rust/compiler/rustc_errors/src/diagnostic.rs
Esteban Küber 0751e9036a Rework "long type names" printing logic
Make it so more type-system types can be printed in a shortened version (like `Predicate`s).

Centralize printing the information about the "full type name path".

Make the "long type path" for the file where long types are written part of `Diag`, so that it becomes easier to keep track of it, and ensure it will always will be printed out last in the diagnostic by making its addition to the output implicit.

Tweak the shortening of types in "expected/found" labels.

Remove dead file `note.rs`.
2025-01-31 20:39:01 +00:00

1430 lines
49 KiB
Rust

use std::borrow::Cow;
use std::fmt::{self, Debug};
use std::hash::{Hash, Hasher};
use std::marker::PhantomData;
use std::ops::{Deref, DerefMut};
use std::panic;
use std::path::PathBuf;
use std::thread::panicking;
use rustc_data_structures::fx::FxIndexMap;
use rustc_error_messages::{FluentValue, fluent_value_from_str_list_sep_by_and};
use rustc_lint_defs::Applicability;
use rustc_macros::{Decodable, Encodable};
use rustc_span::source_map::Spanned;
use rustc_span::{DUMMY_SP, Span, Symbol};
use tracing::debug;
use crate::snippet::Style;
use crate::{
CodeSuggestion, DiagCtxtHandle, DiagMessage, ErrCode, ErrorGuaranteed, ExplicitBug, Level,
MultiSpan, StashKey, SubdiagMessage, Substitution, SubstitutionPart, SuggestionStyle,
Suggestions,
};
/// Simplified version of `FluentArg` that can implement `Encodable` and `Decodable`. Collection of
/// `DiagArg` are converted to `FluentArgs` (consuming the collection) at the start of diagnostic
/// emission.
pub type DiagArg<'iter> = (&'iter DiagArgName, &'iter DiagArgValue);
/// Name of a diagnostic argument.
pub type DiagArgName = Cow<'static, str>;
/// Simplified version of `FluentValue` that can implement `Encodable` and `Decodable`. Converted
/// to a `FluentValue` by the emitter to be used in diagnostic translation.
#[derive(Clone, Debug, PartialEq, Eq, Hash, Encodable, Decodable)]
pub enum DiagArgValue {
Str(Cow<'static, str>),
// This gets converted to a `FluentNumber`, which is an `f64`. An `i32`
// safely fits in an `f64`. Any integers bigger than that will be converted
// to strings in `into_diag_arg` and stored using the `Str` variant.
Number(i32),
StrListSepByAnd(Vec<Cow<'static, str>>),
}
pub type DiagArgMap = FxIndexMap<DiagArgName, DiagArgValue>;
/// Trait for types that `Diag::emit` can return as a "guarantee" (or "proof")
/// token that the emission happened.
pub trait EmissionGuarantee: Sized {
/// This exists so that bugs and fatal errors can both result in `!` (an
/// abort) when emitted, but have different aborting behaviour.
type EmitResult = Self;
/// Implementation of `Diag::emit`, fully controlled by each `impl` of
/// `EmissionGuarantee`, to make it impossible to create a value of
/// `Self::EmitResult` without actually performing the emission.
#[track_caller]
fn emit_producing_guarantee(diag: Diag<'_, Self>) -> Self::EmitResult;
}
impl EmissionGuarantee for ErrorGuaranteed {
fn emit_producing_guarantee(diag: Diag<'_, Self>) -> Self::EmitResult {
diag.emit_producing_error_guaranteed()
}
}
impl EmissionGuarantee for () {
fn emit_producing_guarantee(diag: Diag<'_, Self>) -> Self::EmitResult {
diag.emit_producing_nothing();
}
}
/// Marker type which enables implementation of `create_bug` and `emit_bug` functions for
/// bug diagnostics.
#[derive(Copy, Clone)]
pub struct BugAbort;
impl EmissionGuarantee for BugAbort {
type EmitResult = !;
fn emit_producing_guarantee(diag: Diag<'_, Self>) -> Self::EmitResult {
diag.emit_producing_nothing();
panic::panic_any(ExplicitBug);
}
}
/// Marker type which enables implementation of `create_fatal` and `emit_fatal` functions for
/// fatal diagnostics.
#[derive(Copy, Clone)]
pub struct FatalAbort;
impl EmissionGuarantee for FatalAbort {
type EmitResult = !;
fn emit_producing_guarantee(diag: Diag<'_, Self>) -> Self::EmitResult {
diag.emit_producing_nothing();
crate::FatalError.raise()
}
}
impl EmissionGuarantee for rustc_span::fatal_error::FatalError {
fn emit_producing_guarantee(diag: Diag<'_, Self>) -> Self::EmitResult {
diag.emit_producing_nothing();
rustc_span::fatal_error::FatalError
}
}
/// Trait implemented by error types. This is rarely implemented manually. Instead, use
/// `#[derive(Diagnostic)]` -- see [rustc_macros::Diagnostic].
///
/// When implemented manually, it should be generic over the emission
/// guarantee, i.e.:
/// ```ignore (fragment)
/// impl<'a, G: EmissionGuarantee> Diagnostic<'a, G> for Foo { ... }
/// ```
/// rather than being specific:
/// ```ignore (fragment)
/// impl<'a> Diagnostic<'a> for Bar { ... } // the default type param is `ErrorGuaranteed`
/// impl<'a> Diagnostic<'a, ()> for Baz { ... }
/// ```
/// There are two reasons for this.
