|
||
/// Coerce `src` to `dst_ty`. `src_ty` must be a thin pointer.
|
||
pub fn unsize_thin_ptr<'a, 'tcx>(
|
||
bcx: &Builder<'a, 'tcx>,
|
||
src: ValueRef,
|
||
src_ty: Ty<'tcx>,
|
||
dst_ty: Ty<'tcx>
|
||
) -> (ValueRef, ValueRef) {
|
||
debug!("unsize_thin_ptr: {:?} => {:?}", src_ty, dst_ty);
|
||
match (&src_ty.sty, &dst_ty.sty) {
|
||
(&ty::TyBox(a), &ty::TyBox(b)) |
|
||
(&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }),
|
||
&ty::TyRef(_, ty::TypeAndMut { ty: b, .. })) |
|
||
(&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }),
|
||
&ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) |
|
||
(&ty::TyRawPtr(ty::TypeAndMut { ty: a, .. }),
|
||
&ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) => {
|
||
assert!(bcx.ccx.shared().type_is_sized(a));
|
||
let ptr_ty = type_of::in_memory_type_of(bcx.ccx, b).ptr_to();
|
||
(bcx.pointercast(src, ptr_ty), unsized_info(bcx.ccx, a, b, None))
|
||
}
|
||
_ => bug!("unsize_thin_ptr: called on bad types"),
|
||
}
|
||
}
|
||
|
||
/// Coerce `src`, which is a reference to a value of type `src_ty`,
|
||
/// to a value of type `dst_ty` and store the result in `dst`
|
||
pub fn coerce_unsized_into<'a, 'tcx>(bcx: &Builder<'a, 'tcx>,
|
||
src: ValueRef,
|
||
src_ty: Ty<'tcx>,
|
||
dst: ValueRef,
|
||
dst_ty: Ty<'tcx>) {
|
||
match (&src_ty.sty, &dst_ty.sty) {
|
||
(&ty::TyBox(..), &ty::TyBox(..)) |
|
||
(&ty::TyRef(..), &ty::TyRef(..)) |
|
||
(&ty::TyRef(..), &ty::TyRawPtr(..)) |
|
||
(&ty::TyRawPtr(..), &ty::TyRawPtr(..)) => {
|
||
let (base, info) = if common::type_is_fat_ptr(bcx.ccx, src_ty) {
|
||
// fat-ptr to fat-ptr unsize preserves the vtable
|
||
// i.e. &'a fmt::Debug+Send => &'a fmt::Debug
|
||
// So we need to pointercast the base to ensure
|
||
// the types match up.
|
||
let (base, info) = load_fat_ptr(bcx, src, src_ty);
|
||
let llcast_ty = type_of::fat_ptr_base_ty(bcx.ccx, dst_ty);
|
||
let base = bcx.pointercast(base, llcast_ty);
|
||
(base, info)
|
||
} else {
|
||
let base = load_ty(bcx, src, src_ty);
|
||
unsize_thin_ptr(bcx, base, src_ty, dst_ty)
|
||
};
|
||
store_fat_ptr(bcx, base, info, dst, dst_ty);
|
||
}
|
||
|
||
(&ty::TyAdt(def_a, substs_a), &ty::TyAdt(def_b, substs_b)) => {
|
||
assert_eq!(def_a, def_b);
|
||
|
||
let src_fields = def_a.variants[0].fields.iter().map(|f| {
|
||
monomorphize::field_ty(bcx.ccx.tcx(), substs_a, f)
|
||
});
|
||
let dst_fields = def_b.variants[0].fields.iter().map(|f| {
|
||
monomorphize::field_ty(bcx.ccx.tcx(), substs_b, f)
|
||
});
|
||
|
||
let src = adt::MaybeSizedValue::sized(src);
|
||
let dst = adt::MaybeSizedValue::sized(dst);
|
||
|
||
let iter = src_fields.zip(dst_fields).enumerate();
|
||
for (i, (src_fty, dst_fty)) in iter {
|
||
if type_is_zero_size(bcx.ccx, dst_fty) {
|
||
continue;
|
||
}
|
||
|
||
let src_f = adt::trans_field_ptr(bcx, src_ty, src, Disr(0), i);
|
||
let dst_f = adt::trans_field_ptr(bcx, dst_ty, dst, Disr(0), i);
|
||
if src_fty == dst_fty {
|
||
memcpy_ty(bcx, dst_f, src_f, src_fty, None);
|
||
} else {
|
||
coerce_unsized_into(bcx, src_f, src_fty, dst_f, dst_fty);
|
||
}
|
||
}
|
||
}
|
||
_ => bug!("coerce_unsized_into: invalid coercion {:?} -> {:?}",
|
||
src_ty,
|
||
dst_ty),
|
||
}
|
||
}
|
||
|
||
pub fn custom_coerce_unsize_info<'scx, 'tcx>(scx: &SharedCrateContext<'scx, 'tcx>,
|
||
source_ty: Ty<'tcx>,
|
||
target_ty: Ty<'tcx>)
|
||
-> CustomCoerceUnsized {
|
||
let trait_ref = ty::Binder(ty::TraitRef {
|
||
def_id: scx.tcx().lang_items.coerce_unsized_trait().unwrap(),
|
||
substs: scx.tcx().mk_substs_trait(source_ty, &[target_ty])
|
||
});
|
||
|
||
match fulfill_obligation(scx, DUMMY_SP, trait_ref) {
|
||
traits::VtableImpl(traits::VtableImplData { impl_def_id, .. }) => {
|
||
scx.tcx().custom_coerce_unsized_kind(impl_def_id)
|
||
}
|
||
vtable => {
|
||
bug!("invalid CoerceUnsized vtable: {:?}", vtable);
|
||
}
|
||
}
|
||
}
|
||
|
||
pub fn cast_shift_expr_rhs(
|
||
cx: &Builder, op: hir::BinOp_, lhs: ValueRef, rhs: ValueRef
|
||
) -> ValueRef {
|
||
cast_shift_rhs(op, lhs, rhs, |a, b| cx.trunc(a, b), |a, b| cx.zext(a, b))
|
||
}
|
||
|
||
pub fn cast_shift_const_rhs(op: hir::BinOp_, lhs: ValueRef, rhs: ValueRef) -> ValueRef {
|
||
cast_shift_rhs(op,
|
||
lhs,
|
||
rhs,
|
||
|a, b| unsafe { llvm::LLVMConstTrunc(a, b.to_ref()) },
|
||
|a, b| unsafe { llvm::LLVMConstZExt(a, b.to_ref()) })
|
||
}
|
||
|
||
fn cast_shift_rhs<F, G>(op: hir::BinOp_,
|
||
lhs: ValueRef,
|
||
rhs: ValueRef,
|
||
trunc: F,
|
||
zext: G)
|
||
-> ValueRef
|
||
where F: FnOnce(ValueRef, Type) -> ValueRef,
|
||
G: FnOnce(ValueRef, Type) -> ValueRef
|
||
{
|
||
// Shifts may have any size int on the rhs
|
||
if op.is_shift() {
|
||
let mut rhs_llty = val_ty(rhs);
|
||
let mut lhs_llty = val_ty(lhs);
|
||
if rhs_llty.kind() == Vector {
|
||
rhs_llty = rhs_llty.element_type()
|
||
}
|
||
if lhs_llty.kind() == Vector {
|
||
lhs_llty = lhs_llty.element_type()
|
||
}
|
||
let rhs_sz = rhs_llty.int_width();
|
||
let lhs_sz = lhs_llty.int_width();
|
||
if lhs_sz < rhs_sz {
|
||
trunc(rhs, lhs_llty)
|
||
} else if lhs_sz > rhs_sz {
|
||
// FIXME (#1877: If shifting by negative
|
||
// values becomes not undefined then this is wrong.
|
||
zext(rhs, lhs_llty)
|
||
} else {
|
||
rhs
|
||
}
|
||
} else {
|
||
rhs
|
||
}
|
||
}
|
||
|
||
/// Returns whether this session's target will use SEH-based unwinding.
|
||
///
|
||
/// This is only true for MSVC targets, and even then the 64-bit MSVC target
|
||
/// currently uses SEH-ish unwinding with DWARF info tables to the side (same as
|
||
/// 64-bit MinGW) instead of "full SEH".
