19079cf804
Add arm64e-apple-ios & arm64e-apple-darwin targets This introduces * `arm64e-apple-ios` * `arm64e-apple-darwin` Rust targets for support `arm64e` architecture on `iOS` and `Darwin`. So, this is a first approach for integrating to the Rust compiler. ## Tier 3 Target Policy > * A tier 3 target must have a designated developer or developers (the "target maintainers") on record to be CCed when issues arise regarding the target. (The mechanism to track and CC such developers may evolve over time.) I will be the target maintainer. > * Targets must use naming consistent with any existing targets; for instance, a target for the same CPU or OS as an existing Rust target should use the same name for that CPU or OS. Targets should normally use the same names and naming conventions as used elsewhere in the broader ecosystem beyond Rust (such as in other toolchains), unless they have a very good reason to diverge. Changing the name of a target can be highly disruptive, especially once the target reaches a higher tier, so getting the name right is important even for a tier 3 target. Target names should not introduce undue confusion or ambiguity unless absolutely necessary to maintain ecosystem compatibility. For example, if the name of the target makes people extremely likely to form incorrect beliefs about what it targets, the name should be changed or augmented to disambiguate it. If possible, use only letters, numbers, dashes and underscores for the name. Periods (.) are known to cause issues in Cargo. The target names `arm64e-apple-ios`, `arm64e-apple-darwin` were derived from `aarch64-apple-ios`, `aarch64-apple-darwin`. In this [ticket,](#73628) people discussed the best suitable names for these targets. > In some cases, the arm64e arch might be "different". For example: > * `thread_set_state` might fail with (os/kern) protection failure if we try to call it from arm64 process to arm64e process. > * The returning value of dlsym is PAC signed on arm64e, while left untouched on arm64 > * Some function like pthread_create_from_mach_thread requires a PAC signed function pointer on arm64e, which is not required on arm64. So, I have chosen them because there are similar triplets in LLVM. I think there are no more suitable names for these targets. > * Tier 3 targets may have unusual requirements to build or use, but must not create legal issues or impose onerous legal terms for the Rust project or for Rust developers or users. The target must not introduce license incompatibilities. Anything added to the Rust repository must be under the standard Rust license (MIT OR Apache-2.0). The target must not cause the Rust tools or libraries built for any other host (even when supporting cross-compilation to the target) to depend on any new dependency less permissive than the Rust licensing policy. This applies whether the dependency is a Rust crate that would require adding new license exceptions (as specified by the tidy tool in the rust-lang/rust repository), or whether the dependency is a native library or binary. In other words, the introduction of the target must not cause a user installing or running a version of Rust or the Rust tools to be subject to any new license requirements. Compiling, linking, and emitting functional binaries, libraries, or other code for the target (whether hosted on the target itself or cross-compiling from another target) must not depend on proprietary (non-FOSS) libraries. Host tools built for the target itself may depend on the ordinary runtime libraries supplied by the platform and commonly used by other applications built for the target, but those libraries must not be required for code generation for the target; cross-compilation to the target must not require such libraries at all. For instance, rustc built for the target may depend on a common proprietary C runtime library or console output library, but must not depend on a proprietary code generation library or code optimization library. Rust's license permits such combinations, but the Rust project has no interest in maintaining such combinations within the scope of Rust itself, even at tier 3. "onerous" here is an intentionally subjective term. At a minimum, "onerous" legal/licensing terms include but are not limited to: non-disclosure requirements, non-compete requirements, contributor license agreements (CLAs) or equivalent, "non-commercial"/"research-only"/etc terms, requirements conditional on the employer or employment of any particular Rust developers, revocable terms, any requirements that create liability for the Rust project or its developers or users, or any requirements that adversely affect the livelihood or prospects of the Rust project or its developers or users. No dependencies were added to Rust. > * Neither this policy nor any decisions made regarding targets shall create any binding agreement or estoppel by any party. If any member of an approving Rust team serves as one of the maintainers of a target, or has any legal or employment requirement (explicit or implicit) that might affect their decisions regarding a target, they must recuse themselves from any approval decisions regarding the target's tier status, though they may otherwise participate in discussions. > * This requirement does not prevent part or all of this policy from being cited in an explicit contract or work agreement (e.g. to implement or maintain support for a target). This requirement exists to ensure that a developer or team responsible for reviewing and approving a target does not face any legal threats or obligations that would prevent them from freely exercising their judgment in such approval, even if such judgment involves subjective matters or goes beyond the letter of these requirements. Understood. I am not a member of a Rust team. > * Tier 3 targets should attempt to implement as much of the standard libraries as possible and appropriate (core for most targets, alloc