/// - A diagnostic like `Foo` *could* be emitted at any level -- `level` is
/// passed in to `into_diag` from outside. Even if in practice it is
/// always emitted at a single level, we let the diagnostic creation/emission
/// site determine the level (by using `create_err`, `emit_warn`, etc.)
/// rather than the `Diagnostic` impl.
/// - Derived impls are always generic, and it's good for the hand-written
/// impls to be consistent with them.
#[rustc_diagnostic_item = "Diagnostic"]
pub trait Diagnostic<'a, G: EmissionGuarantee = ErrorGuaranteed> {
/// Write out as a diagnostic out of `DiagCtxt`.
#[must_use]
fn into_diag(self, dcx: DiagCtxtHandle<'a>, level: Level) -> Diag<'a, G>;
}
impl<'a, T, G> Diagnostic<'a, G> for Spanned<T>
where
T: Diagnostic<'a, G>,
G: EmissionGuarantee,
{
fn into_diag(self, dcx: DiagCtxtHandle<'a>, level: Level) -> Diag<'a, G> {
self.node.into_diag(dcx, level).with_span(self.span)
}
}
/// Converts a value of a type into a `DiagArg` (typically a field of an `Diag` struct).
/// Implemented as a custom trait rather than `From` so that it is implemented on the type being
/// converted rather than on `DiagArgValue`, which enables types from other `rustc_*` crates to
/// implement this.
pub trait IntoDiagArg {
fn into_diag_arg(self) -> DiagArgValue;
}
impl IntoDiagArg for DiagArgValue {
fn into_diag_arg(self) -> DiagArgValue {
self
}
}
impl From<DiagArgValue> for FluentValue<'static> {
fn from(val: DiagArgValue) -> Self {
match val {
DiagArgValue::Str(s) => From::from(s),
DiagArgValue::Number(n) => From::from(n),
DiagArgValue::StrListSepByAnd(l) => fluent_value_from_str_list_sep_by_and(l),
}
}
}
/// Trait implemented by error types. This should not be implemented manually. Instead, use
/// `#[derive(Subdiagnostic)]` -- see [rustc_macros::Subdiagnostic].
#[rustc_diagnostic_item = "Subdiagnostic"]
pub trait Subdiagnostic
where
Self: Sized,
{
/// Add a subdiagnostic to an existing diagnostic.
fn add_to_diag<G: EmissionGuarantee>(self, diag: &mut Diag<'_, G>) {
self.add_to_diag_with(diag, &|_, m| m);
}
/// Add a subdiagnostic to an existing diagnostic where `f` is invoked on every message used
/// (to optionally perform eager translation).
fn add_to_diag_with<G: EmissionGuarantee, F: SubdiagMessageOp<G>>(
self,
diag: &mut Diag<'_, G>,
f: &F,
);
}
pub trait SubdiagMessageOp<G: EmissionGuarantee> =
Fn(&mut Diag<'_, G>, SubdiagMessage) -> SubdiagMessage;
/// Trait implemented by lint types. This should not be implemented manually. Instead, use
/// `#[derive(LintDiagnostic)]` -- see [rustc_macros::LintDiagnostic].
#[rustc_diagnostic_item = "LintDiagnostic"]
pub trait LintDiagnostic<'a, G: EmissionGuarantee> {
/// Decorate and emit a lint.
fn decorate_lint<'b>(self, diag: &'b mut Diag<'a, G>);
}
#[derive(Clone, Debug, Encodable, Decodable)]
pub(crate) struct DiagLocation {
file: Cow<'static, str>,
line: u32,
col: u32,
}
impl DiagLocation {
#[track_caller]
fn caller() -> Self {
let loc = panic::Location::caller();
DiagLocation { file: loc.file().into(), line: loc.line(), col: loc.column() }
}
}
impl fmt::Display for DiagLocation {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}:{}:{}", self.file, self.line, self.col)
}
}
#[derive(Clone, Debug, PartialEq, Eq, Hash, Encodable, Decodable)]
pub struct IsLint {
/// The lint name.
pub(crate) name: String,
/// Indicates whether this lint should show up in cargo's future breakage report.
has_future_breakage: bool,
}
#[derive(Debug, PartialEq, Eq)]
pub struct DiagStyledString(pub Vec<StringPart>);
impl DiagStyledString {
pub fn new() -> DiagStyledString {
DiagStyledString(vec![])
}
pub fn push_normal<S: Into<String>>(&mut self, t: S) {
self.0.push(StringPart::normal(t));
}
pub fn push_highlighted<S: Into<String>>(&mut self, t: S) {
self.0.push(StringPart::highlighted(t));
}
pub fn push<S: Into<String>>(&mut self, t: S, highlight: bool) {
if highlight {
self.push_highlighted(t);
} else {
self.push_normal(t);
}
}
pub fn normal<S: Into<String>>(t: S) -> DiagStyledString {
DiagStyledString(vec![StringPart::normal(t)])
}
pub fn highlighted<S: Into<String>>(t: S) -> DiagStyledString {
DiagStyledString(vec![StringPart::highlighted(t)])
}
pub fn content(&self) -> String {
self.0.iter().map(|x| x.content.as_str()).collect::<String>()
}
}
#[derive(Debug, PartialEq, Eq)]
pub struct StringPart {
content: String,
style: Style,
}
impl StringPart {
pub fn normal<S: Into<String>>(content: S) -> StringPart {
StringPart { content: content.into(), style: Style::NoStyle }
}
pub fn highlighted<S: Into<String>>(content: S) -> StringPart {
StringPart { content: content.into(), style: Style::Highlight }
}
}
/// The main part of a diagnostic. Note that `Diag`, which wraps this type, is
/// used for most operations, and should be used instead whenever possible.