|
||
pub fn wants_msvc_seh(sess: &Session) -> bool {
|
||
sess.target.target.options.is_like_msvc
|
||
}
|
||
|
||
pub fn call_assume<'a, 'tcx>(b: &Builder<'a, 'tcx>, val: ValueRef) {
|
||
let assume_intrinsic = b.ccx.get_intrinsic("llvm.assume");
|
||
b.call(assume_intrinsic, &[val], None);
|
||
}
|
||
|
||
/// Helper for loading values from memory. Does the necessary conversion if the in-memory type
|
||
/// differs from the type used for SSA values. Also handles various special cases where the type
|
||
/// gives us better information about what we are loading.
|
||
pub fn load_ty<'a, 'tcx>(b: &Builder<'a, 'tcx>, ptr: ValueRef, t: Ty<'tcx>) -> ValueRef {
|
||
let ccx = b.ccx;
|
||
if type_is_zero_size(ccx, t) {
|
||
return C_undef(type_of::type_of(ccx, t));
|
||
}
|
||
|
||
unsafe {
|
||
let global = llvm::LLVMIsAGlobalVariable(ptr);
|
||
if !global.is_null() && llvm::LLVMIsGlobalConstant(global) == llvm::True {
|
||
let val = llvm::LLVMGetInitializer(global);
|
||
if !val.is_null() {
|
||
if t.is_bool() {
|
||
return llvm::LLVMConstTrunc(val, Type::i1(ccx).to_ref());
|
||
}
|
||
return val;
|
||
}
|
||
}
|
||
}
|
||
|
||
if t.is_bool() {
|
||
b.trunc(b.load_range_assert(ptr, 0, 2, llvm::False), Type::i1(ccx))
|
||
} else if t.is_char() {
|
||
// a char is a Unicode codepoint, and so takes values from 0
|
||
// to 0x10FFFF inclusive only.
|
||
b.load_range_assert(ptr, 0, 0x10FFFF + 1, llvm::False)
|
||
} else if (t.is_region_ptr() || t.is_unique()) && !common::type_is_fat_ptr(ccx, t) {
|
||
b.load_nonnull(ptr)
|
||
} else {
|
||
b.load(ptr)
|
||
}
|
||
}
|
||
|
||
/// Helper for storing values in memory. Does the necessary conversion if the in-memory type
|
||
/// differs from the type used for SSA values.
|
||
pub fn store_ty<'a, 'tcx>(cx: &Builder<'a, 'tcx>, v: ValueRef, dst: ValueRef, t: Ty<'tcx>) {
|
||
debug!("store_ty: {:?} : {:?} <- {:?}", Value(dst), t, Value(v));
|
||
|
||
if common::type_is_fat_ptr(cx.ccx, t) {
|
||
let lladdr = cx.extract_value(v, abi::FAT_PTR_ADDR);
|
||
let llextra = cx.extract_value(v, abi::FAT_PTR_EXTRA);
|
||
store_fat_ptr(cx, lladdr, llextra, dst, t);
|
||
} else {
|
||
cx.store(from_immediate(cx, v), dst, None);
|
||
}
|
||
}
|
||
|
||
pub fn store_fat_ptr<'a, 'tcx>(cx: &Builder<'a, 'tcx>,
|
||
data: ValueRef,
|
||
extra: ValueRef,
|
||
dst: ValueRef,
|
||
_ty: Ty<'tcx>) {
|
||
// FIXME: emit metadata
|
||
cx.store(data, get_dataptr(cx, dst), None);
|
||
cx.store(extra, get_meta(cx, dst), None);
|
||
}
|
||
|
||
pub fn load_fat_ptr<'a, 'tcx>(
|
||
b: &Builder<'a, 'tcx>, src: ValueRef, t: Ty<'tcx>
|
||
) -> (ValueRef, ValueRef) {
|
||
let ptr = get_dataptr(b, src);
|
||
let ptr = if t.is_region_ptr() || t.is_unique() {
|
||
b.load_nonnull(ptr)
|
||
} else {
|
||
b.load(ptr)
|
||
};
|
||
|
||
// FIXME: emit metadata on `meta`.
|
||
let meta = b.load(get_meta(b, src));
|
||
|
||
(ptr, meta)
|
||
}
|
||
|
||
pub fn from_immediate(bcx: &Builder, val: ValueRef) -> ValueRef {
|
||
if val_ty(val) == Type::i1(bcx.ccx) {
|
||
bcx.zext(val, Type::i8(bcx.ccx))
|
||
} else {
|
||
val
|
||
}
|
||
}
|
||
|
||
pub fn to_immediate(bcx: &Builder, val: ValueRef, ty: Ty) -> ValueRef {
|
||
if ty.is_bool() {
|
||
bcx.trunc(val, Type::i1(bcx.ccx))
|
||
} else {
|
||
val
|
||
}
|
||
}
|
||
|
||
pub enum Lifetime { Start, End }
|
||
|
||
impl Lifetime {
|
||
// If LLVM lifetime intrinsic support is enabled (i.e. optimizations
|
||
// on), and `ptr` is nonzero-sized, then extracts the size of `ptr`
|
||
// and the intrinsic for `lt` and passes them to `emit`, which is in
|
||
// charge of generating code to call the passed intrinsic on whatever
|
||
// block of generated code is targetted for the intrinsic.
|
||
//
|
||
// If LLVM lifetime intrinsic support is disabled (i.e. optimizations
|
||
// off) or `ptr` is zero-sized, then no-op (does not call `emit`).
|
||
pub fn call(self, b: &Builder, ptr: ValueRef) {
|
||
if b.ccx.sess().opts.optimize == config::OptLevel::No {
|
||
return;
|
||
}
|
||
|
||
let size = machine::llsize_of_alloc(b.ccx, val_ty(ptr).element_type());
|
||
if size == 0 {
|
||
return;
|
||
}
|
||
|
||
let lifetime_intrinsic = b.ccx.get_intrinsic(match self {
|
||
Lifetime::Start => "llvm.lifetime.start",
|
||
Lifetime::End => "llvm.lifetime.end"
|
||
});
|
||
|
||
let ptr = b.pointercast(ptr, Type::i8p(b.ccx));
|
||
b.call(lifetime_intrinsic, &[C_u64(b.ccx, size), ptr], None);
|
||
}
|
||
}
|
||
|
||
pub fn call_memcpy<'a, 'tcx>(b: &Builder<'a, 'tcx>,
|
||
dst: ValueRef,
|
||
src: ValueRef,
|
||
n_bytes: ValueRef,
|
||
align: u32) {
|
||
let ccx = b.ccx;
|
||
let ptr_width = &ccx.sess().target.target.target_pointer_width[..];
|
||
let key = format!("llvm.memcpy.p0i8.p0i8.i{}", ptr_width);
|
||
let memcpy = ccx.get_intrinsic(&key);
|
||
let src_ptr = b.pointercast(src, Type::i8p(ccx));
|
||
let dst_ptr = b.pointercast(dst, Type::i8p(ccx));
|
||
let size = b.intcast(n_bytes, ccx.int_type());
|
||
let align = C_i32(ccx, align as i32);
|
||
let volatile = C_bool(ccx, false);
|
||
b.call(memcpy, &[dst_ptr, src_ptr, size, align, volatile], None);
|
||
}
|
||
|
||
pub fn memcpy_ty<'a, 'tcx>(
|
||
bcx: &Builder<'a, 'tcx>,
|
||
dst: ValueRef,
|
||
src: ValueRef,
|
||
t: Ty<'tcx>,
|
||
align: Option<u32>,
|
||
) {
|
||
let ccx = bcx.ccx;
|
||
|
||
if type_is_zero_size(ccx, t) {
|
||
return;
|
||
}
|
||
|
||
let llty = type_of::type_of(ccx, t);
|
||
let llsz = llsize_of(ccx, llty);
|
||
let llalign = align.unwrap_or_else(|| type_of::align_of(ccx, t));
|
||
call_memcpy(bcx, dst, src, llsz, llalign as u32);
|
||
}
|
||
|
||
pub fn call_memset<'a, 'tcx>(b: &Builder<'a, 'tcx>,
|
||
ptr: ValueRef,
|
||
fill_byte: ValueRef,
|
||
size: ValueRef,
|
||
align: ValueRef,
|
||
volatile: bool) -> ValueRef {
|
||
let ptr_width = &b.ccx.sess().target.target.target_pointer_width[..];
|
||
let intrinsic_key = format!("llvm.memset.p0i8.i{}", ptr_width);
|
||
let llintrinsicfn = b.ccx.get_intrinsic(&intrinsic_key);
|
||
let volatile = C_bool(b.ccx, volatile);
|
||
b.call(llintrinsicfn, &[ptr, fill_byte, size, align, volatile], None)
|
||
}
|
||
|
||
pub fn trans_instance<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, instance: Instance<'tcx>) {
|
||
let _s = if ccx.sess().trans_stats() {
|
||
let mut instance_name = String::new();
|
||
DefPathBasedNames::new(ccx.tcx(), true, true)
|
||
.push_def_path(instance.def, &mut instance_name);
|
||
Some(StatRecorder::new(ccx, instance_name))
|
||
} else {
|
||
None
|
||
};
|
||
|
||
// this is an info! to allow collecting monomorphization statistics
|
||
// and to allow finding the last function before LLVM aborts from
|
||
// release builds.