for targets that can support dynamic memory allocation, std for targets with an operating system or equivalent layer of system-provided functionality), but may leave some code unimplemented (either unavailable or stubbed out as appropriate), whether because the target makes it impossible to implement or challenging to implement. The authors of pull requests are not obligated to avoid calling any portions of the standard library on the basis of a tier 3 target not implementing those portions. Understood. `std` is supported. > * The target must provide documentation for the Rust community explaining how to build for the target, using cross-compilation if possible. If the target supports running binaries, or running tests (even if they do not pass), the documentation must explain how to run such binaries or tests for the target, using emulation if possible or dedicated hardware if necessary. Building is described in the derived target doc. > * Tier 3 targets must not impose burden on the authors of pull requests, or other developers in the community, to maintain the target. In particular, do not post comments (automated or manual) on a PR that derail or suggest a block on the PR based on a tier 3 target. Do not send automated messages or notifications (via any medium, including via `@)` to a PR author or others involved with a PR regarding a tier 3 target, unless they have opted into such messages. > * Backlinks such as those generated by the issue/PR tracker when linking to an issue or PR are not considered a violation of this policy, within reason. However, such messages (even on a separate repository) must not generate notifications to anyone involved with a PR who has not requested such notifications. Understood. > * Patches adding or updating tier 3 targets must not break any existing tier 2 or tier 1 target, and must not knowingly break another tier 3 target without approval of either the compiler team or the maintainers of the other tier 3 target. > * In particular, this may come up when working on closely related targets, such as variations of the same architecture with different features. Avoid introducing unconditional uses of features that another variation of the target may not have; use conditional compilation or runtime detection, as appropriate, to let each target run code supported by that target. These targets are not fully ABI compatible with arm64e code. #73628 |
||
---|---|---|
.github | ||
.reuse | ||
compiler | ||
library | ||
LICENSES | ||
src | ||
tests | ||
.editorconfig | ||
.git-blame-ignore-revs | ||
.gitattributes | ||
.gitignore | ||
.gitmodules | ||
.mailmap | ||
Cargo.lock | ||
Cargo.toml | ||
CODE_OF_CONDUCT.md | ||
config.example.toml | ||
configure | ||
CONTRIBUTING.md | ||
COPYRIGHT | ||
LICENSE-APACHE | ||
LICENSE-MIT | ||
README.md | ||
RELEASES.md | ||
rust-bors.toml | ||
rustfmt.toml | ||
triagebot.toml | ||
x | ||
x.ps1 | ||
x.py |
The Rust Programming Language
This is the main source code repository for Rust. It contains the compiler, standard library, and documentation.
Note: this README is for users rather than contributors. If you wish to contribute to the compiler, you should read CONTRIBUTING.md instead.
Table of content
Quick Start
Read "Installation" from The Book.
Installing from Source
The Rust build system uses a Python script called x.py
to build the compiler,
which manages the bootstrapping process. It lives at the root of the project.
It also uses a file named config.toml
to determine various configuration
settings for the build. You can see a full list of options in
config.example.toml
.
The x.py
command can be run directly on most Unix systems in the following
format:
./x.py <subcommand> [flags]
This is how the documentation and examples assume you are running x.py
.
See the rustc dev guide if this does not work on your
platform.
More information about x.py
can be found by running it with the --help
flag
or reading the rustc dev guide.
Dependencies
Make sure you have installed the dependencies:
python
3 or 2.7git
- A C compiler (when building for the host,
cc
is enough; cross-compiling may need additional compilers) curl
(not needed on Windows)pkg-config
if you are compiling on Linux and targeting Linuxlibiconv
(already included with glibc on Debian-based distros)
To build Cargo, you'll also need OpenSSL (libssl-dev
or openssl-devel
on
most Unix distros).
If building LLVM from source, you'll need additional tools:
g++
,clang++
, or MSVC with versions listed on LLVM's documentationninja
, or GNUmake
3.81 or later (Ninja is recommended, especially on Windows)cmake
3.13.4 or laterlibstdc++-static
may be required on some Linux distributions such as Fedora and Ubuntu
On tier 1 or tier 2 with host tools platforms, you can also choose to download
LLVM by setting llvm.download-ci-llvm = true
.
Otherwise, you'll need LLVM installed and llvm-config
in your path.
See the rustc-dev-guide for more info.
Building on a Unix-like system
Build steps
-
Clone the source with
git
:git clone https://github.com/rust-lang/rust.git cd rust
-
Configure the build settings:
./configure
If you plan to use
x.py install
to create an installation, it is recommended that you set theprefix
value in the[install]
section to a directory:./configure --set install.prefix=<path>
-
Build and install:
./x.py build && ./x.py install
When complete,
./x.py install
will place several programs into$PREFIX/bin
:rustc
, the Rust compiler, andrustdoc
, the API-documentation tool. By default, it will also include Cargo, Rust's package manager. You can disable this behavior by passing--set build.extended=false
to./configure
.
Configure and Make
This project provides a configure script and makefile (the latter of which just
invokes x.py
). ./configure
is the recommended way to programmatically
generate a config.toml
. make
is not recommended (we suggest using x.py
directly), but it is supported and we try not to break it unnecessarily.