/// This type should only be used when `Diag`'s lifetime causes difficulties,
/// e.g. when storing diagnostics within `DiagCtxt`.
#[must_use]
#[derive(Clone, Debug, Encodable, Decodable)]
pub struct DiagInner {
// NOTE(eddyb) this is private to disallow arbitrary after-the-fact changes,
// outside of what methods in this crate themselves allow.
pub(crate) level: Level,
pub messages: Vec<(DiagMessage, Style)>,
pub code: Option<ErrCode>,
pub span: MultiSpan,
pub children: Vec<Subdiag>,
pub suggestions: Suggestions,
pub args: DiagArgMap,
/// This is not used for highlighting or rendering any error message. Rather, it can be used
/// as a sort key to sort a buffer of diagnostics. By default, it is the primary span of
/// `span` if there is one. Otherwise, it is `DUMMY_SP`.
pub sort_span: Span,
pub is_lint: Option<IsLint>,
pub long_ty_path: Option<PathBuf>,
/// With `-Ztrack_diagnostics` enabled,
/// we print where in rustc this error was emitted.
pub(crate) emitted_at: DiagLocation,
}
impl DiagInner {
#[track_caller]
pub fn new<M: Into<DiagMessage>>(level: Level, message: M) -> Self {
DiagInner::new_with_messages(level, vec![(message.into(), Style::NoStyle)])
}
#[track_caller]
pub fn new_with_messages(level: Level, messages: Vec<(DiagMessage, Style)>) -> Self {
DiagInner {
level,
messages,
code: None,
span: MultiSpan::new(),
children: vec![],
suggestions: Suggestions::Enabled(vec![]),
args: Default::default(),
sort_span: DUMMY_SP,
is_lint: None,
long_ty_path: None,
emitted_at: DiagLocation::caller(),
}
}
#[inline(always)]
pub fn level(&self) -> Level {
self.level
}
pub fn is_error(&self) -> bool {
match self.level {
Level::Bug | Level::Fatal | Level::Error | Level::DelayedBug => true,
Level::ForceWarning(_)
| Level::Warning
| Level::Note
| Level::OnceNote
| Level::Help
| Level::OnceHelp
| Level::FailureNote
| Level::Allow
| Level::Expect(_) => false,
}
}
/// Indicates whether this diagnostic should show up in cargo's future breakage report.
pub(crate) fn has_future_breakage(&self) -> bool {
matches!(self.is_lint, Some(IsLint { has_future_breakage: true, .. }))
}
pub(crate) fn is_force_warn(&self) -> bool {
match self.level {
Level::ForceWarning(_) => {
assert!(self.is_lint.is_some());
true
}
_ => false,
}
}
// See comment on `Diag::subdiagnostic_message_to_diagnostic_message`.
pub(crate) fn subdiagnostic_message_to_diagnostic_message(
&self,
attr: impl Into<SubdiagMessage>,
) -> DiagMessage {
let msg =
self.messages.iter().map(|(msg, _)| msg).next().expect("diagnostic with no messages");
msg.with_subdiagnostic_message(attr.into())
}
pub(crate) fn sub(
&mut self,
level: Level,
message: impl Into<SubdiagMessage>,
span: MultiSpan,
) {
let sub = Subdiag {
level,
messages: vec![(
self.subdiagnostic_message_to_diagnostic_message(message),
Style::NoStyle,
)],
span,
};
self.children.push(sub);
}
pub(crate) fn arg(&mut self, name: impl Into<DiagArgName>, arg: impl IntoDiagArg) {
self.args.insert(name.into(), arg.into_diag_arg());
}
/// Fields used for Hash, and PartialEq trait.
fn keys(
&self,
) -> (
&Level,
&[(DiagMessage, Style)],
&Option<ErrCode>,
&MultiSpan,
&[Subdiag],
&Suggestions,
Vec<(&DiagArgName, &DiagArgValue)>,
&Option<IsLint>,
) {
(
&self.level,
&self.messages,
&self.code,
&self.span,
&self.children,
&self.suggestions,
self.args.iter().collect(),
// omit self.sort_span
&self.is_lint,
// omit self.emitted_at
)
}
}
impl Hash for DiagInner {
fn hash<H>(&self, state: &mut H)
where
H: Hasher,
{
self.keys().hash(state);
}
}
impl PartialEq for DiagInner {
fn eq(&self, other: &Self) -> bool {
self.keys() == other.keys()
}
}
/// A "sub"-diagnostic attached to a parent diagnostic.
/// For example, a note attached to an error.
#[derive(Clone, Debug, PartialEq, Hash, Encodable, Decodable)]
pub struct Subdiag {
pub level: Level,
pub messages: Vec<(DiagMessage, Style)>,
pub span: MultiSpan,
}
/// Used for emitting structured error messages and other diagnostic information.
/// Wraps a `DiagInner`, adding some useful things.