|
||
info!("trans_instance({})", instance);
|
||
|
||
let fn_ty = ccx.tcx().item_type(instance.def);
|
||
let fn_ty = ccx.tcx().erase_regions(&fn_ty);
|
||
let fn_ty = monomorphize::apply_param_substs(ccx.shared(), instance.substs, &fn_ty);
|
||
|
||
let ty::BareFnTy { abi, ref sig, .. } = *common::ty_fn_ty(ccx, fn_ty);
|
||
let sig = ccx.tcx().erase_late_bound_regions_and_normalize(sig);
|
||
|
||
let lldecl = match ccx.instances().borrow().get(&instance) {
|
||
Some(&val) => val,
|
||
None => bug!("Instance `{:?}` not already declared", instance)
|
||
};
|
||
|
||
ccx.stats().n_closures.set(ccx.stats().n_closures.get() + 1);
|
||
|
||
if !ccx.sess().no_landing_pads() {
|
||
attributes::emit_uwtable(lldecl, true);
|
||
}
|
||
|
||
let fn_ty = FnType::new(ccx, abi, &sig, &[]);
|
||
|
||
let fcx = FunctionContext::new(ccx, lldecl);
|
||
let mir = ccx.tcx().item_mir(instance.def);
|
||
mir::trans_mir(&fcx, fn_ty, &mir, instance, &sig, abi);
|
||
}
|
||
|
||
pub fn trans_ctor_shim<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
||
def_id: DefId,
|
||
substs: &'tcx Substs<'tcx>,
|
||
disr: Disr,
|
||
llfndecl: ValueRef) {
|
||
attributes::inline(llfndecl, attributes::InlineAttr::Hint);
|
||
attributes::set_frame_pointer_elimination(ccx, llfndecl);
|
||
|
||
let ctor_ty = ccx.tcx().item_type(def_id);
|
||
let ctor_ty = monomorphize::apply_param_substs(ccx.shared(), substs, &ctor_ty);
|
||
|
||
let sig = ccx.tcx().erase_late_bound_regions_and_normalize(&ctor_ty.fn_sig());
|
||
let fn_ty = FnType::new(ccx, Abi::Rust, &sig, &[]);
|
||
|
||
let fcx = FunctionContext::new(ccx, llfndecl);
|
||
let bcx = fcx.get_entry_block();
|
||
if !fn_ty.ret.is_ignore() {
|
||
// But if there are no nested returns, we skip the indirection
|
||
// and have a single retslot
|
||
let dest = if fn_ty.ret.is_indirect() {
|
||
get_param(fcx.llfn, 0)
|
||
} else {
|
||
// We create an alloca to hold a pointer of type `ret.original_ty`
|
||
// which will hold the pointer to the right alloca which has the
|
||
// final ret value
|
||
bcx.alloca(fn_ty.ret.memory_ty(ccx), "sret_slot")
|
||
};
|
||
let dest_val = adt::MaybeSizedValue::sized(dest); // Can return unsized value
|
||
let mut llarg_idx = fn_ty.ret.is_indirect() as usize;
|
||
let mut arg_idx = 0;
|
||
for (i, arg_ty) in sig.inputs().iter().enumerate() {
|
||
let lldestptr = adt::trans_field_ptr(&bcx, sig.output(), dest_val, Disr::from(disr), i);
|
||
let arg = &fn_ty.args[arg_idx];
|
||
arg_idx += 1;
|
||
if common::type_is_fat_ptr(bcx.ccx, arg_ty) {
|
||
let meta = &fn_ty.args[arg_idx];
|
||
arg_idx += 1;
|
||
arg.store_fn_arg(&bcx, &mut llarg_idx, get_dataptr(&bcx, lldestptr));
|
||
meta.store_fn_arg(&bcx, &mut llarg_idx, get_meta(&bcx, lldestptr));
|
||
} else {
|
||
arg.store_fn_arg(&bcx, &mut llarg_idx, lldestptr);
|
||
}
|
||
}
|
||
adt::trans_set_discr(&bcx, sig.output(), dest, disr);
|
||
|
||
if fn_ty.ret.is_indirect() {
|
||
bcx.ret_void();
|
||
return;
|
||
}
|
||
|
||
if let Some(cast_ty) = fn_ty.ret.cast {
|
||
let load = bcx.load(bcx.pointercast(dest, cast_ty.ptr_to()));
|
||
let llalign = llalign_of_min(ccx, fn_ty.ret.ty);
|
||
unsafe {
|
||
llvm::LLVMSetAlignment(load, llalign);
|
||
}
|
||
bcx.ret(load)
|
||
} else {
|
||
bcx.ret(bcx.load(dest))
|
||
}
|
||
} else {
|
||
bcx.ret_void();
|
||
}
|
||
}
|
||
|
||
pub fn llvm_linkage_by_name(name: &str) -> Option<Linkage> {
|
||
// Use the names from src/llvm/docs/LangRef.rst here. Most types are only
|
||
// applicable to variable declarations and may not really make sense for
|
||
// Rust code in the first place but whitelist them anyway and trust that
|
||
// the user knows what s/he's doing. Who knows, unanticipated use cases
|
||
// may pop up in the future.
|
||
//
|
||
// ghost, dllimport, dllexport and linkonce_odr_autohide are not supported
|
||
// and don't have to be, LLVM treats them as no-ops.
|
||
match name {
|
||
"appending" => Some(llvm::Linkage::AppendingLinkage),
|
||
"available_externally" => Some(llvm::Linkage::AvailableExternallyLinkage),
|
||
"common" => Some(llvm::Linkage::CommonLinkage),
|
||
"extern_weak" => Some(llvm::Linkage::ExternalWeakLinkage),
|
||
"external" => Some(llvm::Linkage::ExternalLinkage),
|
||
"internal" => Some(llvm::Linkage::InternalLinkage),
|
||
"linkonce" => Some(llvm::Linkage::LinkOnceAnyLinkage),
|
||
"linkonce_odr" => Some(llvm::Linkage::LinkOnceODRLinkage),
|
||
"private" => Some(llvm::Linkage::PrivateLinkage),
|
||
"weak" => Some(llvm::Linkage::WeakAnyLinkage),
|
||
"weak_odr" => Some(llvm::Linkage::WeakODRLinkage),
|
||
_ => None,
|
||
}
|
||
}
|
||
|
||
pub fn set_link_section(ccx: &CrateContext,
|
||
llval: ValueRef,
|
||
attrs: &[ast::Attribute]) {
|
||
if let Some(sect) = attr::first_attr_value_str_by_name(attrs, "link_section") {
|
||
if contains_null(§.as_str()) {
|
||
ccx.sess().fatal(&format!("Illegal null byte in link_section value: `{}`", §));
|
||
}
|
||
unsafe {
|
||
let buf = CString::new(sect.as_str().as_bytes()).unwrap();
|
||
llvm::LLVMSetSection(llval, buf.as_ptr());
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Create the `main` function which will initialise the rust runtime and call
|
||
/// users’ main function.