./configure
make && sudo make install
configure
generates a config.toml
which can also be used with normal x.py
invocations.
Building on Windows
On Windows, we suggest using winget to install dependencies by running the following in a terminal:
winget install -e Python.Python.3
winget install -e Kitware.CMake
winget install -e Git.Git
Then edit your system's PATH
variable and add: C:\Program Files\CMake\bin
.
See
this guide on editing the system PATH
from the Java documentation.
There are two prominent ABIs in use on Windows: the native (MSVC) ABI used by Visual Studio and the GNU ABI used by the GCC toolchain. Which version of Rust you need depends largely on what C/C++ libraries you want to interoperate with. Use the MSVC build of Rust to interop with software produced by Visual Studio and the GNU build to interop with GNU software built using the MinGW/MSYS2 toolchain.
MinGW
MSYS2 can be used to easily build Rust on Windows:
-
Download the latest MSYS2 installer and go through the installer.
-
Run
mingw32_shell.bat
ormingw64_shell.bat
from the MSYS2 installation directory (e.g.C:\msys64
), depending on whether you want 32-bit or 64-bit Rust. (As of the latest version of MSYS2 you have to runmsys2_shell.cmd -mingw32
ormsys2_shell.cmd -mingw64
from the command line instead.) -
From this terminal, install the required tools:
# Update package mirrors (may be needed if you have a fresh install of MSYS2) pacman -Sy pacman-mirrors # Install build tools needed for Rust. If you're building a 32-bit compiler, # then replace "x86_64" below with "i686". If you've already got Git, Python, # or CMake installed and in PATH you can remove them from this list. # Note that it is important that you do **not** use the 'python2', 'cmake', # and 'ninja' packages from the 'msys2' subsystem. # The build has historically been known to fail with these packages. pacman -S git \ make \ diffutils \ tar \ mingw-w64-x86_64-python \ mingw-w64-x86_64-cmake \ mingw-w64-x86_64-gcc \ mingw-w64-x86_64-ninja
-
Navigate to Rust's source code (or clone it), then build it:
python x.py setup user && python x.py build && python x.py install
MSVC
MSVC builds of Rust additionally require an installation of Visual Studio 2017
(or later) so rustc
can use its linker. The simplest way is to get
Visual Studio, check the "C++ build tools" and "Windows 10 SDK" workload.
(If you're installing CMake yourself, be careful that "C++ CMake tools for Windows" doesn't get included under "Individual components".)
With these dependencies installed, you can build the compiler in a cmd.exe
shell with:
python x.py setup user
python x.py build
Right now, building Rust only works with some known versions of Visual Studio. If you have a more recent version installed and the build system doesn't understand, you may need to force rustbuild to use an older version. This can be done by manually calling the appropriate vcvars file before running the bootstrap.
CALL "C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Auxiliary\Build\vcvars64.bat"
python x.py build
Specifying an ABI
Each specific ABI can also be used from either environment (for example, using the GNU ABI in PowerShell) by using an explicit build triple. The available Windows build triples are:
- GNU ABI (using GCC)
i686-pc-windows-gnu
x86_64-pc-windows-gnu
- The MSVC ABI
i686-pc-windows-msvc
x86_64-pc-windows-msvc
The build triple can be specified by either specifying --build=<triple>
when
invoking x.py
commands, or by creating a config.toml
file (as described in
Building on a Unix-like system), and passing
--set build.build=<triple>
to ./configure
.
Building Documentation
If you'd like to build the documentation, it's almost the same:
./x.py doc
The generated documentation will appear under doc
in the build
directory for
the ABI used. That is, if the ABI was x86_64-pc-windows-msvc
, the directory
will be build\x86_64-pc-windows-msvc\doc
.
Notes
Since the Rust compiler is written in Rust, it must be built by a precompiled "snapshot" version of itself (made in an earlier stage of development). As such, source builds require an Internet connection to fetch snapshots, and an OS that can execute the available snapshot binaries.
See https://doc.rust-lang.org/nightly/rustc/platform-support.html for a list of supported platforms. Only "host tools" platforms have a pre-compiled snapshot binary available; to compile for a platform without host tools you must cross-compile.
You may find that other platforms work, but these are our officially supported build environments that are most likely to work.
Getting Help
See https://www.rust-lang.org/community for a list of chat platforms and forums.
Contributing
See CONTRIBUTING.md.
License
Rust is primarily distributed under the terms of both the MIT license and the Apache License (Version 2.0), with portions covered by various BSD-like licenses.
See LICENSE-APACHE, LICENSE-MIT, and COPYRIGHT for details.
Trademark
The Rust Foundation owns and protects the Rust and Cargo trademarks and logos (the "Rust Trademarks").
If you want to use these names or brands, please read the media guide.
Third-party logos may be subject to third-party copyrights and trademarks. See Licenses for details.