/// - The `dcx` field, allowing it to (a) emit itself, and (b) do a drop check
/// that it has been emitted or cancelled.
/// - The `EmissionGuarantee`, which determines the type returned from `emit`.
///
/// Each constructed `Diag` must be consumed by a function such as `emit`,
/// `cancel`, `delay_as_bug`, or `into_diag`. A panic occurs if a `Diag`
/// is dropped without being consumed by one of these functions.
///
/// If there is some state in a downstream crate you would like to access in
/// the methods of `Diag` here, consider extending `DiagCtxtFlags`.
#[must_use]
pub struct Diag<'a, G: EmissionGuarantee = ErrorGuaranteed> {
pub dcx: DiagCtxtHandle<'a>,
/// Why the `Option`? It is always `Some` until the `Diag` is consumed via
/// `emit`, `cancel`, etc. At that point it is consumed and replaced with
/// `None`. Then `drop` checks that it is `None`; if not, it panics because
/// a diagnostic was built but not used.
///
/// Why the Box? `DiagInner` is a large type, and `Diag` is often used as a
/// return value, especially within the frequently-used `PResult` type. In
/// theory, return value optimization (RVO) should avoid unnecessary
/// copying. In practice, it does not (at the time of writing).
diag: Option<Box<DiagInner>>,
_marker: PhantomData<G>,
}
// Cloning a `Diag` is a recipe for a diagnostic being emitted twice, which
// would be bad.
impl<G> !Clone for Diag<'_, G> {}
rustc_data_structures::static_assert_size!(Diag<'_, ()>, 3 * std::mem::size_of::<usize>());
impl<G: EmissionGuarantee> Deref for Diag<'_, G> {
type Target = DiagInner;
fn deref(&self) -> &DiagInner {
self.diag.as_ref().unwrap()
}
}
impl<G: EmissionGuarantee> DerefMut for Diag<'_, G> {
fn deref_mut(&mut self) -> &mut DiagInner {
self.diag.as_mut().unwrap()
}
}
impl<G: EmissionGuarantee> Debug for Diag<'_, G> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.diag.fmt(f)
}
}
/// `Diag` impls many `&mut self -> &mut Self` methods. Each one modifies an
/// existing diagnostic, either in a standalone fashion, e.g.
/// `err.code(code);`, or in a chained fashion to make multiple modifications,
/// e.g. `err.code(code).span(span);`.
///
/// This macro creates an equivalent `self -> Self` method, with a `with_`
/// prefix. This can be used in a chained fashion when making a new diagnostic,
/// e.g. `let err = struct_err(msg).with_code(code);`, or emitting a new
/// diagnostic, e.g. `struct_err(msg).with_code(code).emit();`.
///
/// Although the latter method can be used to modify an existing diagnostic,
/// e.g. `err = err.with_code(code);`, this should be avoided because the former
/// method gives shorter code, e.g. `err.code(code);`.
///
/// Note: the `with_` methods are added only when needed. If you want to use
/// one and it's not defined, feel free to add it.
///
/// Note: any doc comments must be within the `with_fn!` call.
macro_rules! with_fn {
{
$with_f:ident,
$(#[$attrs:meta])*
pub fn $f:ident(&mut $self:ident, $($name:ident: $ty:ty),* $(,)?) -> &mut Self {
$($body:tt)*
}
} => {
// The original function.
$(#[$attrs])*
#[doc = concat!("See [`Diag::", stringify!($f), "()`].")]
pub fn $f(&mut $self, $($name: $ty),*) -> &mut Self {
$($body)*
}
// The `with_*` variant.
$(#[$attrs])*
#[doc = concat!("See [`Diag::", stringify!($f), "()`].")]
pub fn $with_f(mut $self, $($name: $ty),*) -> Self {
$self.$f($($name),*);
$self
}
};
}
impl<'a, G: EmissionGuarantee> Diag<'a, G> {
#[rustc_lint_diagnostics]
#[track_caller]
pub fn new(dcx: DiagCtxtHandle<'a>, level: Level, message: impl Into<DiagMessage>) -> Self {
Self::new_diagnostic(dcx, DiagInner::new(level, message))
}
/// Allow moving diagnostics between different error tainting contexts
pub fn with_dcx(mut self, dcx: DiagCtxtHandle<'_>) -> Diag<'_, G> {
Diag { dcx, diag: self.diag.take(), _marker: PhantomData }
}
/// Creates a new `Diag` with an already constructed diagnostic.
#[track_caller]
pub(crate) fn new_diagnostic(dcx: DiagCtxtHandle<'a>, diag: DiagInner) -> Self {
debug!("Created new diagnostic");
Self { dcx, diag: Some(Box::new(diag)), _marker: PhantomData }
}
/// Delay emission of this diagnostic as a bug.
///
/// This can be useful in contexts where an error indicates a bug but
/// typically this only happens when other compilation errors have already
/// happened. In those cases this can be used to defer emission of this
/// diagnostic as a bug in the compiler only if no other errors have been
/// emitted.
///
/// In the meantime, though, callsites are required to deal with the "bug"
/// locally in whichever way makes the most sense.
#[rustc_lint_diagnostics]
#[track_caller]
pub fn downgrade_to_delayed_bug(&mut self) {
assert!(
matches!(self.level, Level::Error | Level::DelayedBug),
"downgrade_to_delayed_bug: cannot downgrade {:?} to DelayedBug: not an error",
self.level
);
self.level = Level::DelayedBug;
}
with_fn! { with_span_label,
/// Appends a labeled span to the diagnostic.