|
||
pub fn maybe_create_entry_wrapper(ccx: &CrateContext) {
|
||
let (main_def_id, span) = match *ccx.sess().entry_fn.borrow() {
|
||
Some((id, span)) => {
|
||
(ccx.tcx().map.local_def_id(id), span)
|
||
}
|
||
None => return,
|
||
};
|
||
|
||
// check for the #[rustc_error] annotation, which forces an
|
||
// error in trans. This is used to write compile-fail tests
|
||
// that actually test that compilation succeeds without
|
||
// reporting an error.
|
||
if ccx.tcx().has_attr(main_def_id, "rustc_error") {
|
||
ccx.tcx().sess.span_fatal(span, "compilation successful");
|
||
}
|
||
|
||
let instance = Instance::mono(ccx.shared(), main_def_id);
|
||
|
||
if !ccx.codegen_unit().contains_item(&TransItem::Fn(instance)) {
|
||
// We want to create the wrapper in the same codegen unit as Rust's main
|
||
// function.
|
||
return;
|
||
}
|
||
|
||
let main_llfn = Callee::def(ccx, main_def_id, instance.substs).reify(ccx);
|
||
|
||
let et = ccx.sess().entry_type.get().unwrap();
|
||
match et {
|
||
config::EntryMain => create_entry_fn(ccx, span, main_llfn, true),
|
||
config::EntryStart => create_entry_fn(ccx, span, main_llfn, false),
|
||
config::EntryNone => {} // Do nothing.
|
||
}
|
||
|
||
fn create_entry_fn(ccx: &CrateContext,
|
||
sp: Span,
|
||
rust_main: ValueRef,
|
||
use_start_lang_item: bool) {
|
||
let llfty = Type::func(&[ccx.int_type(), Type::i8p(ccx).ptr_to()], &ccx.int_type());
|
||
|
||
if declare::get_defined_value(ccx, "main").is_some() {
|
||
// FIXME: We should be smart and show a better diagnostic here.
|
||
ccx.sess().struct_span_err(sp, "entry symbol `main` defined multiple times")
|
||
.help("did you use #[no_mangle] on `fn main`? Use #[start] instead")
|
||
.emit();
|
||
ccx.sess().abort_if_errors();
|
||
bug!();
|
||
}
|
||
let llfn = declare::declare_cfn(ccx, "main", llfty);
|
||
|
||
// `main` should respect same config for frame pointer elimination as rest of code
|
||
attributes::set_frame_pointer_elimination(ccx, llfn);
|
||
|
||
let bld = Builder::new_block(ccx, llfn, "top");
|
||
|
||
debuginfo::gdb::insert_reference_to_gdb_debug_scripts_section_global(ccx, &bld);
|
||
|
||
let (start_fn, args) = if use_start_lang_item {
|
||
let start_def_id = ccx.tcx().require_lang_item(StartFnLangItem);
|
||
let empty_substs = ccx.tcx().intern_substs(&[]);
|
||
let start_fn = Callee::def(ccx, start_def_id, empty_substs).reify(ccx);
|
||
(start_fn, vec![bld.pointercast(rust_main, Type::i8p(ccx).ptr_to()), get_param(llfn, 0),
|
||
get_param(llfn, 1)])
|
||
} else {
|
||
debug!("using user-defined start fn");
|
||
(rust_main, vec![get_param(llfn, 0 as c_uint), get_param(llfn, 1 as c_uint)])
|
||
};
|
||
|
||
let result = bld.call(start_fn, &args, None);
|
||
bld.ret(result);
|
||
}
|
||
}
|
||
|
||
fn contains_null(s: &str) -> bool {
|
||
s.bytes().any(|b| b == 0)
|
||
}
|
||
|
||
fn write_metadata(cx: &SharedCrateContext,
|
||
exported_symbols: &NodeSet) -> Vec<u8> {
|
||
use flate;
|
||
|
||
#[derive(PartialEq, Eq, PartialOrd, Ord)]
|
||
enum MetadataKind {
|
||
None,
|
||
Uncompressed,
|
||
Compressed
|
||
}
|
||
|
||
let kind = cx.sess().crate_types.borrow().iter().map(|ty| {
|
||
match *ty {
|
||
config::CrateTypeExecutable |
|
||
config::CrateTypeStaticlib |
|
||
config::CrateTypeCdylib => MetadataKind::None,
|
||
|
||
config::CrateTypeRlib => MetadataKind::Uncompressed,
|
||
|
||
config::CrateTypeDylib |
|
||
config::CrateTypeProcMacro => MetadataKind::Compressed,
|
||
}
|
||
}).max().unwrap();
|
||
|
||
if kind == MetadataKind::None {
|
||
return Vec::new();
|
||
}
|
||
|
||
let cstore = &cx.tcx().sess.cstore;
|
||
let metadata = cstore.encode_metadata(cx.tcx(),
|
||
cx.export_map(),
|
||
cx.link_meta(),
|
||
exported_symbols);
|
||
if kind == MetadataKind::Uncompressed {
|
||
return metadata;
|
||
}
|
||
|
||
assert!(kind == MetadataKind::Compressed);
|
||
let mut compressed = cstore.metadata_encoding_version().to_vec();
|
||
compressed.extend_from_slice(&flate::deflate_bytes(&metadata));
|
||
|
||
let llmeta = C_bytes_in_context(cx.metadata_llcx(), &compressed[..]);
|
||
let llconst = C_struct_in_context(cx.metadata_llcx(), &[llmeta], false);
|
||
let name = cx.metadata_symbol_name();
|
||
let buf = CString::new(name).unwrap();
|
||
let llglobal = unsafe {
|
||
llvm::LLVMAddGlobal(cx.metadata_llmod(), val_ty(llconst).to_ref(), buf.as_ptr())
|
||
};
|
||
unsafe {
|
||
llvm::LLVMSetInitializer(llglobal, llconst);
|
||
let section_name =
|
||
cx.tcx().sess.cstore.metadata_section_name(&cx.sess().target.target);
|
||
let name = CString::new(section_name).unwrap();
|
||
llvm::LLVMSetSection(llglobal, name.as_ptr());
|
||
|
||
// Also generate a .section directive to force no
|
||
// flags, at least for ELF outputs, so that the
|
||
// metadata doesn't get loaded into memory.
|
||
let directive = format!(".section {}", section_name);
|
||
let directive = CString::new(directive).unwrap();
|
||
llvm::LLVMSetModuleInlineAsm(cx.metadata_llmod(), directive.as_ptr())
|
||
}
|
||
return metadata;
|
||
}
|
||
|
||
/// Find any symbols that are defined in one compilation unit, but not declared
|
||
/// in any other compilation unit. Give these symbols internal linkage.
|
||
fn internalize_symbols<'a, 'tcx>(sess: &Session,
|
||
ccxs: &CrateContextList<'a, 'tcx>,
|
||
symbol_map: &SymbolMap<'tcx>,
|
||
exported_symbols: &ExportedSymbols) {
|
||
let export_threshold =
|
||
symbol_export::crates_export_threshold(&sess.crate_types.borrow()[..]);
|
||
|
||
let exported_symbols = exported_symbols
|
||
.exported_symbols(LOCAL_CRATE)
|
||
.iter()
|
||
.filter(|&&(_, export_level)| {
|
||
symbol_export::is_below_threshold(export_level, export_threshold)
|
||
})
|
||
.map(|&(ref name, _)| &name[..])
|
||
.collect::<FxHashSet<&str>>();
|
||
|
||
let scx = ccxs.shared();
|
||
let tcx = scx.tcx();
|
||
|
||
let incr_comp = sess.opts.debugging_opts.incremental.is_some();
|
||
|
||
// 'unsafe' because we are holding on to CStr's from the LLVM module within
|
||
// this block.
|
||
unsafe {
|
||
let mut referenced_somewhere = FxHashSet();
|
||
|
||
// Collect all symbols that need to stay externally visible because they
|
||
// are referenced via a declaration in some other codegen unit. In
|
||
// incremental compilation, we don't need to collect. See below for more
|
||
// information.
|
||
if !incr_comp {
|
||
for ccx in ccxs.iter_need_trans() {
|
||
for val in iter_globals(ccx.llmod()).chain(iter_functions(ccx.llmod())) {
|
||
let linkage = llvm::LLVMRustGetLinkage(val);
|
||
// We only care about external declarations (not definitions)
|
||
// and available_externally definitions.