///
/// Labels are used to convey additional context for the diagnostic's primary span. They will
/// be shown together with the original diagnostic's span, *not* with spans added by
/// `span_note`, `span_help`, etc. Therefore, if the primary span is not displayable (because
/// the span is `DUMMY_SP` or the source code isn't found), labels will not be displayed
/// either.
///
/// Implementation-wise, the label span is pushed onto the [`MultiSpan`] that was created when
/// the diagnostic was constructed. However, the label span is *not* considered a
/// ["primary span"][`MultiSpan`]; only the `Span` supplied when creating the diagnostic is
/// primary.
#[rustc_lint_diagnostics]
pub fn span_label(&mut self, span: Span, label: impl Into<SubdiagMessage>) -> &mut Self {
let msg = self.subdiagnostic_message_to_diagnostic_message(label);
self.span.push_span_label(span, msg);
self
} }
with_fn! { with_span_labels,
/// Labels all the given spans with the provided label.
/// See [`Self::span_label()`] for more information.
#[rustc_lint_diagnostics]
pub fn span_labels(&mut self, spans: impl IntoIterator<Item = Span>, label: &str) -> &mut Self {
for span in spans {
self.span_label(span, label.to_string());
}
self
} }
#[rustc_lint_diagnostics]
pub fn replace_span_with(&mut self, after: Span, keep_label: bool) -> &mut Self {
let before = self.span.clone();
self.span(after);
for span_label in before.span_labels() {
if let Some(label) = span_label.label {
if span_label.is_primary && keep_label {
self.span.push_span_label(after, label);
} else {
self.span.push_span_label(span_label.span, label);
}
}
}
self
}
#[rustc_lint_diagnostics]
pub fn note_expected_found(
&mut self,
expected_label: &dyn fmt::Display,
expected: DiagStyledString,
found_label: &dyn fmt::Display,
found: DiagStyledString,
) -> &mut Self {
self.note_expected_found_extra(expected_label, expected, found_label, found, &"", &"")
}
#[rustc_lint_diagnostics]
pub fn note_expected_found_extra(
&mut self,
expected_label: &dyn fmt::Display,
expected: DiagStyledString,
found_label: &dyn fmt::Display,
found: DiagStyledString,
expected_extra: &dyn fmt::Display,
found_extra: &dyn fmt::Display,
) -> &mut Self {
let expected_label = expected_label.to_string();
let expected_label = if expected_label.is_empty() {
"expected".to_string()
} else {
format!("expected {expected_label}")
};
let found_label = found_label.to_string();
let found_label = if found_label.is_empty() {
"found".to_string()
} else {
format!("found {found_label}")
};
let (found_padding, expected_padding) = if expected_label.len() > found_label.len() {
(expected_label.len() - found_label.len(), 0)
} else {
(0, found_label.len() - expected_label.len())
};
let mut msg = vec![StringPart::normal(format!(
"{}{} `",
" ".repeat(expected_padding),
expected_label
))];
msg.extend(expected.0);
msg.push(StringPart::normal(format!("`{expected_extra}\n")));
msg.push(StringPart::normal(format!("{}{} `", " ".repeat(found_padding), found_label)));
msg.extend(found.0);
msg.push(StringPart::normal(format!("`{found_extra}")));
// For now, just attach these as notes.
self.highlighted_note(msg);
self
}
#[rustc_lint_diagnostics]
pub fn note_trait_signature(&mut self, name: Symbol, signature: String) -> &mut Self {
self.highlighted_note(vec![
StringPart::normal(format!("`{name}` from trait: `")),
StringPart::highlighted(signature),
StringPart::normal("`"),
]);
self
}
with_fn! { with_note,
/// Add a note attached to this diagnostic.
#[rustc_lint_diagnostics]
pub fn note(&mut self, msg: impl Into<SubdiagMessage>) -> &mut Self {
self.sub(Level::Note, msg, MultiSpan::new());
self
} }
#[rustc_lint_diagnostics]
pub fn highlighted_note(&mut self, msg: Vec<StringPart>) -> &mut Self {
self.sub_with_highlights(Level::Note, msg, MultiSpan::new());
self
}
#[rustc_lint_diagnostics]
pub fn highlighted_span_note(
&mut self,
span: impl Into<MultiSpan>,
msg: Vec<StringPart>,
) -> &mut Self {
self.sub_with_highlights(Level::Note, msg, span.into());
self
}
/// This is like [`Diag::note()`], but it's only printed once.
#[rustc_lint_diagnostics]
pub fn note_once(&mut self, msg: impl Into<SubdiagMessage>) -> &mut Self {
self.sub(Level::OnceNote, msg, MultiSpan::new());
self
}
with_fn! { with_span_note,
/// Prints the span with a note above it.
/// This is like [`Diag::note()`], but it gets its own span.
#[rustc_lint_diagnostics]
pub fn span_note(
&mut self,
sp: impl Into<MultiSpan>,
msg: impl Into<SubdiagMessage>,
) -> &mut Self {
self.sub(Level::Note, msg, sp.into());
self
} }
/// Prints the span with a note above it.
/// This is like [`Diag::note_once()`], but it gets its own span.
#[rustc_lint_diagnostics]
pub fn span_note_once<S: Into<MultiSpan>>(
&mut self,
sp: S,
msg: impl Into<SubdiagMessage>,
) -> &mut Self {
self.sub(Level::OnceNote, msg, sp.into());
self
}
with_fn! { with_warn,
/// Add a warning attached to this diagnostic.
#[rustc_lint_diagnostics]
pub fn warn(&mut self, msg: impl Into<SubdiagMessage>) -> &mut Self {
self.sub(Level::Warning, msg, MultiSpan::new());
self
} }
/// Prints the span with a warning above it.
/// This is like [`Diag::warn()`], but it gets its own span.
#[rustc_lint_diagnostics]
pub fn span_warn<S: Into<MultiSpan>>(
&mut self,
sp: S,
msg: impl Into<SubdiagMessage>,
) -> &mut Self {
self.sub(Level::Warning, msg, sp.into());
self
}
with_fn! { with_help,
/// Add a help message attached to this diagnostic.
#[rustc_lint_diagnostics]
pub fn help(&mut self, msg: impl Into<SubdiagMessage>) -> &mut Self {
self.sub(Level::Help, msg, MultiSpan::new());
self
} }
/// This is like [`Diag::help()`], but it's only printed once.
#[rustc_lint_diagnostics]
pub fn help_once(&mut self, msg: impl Into<SubdiagMessage>) -> &mut Self {
self.sub(Level::OnceHelp, msg, MultiSpan::new());
self
}
/// Add a help message attached to this diagnostic with a customizable highlighted message.
#[rustc_lint_diagnostics]
pub fn highlighted_help(&mut self, msg: Vec<StringPart>) -> &mut Self {
self.sub_with_highlights(Level::Help, msg, MultiSpan::new());
self
}
/// Add a help message attached to this diagnostic with a customizable highlighted message.
#[rustc_lint_diagnostics]
pub fn highlighted_span_help(
&mut self,
span: impl Into<MultiSpan>,
msg: Vec<StringPart>,
) -> &mut Self {
self.sub_with_highlights(Level::Help, msg, span.into());
self
}
/// Prints the span with some help above it.
/// This is like [`Diag::help()`], but it gets its own span.
#[rustc_lint_diagnostics]
pub fn span_help<S: Into<MultiSpan>>(
&mut self,
sp: S,
msg: impl Into<SubdiagMessage>,
) -> &mut Self {
self.sub(Level::Help, msg, sp.into());
self
}
/// Disallow attaching suggestions to this diagnostic.
/// Any suggestions attached e.g. with the `span_suggestion_*` methods
/// (before and after the call to `disable_suggestions`) will be ignored.
#[rustc_lint_diagnostics]
pub fn disable_suggestions(&mut self) -> &mut Self {
self.suggestions = Suggestions::Disabled;
self
}
/// Prevent new suggestions from being added to this diagnostic.
///
/// Suggestions added before the call to `.seal_suggestions()` will be preserved
/// and new suggestions will be ignored.
#[rustc_lint_diagnostics]
pub fn seal_suggestions(&mut self) -> &mut Self {
if let Suggestions::Enabled(suggestions) = &mut self.suggestions {
let suggestions_slice = std::mem::take(suggestions).into_boxed_slice();
self.suggestions = Suggestions::Sealed(suggestions_slice);
}
self
}
/// Helper for pushing to `self.suggestions`.
///
/// A new suggestion is added if suggestions are enabled for this diagnostic.
/// Otherwise, they are ignored.
#[rustc_lint_diagnostics]
fn push_suggestion(&mut self, suggestion: CodeSuggestion) {
for subst in &suggestion.substitutions {
for part in &subst.parts {
let span = part.span;
let call_site = span.ctxt().outer_expn_data().call_site;
if span.in_derive_expansion() && span.overlaps_or_adjacent(call_site) {
// Ignore if spans is from derive macro.
return;
}
}
}
if let Suggestions::Enabled(suggestions) = &mut self.suggestions {
suggestions.push(suggestion);
}
}
with_fn! { with_multipart_suggestion,
/// Show a suggestion that has multiple parts to it.
/// In other words, multiple changes need to be applied as part of this suggestion.
#[rustc_lint_diagnostics]
pub fn multipart_suggestion(
&mut self,
msg: impl Into<SubdiagMessage>,
suggestion: Vec<(Span, String)>,
applicability: Applicability,
) -> &mut Self {
self.multipart_suggestion_with_style(
msg,
suggestion,
applicability,
SuggestionStyle::ShowCode,
)
} }
/// Show a suggestion that has multiple parts to it, always as its own subdiagnostic.
/// In other words, multiple changes need to be applied as part of this suggestion.
#[rustc_lint_diagnostics]
pub fn multipart_suggestion_verbose(
&mut self,
msg: impl Into<SubdiagMessage>,
suggestion: Vec<(Span, String)>,
applicability: Applicability,
) -> &mut Self {
self.multipart_suggestion_with_style(
msg,
suggestion,
applicability,
SuggestionStyle::ShowAlways,
)
}
/// [`Diag::multipart_suggestion()`] but you can set the [`SuggestionStyle`].