|
||
let is_available_externally =
|
||
linkage == llvm::Linkage::AvailableExternallyLinkage;
|
||
let is_decl = llvm::LLVMIsDeclaration(val) == llvm::True;
|
||
|
||
if is_decl || is_available_externally {
|
||
let symbol_name = CStr::from_ptr(llvm::LLVMGetValueName(val));
|
||
referenced_somewhere.insert(symbol_name);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// Also collect all symbols for which we cannot adjust linkage, because
|
||
// it is fixed by some directive in the source code.
|
||
let (locally_defined_symbols, linkage_fixed_explicitly) = {
|
||
let mut locally_defined_symbols = FxHashSet();
|
||
let mut linkage_fixed_explicitly = FxHashSet();
|
||
|
||
for trans_item in scx.translation_items().borrow().iter() {
|
||
let symbol_name = symbol_map.get_or_compute(scx, *trans_item);
|
||
if trans_item.explicit_linkage(tcx).is_some() {
|
||
linkage_fixed_explicitly.insert(symbol_name.clone());
|
||
}
|
||
locally_defined_symbols.insert(symbol_name);
|
||
}
|
||
|
||
(locally_defined_symbols, linkage_fixed_explicitly)
|
||
};
|
||
|
||
// Examine each external definition. If the definition is not used in
|
||
// any other compilation unit, and is not reachable from other crates,
|
||
// then give it internal linkage.
|
||
for ccx in ccxs.iter_need_trans() {
|
||
for val in iter_globals(ccx.llmod()).chain(iter_functions(ccx.llmod())) {
|
||
let linkage = llvm::LLVMRustGetLinkage(val);
|
||
|
||
let is_externally_visible = (linkage == llvm::Linkage::ExternalLinkage) ||
|
||
(linkage == llvm::Linkage::LinkOnceODRLinkage) ||
|
||
(linkage == llvm::Linkage::WeakODRLinkage);
|
||
|
||
if !is_externally_visible {
|
||
// This symbol is not visible outside of its codegen unit,
|
||
// so there is nothing to do for it.
|
||
continue;
|
||
}
|
||
|
||
let name_cstr = CStr::from_ptr(llvm::LLVMGetValueName(val));
|
||
let name_str = name_cstr.to_str().unwrap();
|
||
|
||
if exported_symbols.contains(&name_str) {
|
||
// This symbol is explicitly exported, so we can't
|
||
// mark it as internal or hidden.
|
||
continue;
|
||
}
|
||
|
||
let is_declaration = llvm::LLVMIsDeclaration(val) == llvm::True;
|
||
|
||
if is_declaration {
|
||
if locally_defined_symbols.contains(name_str) {
|
||
// Only mark declarations from the current crate as hidden.
|
||
// Otherwise we would mark things as hidden that are
|
||
// imported from other crates or native libraries.
|
||
llvm::LLVMRustSetVisibility(val, llvm::Visibility::Hidden);
|
||
}
|
||
} else {
|
||
let has_fixed_linkage = linkage_fixed_explicitly.contains(name_str);
|
||
|
||
if !has_fixed_linkage {
|
||
// In incremental compilation mode, we can't be sure that
|
||
// we saw all references because we don't know what's in
|
||
// cached compilation units, so we always assume that the
|
||
// given item has been referenced.
|
||
if incr_comp || referenced_somewhere.contains(&name_cstr) {
|
||
llvm::LLVMRustSetVisibility(val, llvm::Visibility::Hidden);
|
||
} else {
|
||
llvm::LLVMRustSetLinkage(val, llvm::Linkage::InternalLinkage);
|
||
}
|
||
|
||
llvm::LLVMSetDLLStorageClass(val, llvm::DLLStorageClass::Default);
|
||
llvm::UnsetComdat(val);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// Create a `__imp_<symbol> = &symbol` global for every public static `symbol`.
|
||
// This is required to satisfy `dllimport` references to static data in .rlibs
|
||
// when using MSVC linker. We do this only for data, as linker can fix up
|
||
// code references on its own.
|
||
// See #26591, #27438
|
||
fn create_imps(cx: &CrateContextList) {
|
||
// The x86 ABI seems to require that leading underscores are added to symbol
|
||
// names, so we need an extra underscore on 32-bit. There's also a leading
|
||
// '\x01' here which disables LLVM's symbol mangling (e.g. no extra
|
||
// underscores added in front).
|
||
let prefix = if cx.shared().sess().target.target.target_pointer_width == "32" {
|
||
"\x01__imp__"
|
||
} else {
|
||
"\x01__imp_"
|
||
};
|
||
unsafe {
|
||
for ccx in cx.iter_need_trans() {
|
||
let exported: Vec<_> = iter_globals(ccx.llmod())
|
||
.filter(|&val| {
|
||
llvm::LLVMRustGetLinkage(val) ==
|
||
llvm::Linkage::ExternalLinkage &&
|
||
llvm::LLVMIsDeclaration(val) == 0
|
||
})
|
||
.collect();
|
||
|
||
let i8p_ty = Type::i8p(&ccx);
|
||
for val in exported {
|
||
let name = CStr::from_ptr(llvm::LLVMGetValueName(val));
|
||
let mut imp_name = prefix.as_bytes().to_vec();
|
||
imp_name.extend(name.to_bytes());
|
||
let imp_name = CString::new(imp_name).unwrap();
|
||
let imp = llvm::LLVMAddGlobal(ccx.llmod(),
|
||
i8p_ty.to_ref(),
|
||
imp_name.as_ptr() as *const _);
|
||
let init = llvm::LLVMConstBitCast(val, i8p_ty.to_ref());
|
||
llvm::LLVMSetInitializer(imp, init);
|
||
llvm::LLVMRustSetLinkage(imp, llvm::Linkage::ExternalLinkage);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
struct ValueIter {
|
||
cur: ValueRef,
|
||
step: unsafe extern "C" fn(ValueRef) -> ValueRef,
|
||
}
|
||
|
||
impl Iterator for ValueIter {
|
||
type Item = ValueRef;
|
||
|
||
fn next(&mut self) -> Option<ValueRef> {
|
||
let old = self.cur;
|
||
if !old.is_null() {
|
||
self.cur = unsafe { (self.step)(old) };
|
||
Some(old)
|
||
} else {
|
||
None
|
||
}
|
||
}
|
||
}
|
||
|
||
fn iter_globals(llmod: llvm::ModuleRef) -> ValueIter {
|
||
unsafe {
|
||
ValueIter {
|
||
cur: llvm::LLVMGetFirstGlobal(llmod),
|
||
step: llvm::LLVMGetNextGlobal,
|
||
}
|
||
}
|
||
}
|
||
|
||
fn iter_functions(llmod: llvm::ModuleRef) -> ValueIter {
|
||
unsafe {
|
||
ValueIter {
|
||
cur: llvm::LLVMGetFirstFunction(llmod),
|
||
step: llvm::LLVMGetNextFunction,
|
||
}
|
||
}
|
||
}
|
||
|
||
/// The context provided lists a set of reachable ids as calculated by
|
||
/// middle::reachable, but this contains far more ids and symbols than we're
|
||
/// actually exposing from the object file. This function will filter the set in
|
||
/// the context to the set of ids which correspond to symbols that are exposed
|
||
/// from the object file being generated.
|
||
///
|
||
/// This list is later used by linkers to determine the set of symbols needed to
|
||
/// be exposed from a dynamic library and it's also encoded into the metadata.
|
||
pub fn find_exported_symbols(tcx: TyCtxt, reachable: NodeSet) -> NodeSet {
|
||
reachable.into_iter().filter(|&id| {
|
||
// Next, we want to ignore some FFI functions that are not exposed from
|
||
// this crate. Reachable FFI functions can be lumped into two
|
||
// categories:
|
||
//
|
||
// 1. Those that are included statically via a static library
|
||
// 2. Those included otherwise (e.g. dynamically or via a framework)
|
||
//
|
||
// Although our LLVM module is not literally emitting code for the
|
||
// statically included symbols, it's an export of our library which
|
||
// needs to be passed on to the linker and encoded in the metadata.
|
||
//
|
||
// As a result, if this id is an FFI item (foreign item) then we only
|
||
// let it through if it's included statically.
|
||
match tcx.map.get(id) {
|
||
hir_map::NodeForeignItem(..) => {
|
||
let def_id = tcx.map.local_def_id(id);
|
||
tcx.sess.cstore.is_statically_included_foreign_item(def_id)
|
||
}
|
||
|
||
// Only consider nodes that actually have exported symbols.
|
||
hir_map::NodeItem(&hir::Item {
|
||
node: hir::ItemStatic(..), .. }) |
|
||
hir_map::NodeItem(&hir::Item {
|
||
node: hir::ItemFn(..), .. }) |
|
||
hir_map::NodeImplItem(&hir::ImplItem {
|
||
node: hir::ImplItemKind::Method(..), .. }) => {
|
||
let def_id = tcx.map.local_def_id(id);
|
||
let generics = tcx.item_generics(def_id);
|
||
let attributes = tcx.get_attrs(def_id);
|
||
(generics.parent_types == 0 && generics.types.is_empty()) &&
|
||
// Functions marked with #[inline] are only ever translated
|
||
// with "internal" linkage and are never exported.
|
||
!attr::requests_inline(&attributes[..])
|
||
}
|
||
|
||
_ => false
|
||
}
|
||
}).collect()
|
||
}
|
||
|
||
pub fn trans_crate<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
|
||
analysis: ty::CrateAnalysis,
|
||
incremental_hashes_map: &IncrementalHashesMap)
|
||
-> CrateTranslation {
|
||
let _task = tcx.dep_graph.in_task(DepNode::TransCrate);
|
||
|
||
// Be careful with this krate: obviously it gives access to the
|
||
// entire contents of the krate. So if you push any subtasks of
|
||
// `TransCrate`, you need to be careful to register "reads" of the
|
||
// particular items that will be processed.
|
||
let krate = tcx.map.krate();
|
||
|
||
let ty::CrateAnalysis { export_map, reachable, name, .. } = analysis;
|
||
let exported_symbols = find_exported_symbols(tcx, reachable);
|
||
|
||
let check_overflow = if let Some(v) = tcx.sess.opts.debugging_opts.force_overflow_checks {
|
||
v
|
||
} else {
|
||
tcx.sess.opts.debug_assertions
|
||
};
|
||
|
||
let link_meta = link::build_link_meta(incremental_hashes_map, &name);
|
||
|
||
let shared_ccx = SharedCrateContext::new(tcx,
|
||
export_map,
|
||
link_meta.clone(),
|
||
exported_symbols,
|
||
check_overflow);
|
||
// Translate the metadata.
|
||
let metadata = time(tcx.sess.time_passes(), "write metadata", || {
|
||
write_metadata(&shared_ccx, shared_ccx.exported_symbols())
|
||
});
|
||
|
||
let metadata_module = ModuleTranslation {
|
||
name: "metadata".to_string(),
|
||
symbol_name_hash: 0, // we always rebuild metadata, at least for now
|
||
source: ModuleSource::Translated(ModuleLlvm {
|
||
llcx: shared_ccx.metadata_llcx(),
|
||
llmod: shared_ccx.metadata_llmod(),
|
||
}),
|
||
};
|
||
let no_builtins = attr::contains_name(&krate.attrs, "no_builtins");
|
||
|
||
// Run the translation item collector and partition the collected items into
|
||
// codegen units.
|
||
let (codegen_units, symbol_map) = collect_and_partition_translation_items(&shared_ccx);
|
||
|
||
let symbol_map = Rc::new(symbol_map);
|
||
|
||
let previous_work_products = trans_reuse_previous_work_products(&shared_ccx,
|
||
&codegen_units,
|
||
&symbol_map);
|
||
|
||
let crate_context_list = CrateContextList::new(&shared_ccx,
|
||
codegen_units,
|
||
previous_work_products,
|
||
symbol_map.clone());
|
||
let modules: Vec<_> = crate_context_list.iter_all()
|
||
.map(|ccx| {
|
||
let source = match ccx.previous_work_product() {
|
||
Some(buf) => ModuleSource::Preexisting(buf.clone()),
|
||
None => ModuleSource::Translated(ModuleLlvm {
|
||
llcx: ccx.llcx(),
|
||
llmod: ccx.llmod(),
|
||
}),
|
||
};
|
||
|
||
ModuleTranslation {
|
||
name: String::from(ccx.codegen_unit().name()),
|
||
symbol_name_hash: ccx.codegen_unit()
|
||
.compute_symbol_name_hash(&shared_ccx,
|
||
&symbol_map),
|
||
source: source,
|
||
}
|
||
})
|
||
.collect();
|
||
|
||
assert_module_sources::assert_module_sources(tcx, &modules);
|
||
|
||
// Skip crate items and just output metadata in -Z no-trans mode.
|
||
if tcx.sess.opts.debugging_opts.no_trans ||
|
||
tcx.sess.opts.output_types.contains_key(&config::OutputType::Metadata) {
|
||
let linker_info = LinkerInfo::new(&shared_ccx, &ExportedSymbols::empty());
|
||
return CrateTranslation {
|
||
modules: modules,
|
||
metadata_module: metadata_module,
|
||
link: link_meta,
|
||
metadata: metadata,
|
||
exported_symbols: ExportedSymbols::empty(),
|
||
no_builtins: no_builtins,
|
||
linker_info: linker_info,
|
||
windows_subsystem: None,
|
||
};
|
||
}
|
||
|
||
// Instantiate translation items without filling out definitions yet...
|
||
for ccx in crate_context_list.iter_need_trans() {
|
||
let cgu = ccx.codegen_unit();
|
||
let trans_items = cgu.items_in_deterministic_order(tcx, &symbol_map);
|
||
|
||
tcx.dep_graph.with_task(cgu.work_product_dep_node(), || {
|
||
for (trans_item, linkage) in trans_items {
|
||
trans_item.predefine(&ccx, linkage);
|
||
}
|
||
});
|
||
}
|
||
|
||
// ... and now that we have everything pre-defined, fill out those definitions.
|
||
for ccx in crate_context_list.iter_need_trans() {
|
||
let cgu = ccx.codegen_unit();
|
||
let trans_items = cgu.items_in_deterministic_order(tcx, &symbol_map);
|
||
tcx.dep_graph.with_task(cgu.work_product_dep_node(), || {
|
||
for (trans_item, _) in trans_items {
|
||
trans_item.define(&ccx);
|
||
}
|
||
|
||
// If this codegen unit contains the main function, also create the
|
||
// wrapper here
|
||
maybe_create_entry_wrapper(&ccx);
|
||
|
||
// Run replace-all-uses-with for statics that need it
|
||
for &(old_g, new_g) in ccx.statics_to_rauw().borrow().iter() {
|
||
unsafe {
|
||
let bitcast = llvm::LLVMConstPointerCast(new_g, llvm::LLVMTypeOf(old_g));
|
||
llvm::LLVMReplaceAllUsesWith(old_g, bitcast);
|
||
llvm::LLVMDeleteGlobal(old_g);
|
||
}
|
||
}
|
||
|
||
// Finalize debuginfo
|
||
if ccx.sess().opts.debuginfo != NoDebugInfo {
|
||
debuginfo::finalize(&ccx);
|
||
}
|
||
});
|
||
}
|
||
|
||
symbol_names_test::report_symbol_names(&shared_ccx);
|
||
|
||
if shared_ccx.sess().trans_stats() {
|
||
let stats = shared_ccx.stats();
|
||
println!("--- trans stats ---");
|
||
println!("n_glues_created: {}", stats.n_glues_created.get());
|
||
println!("n_null_glues: {}", stats.n_null_glues.get());
|
||
println!("n_real_glues: {}", stats.n_real_glues.get());
|
||
|
||
println!("n_fns: {}", stats.n_fns.get());
|
||
println!("n_inlines: {}", stats.n_inlines.get());
|
||
println!("n_closures: {}", stats.n_closures.get());
|
||
println!("fn stats:");
|
||
stats.fn_stats.borrow_mut().sort_by(|&(_, insns_a), &(_, insns_b)| {
|
||
insns_b.cmp(&insns_a)
|
||
});
|
||
for tuple in stats.fn_stats.borrow().iter() {
|
||
match *tuple {
|
||
(ref name, insns) => {
|
||
println!("{} insns, {}", insns, *name);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if shared_ccx.sess().count_llvm_insns() {
|
||
for (k, v) in shared_ccx.stats().llvm_insns.borrow().iter() {
|
||
println!("{:7} {}", *v, *k);
|
||
}
|
||
}
|
||
|
||
let sess = shared_ccx.sess();
|
||
|
||
let exported_symbols = ExportedSymbols::compute_from(&shared_ccx,
|
||
&symbol_map);
|
||
|
||
// Now that we have all symbols that are exported from the CGUs of this
|
||
// crate, we can run the `internalize_symbols` pass.