#[rustc_lint_diagnostics]
pub fn multipart_suggestion_with_style(
&mut self,
msg: impl Into<SubdiagMessage>,
mut suggestion: Vec<(Span, String)>,
applicability: Applicability,
style: SuggestionStyle,
) -> &mut Self {
let mut seen = crate::FxHashSet::default();
suggestion.retain(|(span, msg)| seen.insert((span.lo(), span.hi(), msg.clone())));
let parts = suggestion
.into_iter()
.map(|(span, snippet)| SubstitutionPart { snippet, span })
.collect::<Vec<_>>();
assert!(!parts.is_empty());
debug_assert_eq!(
parts.iter().find(|part| part.span.is_empty() && part.snippet.is_empty()),
None,
"Span must not be empty and have no suggestion",
);
debug_assert_eq!(
parts.array_windows().find(|[a, b]| a.span.overlaps(b.span)),
None,
"suggestion must not have overlapping parts",
);
self.push_suggestion(CodeSuggestion {
substitutions: vec![Substitution { parts }],
msg: self.subdiagnostic_message_to_diagnostic_message(msg),
style,
applicability,
});
self
}
/// Prints out a message with for a multipart suggestion without showing the suggested code.
///
/// This is intended to be used for suggestions that are obvious in what the changes need to
/// be from the message, showing the span label inline would be visually unpleasant
/// (marginally overlapping spans or multiline spans) and showing the snippet window wouldn't
/// improve understandability.
#[rustc_lint_diagnostics]
pub fn tool_only_multipart_suggestion(
&mut self,
msg: impl Into<SubdiagMessage>,
suggestion: Vec<(Span, String)>,
applicability: Applicability,
) -> &mut Self {
self.multipart_suggestion_with_style(
msg,
suggestion,
applicability,
SuggestionStyle::CompletelyHidden,
)
}
with_fn! { with_span_suggestion,
/// Prints out a message with a suggested edit of the code.
///
/// In case of short messages and a simple suggestion, rustc displays it as a label:
///
/// ```text
/// try adding parentheses: `(tup.0).1`
/// ```
///
/// The message
///
/// * should not end in any punctuation (a `:` is added automatically)
/// * should not be a question (avoid language like "did you mean")
/// * should not contain any phrases like "the following", "as shown", etc.
/// * may look like "to do xyz, use" or "to do xyz, use abc"
/// * may contain a name of a function, variable, or type, but not whole expressions
///
/// See `CodeSuggestion` for more information.
#[rustc_lint_diagnostics]
pub fn span_suggestion(
&mut self,
sp: Span,
msg: impl Into<SubdiagMessage>,
suggestion: impl ToString,
applicability: Applicability,
) -> &mut Self {
self.span_suggestion_with_style(
sp,
msg,
suggestion,
applicability,
SuggestionStyle::ShowCode,
);
self
} }
/// [`Diag::span_suggestion()`] but you can set the [`SuggestionStyle`].
#[rustc_lint_diagnostics]
pub fn span_suggestion_with_style(
&mut self,
sp: Span,
msg: impl Into<SubdiagMessage>,
suggestion: impl ToString,
applicability: Applicability,
style: SuggestionStyle,
) -> &mut Self {
debug_assert!(
!(sp.is_empty() && suggestion.to_string().is_empty()),
"Span must not be empty and have no suggestion"
);
self.push_suggestion(CodeSuggestion {
substitutions: vec![Substitution {
parts: vec![SubstitutionPart { snippet: suggestion.to_string(), span: sp }],
}],
msg: self.subdiagnostic_message_to_diagnostic_message(msg),
style,
applicability,
});
self
}
with_fn! { with_span_suggestion_verbose,
/// Always show the suggested change.
#[rustc_lint_diagnostics]
pub fn span_suggestion_verbose(
&mut self,
sp: Span,
msg: impl Into<SubdiagMessage>,
suggestion: impl ToString,
applicability: Applicability,
) -> &mut Self {
self.span_suggestion_with_style(
sp,
msg,
suggestion,
applicability,
SuggestionStyle::ShowAlways,
);
self
} }
with_fn! { with_span_suggestions,
/// Prints out a message with multiple suggested edits of the code.
/// See also [`Diag::span_suggestion()`].
#[rustc_lint_diagnostics]
pub fn span_suggestions(
&mut self,
sp: Span,
msg: impl Into<SubdiagMessage>,
suggestions: impl IntoIterator<Item = String>,
applicability: Applicability,
) -> &mut Self {
self.span_suggestions_with_style(
sp,
msg,
suggestions,
applicability,
SuggestionStyle::ShowCode,
)
} }
#[rustc_lint_diagnostics]
pub fn span_suggestions_with_style(
&mut self,
sp: Span,
msg: impl Into<SubdiagMessage>,
suggestions: impl IntoIterator<Item = String>,
applicability: Applicability,
style: SuggestionStyle,
) -> &mut Self {
let substitutions = suggestions
.into_iter()
.map(|snippet| {
debug_assert!(
!(sp.is_empty() && snippet.is_empty()),
"Span must not be empty and have no suggestion"
);
Substitution { parts: vec![SubstitutionPart { snippet, span: sp }] }
})
.collect();
self.push_suggestion(CodeSuggestion {
substitutions,
msg: self.subdiagnostic_message_to_diagnostic_message(msg),
style,
applicability,
});
self
}
/// Prints out a message with multiple suggested edits of the code, where each edit consists of
/// multiple parts.
/// See also [`Diag::multipart_suggestion()`].