|
||
time(shared_ccx.sess().time_passes(), "internalize symbols", || {
|
||
internalize_symbols(sess,
|
||
&crate_context_list,
|
||
&symbol_map,
|
||
&exported_symbols);
|
||
});
|
||
|
||
if tcx.sess.opts.debugging_opts.print_type_sizes {
|
||
gather_type_sizes(tcx);
|
||
}
|
||
|
||
if sess.target.target.options.is_like_msvc &&
|
||
sess.crate_types.borrow().iter().any(|ct| *ct == config::CrateTypeRlib) {
|
||
create_imps(&crate_context_list);
|
||
}
|
||
|
||
let linker_info = LinkerInfo::new(&shared_ccx, &exported_symbols);
|
||
|
||
let subsystem = attr::first_attr_value_str_by_name(&krate.attrs,
|
||
"windows_subsystem");
|
||
let windows_subsystem = subsystem.map(|subsystem| {
|
||
if subsystem != "windows" && subsystem != "console" {
|
||
tcx.sess.fatal(&format!("invalid windows subsystem `{}`, only \
|
||
`windows` and `console` are allowed",
|
||
subsystem));
|
||
}
|
||
subsystem.to_string()
|
||
});
|
||
|
||
CrateTranslation {
|
||
modules: modules,
|
||
metadata_module: metadata_module,
|
||
link: link_meta,
|
||
metadata: metadata,
|
||
exported_symbols: exported_symbols,
|
||
no_builtins: no_builtins,
|
||
linker_info: linker_info,
|
||
windows_subsystem: windows_subsystem,
|
||
}
|
||
}
|
||
|
||
fn gather_type_sizes<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>) {
|
||
let layout_cache = tcx.layout_cache.borrow();
|
||
for (ty, layout) in layout_cache.iter() {
|
||
|
||
// (delay format until we actually need it)
|
||
let record = |kind, opt_discr_size, variants| {
|
||
let type_desc = format!("{:?}", ty);
|
||
let overall_size = layout.size(&tcx.data_layout);
|
||
let align = layout.align(&tcx.data_layout);
|
||
tcx.sess.code_stats.borrow_mut().record_type_size(kind,
|
||
type_desc,
|
||
align,
|
||
overall_size,
|
||
opt_discr_size,
|
||
variants);
|
||
};
|
||
|
||
let (adt_def, substs) = match ty.sty {
|
||
ty::TyAdt(ref adt_def, substs) => {
|
||
debug!("print-type-size t: `{:?}` process adt", ty);
|
||
(adt_def, substs)
|
||
}
|
||
|
||
ty::TyClosure(..) => {
|
||
debug!("print-type-size t: `{:?}` record closure", ty);
|
||
record(DataTypeKind::Closure, None, vec![]);
|
||
continue;
|
||
}
|
||
|
||
_ => {
|
||
debug!("print-type-size t: `{:?}` skip non-nominal", ty);
|
||
continue;
|
||
}
|
||
};
|
||
|
||
let adt_kind = adt_def.adt_kind();
|
||
|
||
let build_field_info = |(field_name, field_ty): (ast::Name, Ty), offset: &layout::Size| {
|
||
match layout_cache.get(&field_ty) {
|
||
None => bug!("no layout found for field {} type: `{:?}`", field_name, field_ty),
|
||
Some(field_layout) => {
|
||
session::FieldInfo {
|
||
name: field_name.to_string(),
|
||
offset: offset.bytes(),
|
||
size: field_layout.size(&tcx.data_layout).bytes(),
|
||
align: field_layout.align(&tcx.data_layout).abi(),
|
||
}
|
||
}
|
||
}
|
||
};
|
||
|
||
let build_primitive_info = |name: ast::Name, value: &layout::Primitive| {
|
||
session::VariantInfo {
|
||
name: Some(name.to_string()),
|
||
kind: session::SizeKind::Exact,
|
||
align: value.align(&tcx.data_layout).abi(),
|
||
size: value.size(&tcx.data_layout).bytes(),
|
||
fields: vec![],
|
||
}
|
||
};
|
||
|
||
enum Fields<'a> {
|
||
WithDiscrim(&'a layout::Struct),
|
||
NoDiscrim(&'a layout::Struct),
|
||
}
|
||
|
||
let build_variant_info = |n: Option<ast::Name>, flds: &[(ast::Name, Ty)], layout: Fields| {
|
||
let (s, field_offsets) = match layout {
|
||
Fields::WithDiscrim(s) => (s, &s.offsets[1..]),
|
||
Fields::NoDiscrim(s) => (s, &s.offsets[0..]),
|
||
};
|
||
let field_info: Vec<_> = flds.iter()
|
||
.zip(field_offsets.iter())
|
||
.map(|(&field_name_ty, offset)| build_field_info(field_name_ty, offset))
|
||
.collect();
|
||
|
||
session::VariantInfo {
|
||
name: n.map(|n|n.to_string()),
|
||
kind: if s.sized {
|
||
session::SizeKind::Exact
|
||
} else {
|
||
session::SizeKind::Min
|
||
},
|
||
align: s.align.abi(),
|
||
size: s.min_size.bytes(),
|
||
fields: field_info,
|
||
}
|
||
};
|
||
|
||
match **layout {
|
||
Layout::StructWrappedNullablePointer { nonnull: ref variant_layout,
|
||
nndiscr,
|
||
discrfield: _,
|
||
discrfield_source: _ } => {
|
||
debug!("print-type-size t: `{:?}` adt struct-wrapped nullable nndiscr {} is {:?}",
|
||
ty, nndiscr, variant_layout);
|
||
let variant_def = &adt_def.variants[nndiscr as usize];
|
||
let fields: Vec<_> = variant_def.fields.iter()
|
||
.map(|field_def| (field_def.name, field_def.ty(tcx, substs)))
|
||
.collect();
|
||
record(adt_kind.into(),
|
||
None,
|
||
vec![build_variant_info(Some(variant_def.name),
|
||
&fields,
|
||
Fields::NoDiscrim(variant_layout))]);
|
||
}
|
||
Layout::RawNullablePointer { nndiscr, value } => {
|
||
debug!("print-type-size t: `{:?}` adt raw nullable nndiscr {} is {:?}",
|
||
ty, nndiscr, value);
|
||
let variant_def = &adt_def.variants[nndiscr as usize];
|
||
record(adt_kind.into(), None,
|
||
vec![build_primitive_info(variant_def.name, &value)]);
|
||
}
|
||
Layout::Univariant { variant: ref variant_layout, non_zero: _ } => {
|
||
let variant_names = || {
|
||
adt_def.variants.iter().map(|v|format!("{}", v.name)).collect::<Vec<_>>()
|
||
};
|
||
debug!("print-type-size t: `{:?}` adt univariant {:?} variants: {:?}",
|
||
ty, variant_layout, variant_names());
|
||
assert!(adt_def.variants.len() <= 1,
|
||
"univariant with variants {:?}", variant_names());
|
||
if adt_def.variants.len() == 1 {
|
||
let variant_def = &adt_def.variants[0];
|
||
let fields: Vec<_> = variant_def.fields.iter()
|
||
.map(|field_def| (field_def.name, field_def.ty(tcx, substs)))
|
||
.collect();
|
||
record(adt_kind.into(),
|
||
None,
|
||
vec![build_variant_info(Some(variant_def.name),
|
||
&fields,
|
||
Fields::NoDiscrim(variant_layout))]);
|
||
} else {
|
||
// (This case arises for *empty* enums; so give it
|
||
// zero variants.)
|
||
record(adt_kind.into(), None, vec![]);
|
||
}
|
||
}
|
||
|
||
Layout::General { ref variants, discr, .. } => {
|
||
debug!("print-type-size t: `{:?}` adt general variants def {} layouts {} {:?}",
|
||
ty, adt_def.variants.len(), variants.len(), variants);
|
||
let variant_infos: Vec<_> = adt_def.variants.iter()
|
||
.zip(variants.iter())
|
||
.map(|(variant_def, variant_layout)| {
|
||
let fields: Vec<_> = variant_def.fields.iter()
|
||
.map(|field_def| (field_def.name, field_def.ty(tcx, substs)))
|
||
.collect();
|
||
build_variant_info(Some(variant_def.name),
|
||
&fields,
|
||
Fields::WithDiscrim(variant_layout))
|
||
})
|
||
.collect();
|
||
record(adt_kind.into(), Some(discr.size()), variant_infos);
|
||
}
|
||
|
||
Layout::UntaggedUnion { ref variants } => {
|
||
debug!("print-type-size t: `{:?}` adt union variants {:?}",
|
||
ty, variants);
|
||
// layout does not currently store info about each
|
||
// variant...
|
||
record(adt_kind.into(), None, Vec::new());
|
||
}
|
||
|
||
Layout::CEnum { discr, .. } => {
|
||
debug!("print-type-size t: `{:?}` adt c-like enum", ty);
|
||
let variant_infos: Vec<_> = adt_def.variants.iter()
|
||
.map(|variant_def| {
|
||
build_primitive_info(variant_def.name,
|
||
&layout::Primitive::Int(discr))
|
||
})
|
||
.collect();
|
||
record(adt_kind.into(), Some(discr.size()), variant_infos);
|
||
}
|
||
|
||
// other cases provide little interesting (i.e. adjustable
|
||
// via representation tweaks) size info beyond total size.
|
||
Layout::Scalar { .. } |
|
||
Layout::Vector { .. } |
|
||
Layout::Array { .. } |
|
||
Layout::FatPointer { .. } => {
|
||
debug!("print-type-size t: `{:?}` adt other", ty);
|
||
record(adt_kind.into(), None, Vec::new())
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/// For each CGU, identify if we can reuse an existing object file (or
|
||
/// maybe other context).
|
||
fn trans_reuse_previous_work_products(scx: &SharedCrateContext,
|
||
codegen_units: &[CodegenUnit],
|
||
symbol_map: &SymbolMap)
|
||
-> Vec<Option<WorkProduct>> {
|
||
debug!("trans_reuse_previous_work_products()");
|
||
codegen_units
|
||
.iter()
|
||
.map(|cgu| {
|
||
let id = cgu.work_product_id();
|
||
|
||
let hash = cgu.compute_symbol_name_hash(scx, symbol_map);
|
||
|
||
debug!("trans_reuse_previous_work_products: id={:?} hash={}", id, hash);
|
||
|
||
if let Some(work_product) = scx.dep_graph().previous_work_product(&id) {
|
||
if work_product.input_hash == hash {
|
||
debug!("trans_reuse_previous_work_products: reusing {:?}", work_product);
|
||
return Some(work_product);
|
||
} else {
|
||
if scx.sess().opts.debugging_opts.incremental_info {
|
||
println!("incremental: CGU `{}` invalidated because of \
|
||
changed partitioning hash.",
|
||
cgu.name());
|
||
}
|
||
debug!("trans_reuse_previous_work_products: \
|
||
not reusing {:?} because hash changed to {:?}",
|
||
work_product, hash);
|
||
}
|
||
}
|
||
|
||
None
|
||
})
|
||
.collect()
|
||
}
|
||
|
||
fn collect_and_partition_translation_items<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>)
|
||
-> (Vec<CodegenUnit<'tcx>>, SymbolMap<'tcx>) {
|
||
let time_passes = scx.sess().time_passes();
|
||
|
||
let collection_mode = match scx.sess().opts.debugging_opts.print_trans_items {
|
||
Some(ref s) => {
|
||
let mode_string = s.to_lowercase();
|
||
let mode_string = mode_string.trim();
|
||
if mode_string == "eager" {
|
||
TransItemCollectionMode::Eager
|
||
} else {
|
||
if mode_string != "lazy" {
|
||
let message = format!("Unknown codegen-item collection mode '{}'. \
|
||
Falling back to 'lazy' mode.",
|
||
mode_string);
|
||
scx.sess().warn(&message);
|
||
}
|
||
|
||
TransItemCollectionMode::Lazy
|
||
}
|
||
}
|
||
None => TransItemCollectionMode::Lazy
|
||
};
|
||
|
||
let (items, inlining_map) =
|
||
time(time_passes, "translation item collection", || {
|
||
collector::collect_crate_translation_items(&scx, collection_mode)
|
||
});
|
||
|
||
let symbol_map = SymbolMap::build(scx, items.iter().cloned());
|
||
|
||
let strategy = if scx.sess().opts.debugging_opts.incremental.is_some() {
|
||
PartitioningStrategy::PerModule
|
||
} else {
|
||
PartitioningStrategy::FixedUnitCount(scx.sess().opts.cg.codegen_units)
|
||
};
|
||
|
||
let codegen_units = time(time_passes, "codegen unit partitioning", || {
|
||
partitioning::partition(scx,
|
||
items.iter().cloned(),
|
||
strategy,
|
||
&inlining_map)
|
||
});
|
||
|
||
assert!(scx.tcx().sess.opts.cg.codegen_units == codegen_units.len() ||
|
||
scx.tcx().sess.opts.debugging_opts.incremental.is_some());
|
||
|
||
{
|
||
let mut ccx_map = scx.translation_items().borrow_mut();
|
||
|
||
for trans_item in items.iter().cloned() {
|
||
ccx_map.insert(trans_item);
|
||
}
|
||
}
|
||
|
||
if scx.sess().opts.debugging_opts.print_trans_items.is_some() {
|
||
let mut item_to_cgus = FxHashMap();
|
||
|
||
for cgu in &codegen_units {
|
||
for (&trans_item, &linkage) in cgu.items() {
|
||
item_to_cgus.entry(trans_item)
|
||
.or_insert(Vec::new())
|
||
.push((cgu.name().clone(), linkage));
|
||
}
|
||
}
|
||
|
||
let mut item_keys: Vec<_> = items
|
||
.iter()
|
||
.map(|i| {
|
||
let mut output = i.to_string(scx.tcx());
|
||
output.push_str(" @@");
|
||
let mut empty = Vec::new();
|
||
let mut cgus = item_to_cgus.get_mut(i).unwrap_or(&mut empty);
|
||
cgus.as_mut_slice().sort_by_key(|&(ref name, _)| name.clone());
|
||
cgus.dedup();
|
||
for &(ref cgu_name, linkage) in cgus.iter() {
|
||
output.push_str(" ");
|
||
output.push_str(&cgu_name[..]);
|
||
|
||
let linkage_abbrev = match linkage {
|
||
llvm::Linkage::ExternalLinkage => "External",
|
||
llvm::Linkage::AvailableExternallyLinkage => "Available",
|
||
llvm::Linkage::LinkOnceAnyLinkage => "OnceAny",
|
||
llvm::Linkage::LinkOnceODRLinkage => "OnceODR",
|
||
llvm::Linkage::WeakAnyLinkage => "WeakAny",
|
||
llvm::Linkage::WeakODRLinkage => "WeakODR",
|
||
llvm::Linkage::AppendingLinkage => "Appending",
|
||
llvm::Linkage::InternalLinkage => "Internal",
|
||
llvm::Linkage::PrivateLinkage => "Private",
|
||
llvm::Linkage::ExternalWeakLinkage => "ExternalWeak",
|
||
llvm::Linkage::CommonLinkage => "Common",
|
||
};
|
||
|
||
output.push_str("[");
|
||
output.push_str(linkage_abbrev);
|
||
output.push_str("]");
|
||
}
|
||
output
|
||
})
|
||
.collect();
|
||
|
||
item_keys.sort();
|
||
|
||
for item in item_keys {
|
||
println!("TRANS_ITEM {}", item);
|
||
}
|
||
}
|
||
|
||
(codegen_units, symbol_map)
|
||
}
|