#[rustc_lint_diagnostics]
pub fn multipart_suggestions(
&mut self,
msg: impl Into<SubdiagMessage>,
suggestions: impl IntoIterator<Item = Vec<(Span, String)>>,
applicability: Applicability,
) -> &mut Self {
let substitutions = suggestions
.into_iter()
.map(|sugg| {
let mut parts = sugg
.into_iter()
.map(|(span, snippet)| SubstitutionPart { snippet, span })
.collect::<Vec<_>>();
parts.sort_unstable_by_key(|part| part.span);
assert!(!parts.is_empty());
debug_assert_eq!(
parts.iter().find(|part| part.span.is_empty() && part.snippet.is_empty()),
None,
"Span must not be empty and have no suggestion",
);
debug_assert_eq!(
parts.array_windows().find(|[a, b]| a.span.overlaps(b.span)),
None,
"suggestion must not have overlapping parts",
);
Substitution { parts }
})
.collect();
self.push_suggestion(CodeSuggestion {
substitutions,
msg: self.subdiagnostic_message_to_diagnostic_message(msg),
style: SuggestionStyle::ShowCode,
applicability,
});
self
}
with_fn! { with_span_suggestion_short,
/// Prints out a message with a suggested edit of the code. If the suggestion is presented
/// inline, it will only show the message and not the suggestion.
///
/// See `CodeSuggestion` for more information.
#[rustc_lint_diagnostics]
pub fn span_suggestion_short(
&mut self,
sp: Span,
msg: impl Into<SubdiagMessage>,
suggestion: impl ToString,
applicability: Applicability,
) -> &mut Self {
self.span_suggestion_with_style(
sp,
msg,
suggestion,
applicability,
SuggestionStyle::HideCodeInline,
);
self
} }
/// Prints out a message for a suggestion without showing the suggested code.
///
/// This is intended to be used for suggestions that are obvious in what the changes need to
/// be from the message, showing the span label inline would be visually unpleasant
/// (marginally overlapping spans or multiline spans) and showing the snippet window wouldn't
/// improve understandability.
#[rustc_lint_diagnostics]
pub fn span_suggestion_hidden(
&mut self,
sp: Span,
msg: impl Into<SubdiagMessage>,
suggestion: impl ToString,
applicability: Applicability,
) -> &mut Self {
self.span_suggestion_with_style(
sp,
msg,
suggestion,
applicability,
SuggestionStyle::HideCodeAlways,
);
self
}
with_fn! { with_tool_only_span_suggestion,
/// Adds a suggestion to the JSON output that will not be shown in the CLI.
///
/// This is intended to be used for suggestions that are *very* obvious in what the changes
/// need to be from the message, but we still want other tools to be able to apply them.
#[rustc_lint_diagnostics]
pub fn tool_only_span_suggestion(
&mut self,
sp: Span,
msg: impl Into<SubdiagMessage>,
suggestion: impl ToString,
applicability: Applicability,
) -> &mut Self {
self.span_suggestion_with_style(
sp,
msg,
suggestion,
applicability,
SuggestionStyle::CompletelyHidden,
);
self
} }
/// Add a subdiagnostic from a type that implements `Subdiagnostic` (see
/// [rustc_macros::Subdiagnostic]). Performs eager translation of any translatable messages
/// used in the subdiagnostic, so suitable for use with repeated messages (i.e. re-use of
/// interpolated variables).
#[rustc_lint_diagnostics]
pub fn subdiagnostic(&mut self, subdiagnostic: impl Subdiagnostic) -> &mut Self {
let dcx = self.dcx;
subdiagnostic.add_to_diag_with(self, &|diag, msg| {
let args = diag.args.iter();
let msg = diag.subdiagnostic_message_to_diagnostic_message(msg);
dcx.eagerly_translate(msg, args)
});
self
}
with_fn! { with_span,
/// Add a span.
#[rustc_lint_diagnostics]
pub fn span(&mut self, sp: impl Into<MultiSpan>) -> &mut Self {
self.span = sp.into();
if let Some(span) = self.span.primary_span() {
self.sort_span = span;
}
self
} }
#[rustc_lint_diagnostics]
pub fn is_lint(&mut self, name: String, has_future_breakage: bool) -> &mut Self {
self.is_lint = Some(IsLint { name, has_future_breakage });
self
}
with_fn! { with_code,
/// Add an error code.
#[rustc_lint_diagnostics]
pub fn code(&mut self, code: ErrCode) -> &mut Self {
self.code = Some(code);
self
} }
with_fn! { with_primary_message,
/// Add a primary message.
#[rustc_lint_diagnostics]
pub fn primary_message(&mut self, msg: impl Into<DiagMessage>) -> &mut Self {
self.messages[0] = (msg.into(), Style::NoStyle);
self
} }
with_fn! { with_arg,
/// Add an argument.
#[rustc_lint_diagnostics]
pub fn arg(
&mut self,
name: impl Into<DiagArgName>,
arg: impl IntoDiagArg,
) -> &mut Self {
self.deref_mut().arg(name, arg);
self
} }
/// Helper function that takes a `SubdiagMessage` and returns a `DiagMessage` by
/// combining it with the primary message of the diagnostic (if translatable, otherwise it just
/// passes the user's string along).
pub(crate) fn subdiagnostic_message_to_diagnostic_message(
&self,
attr: impl Into<SubdiagMessage>,
) -> DiagMessage {
self.deref().subdiagnostic_message_to_diagnostic_message(attr)
}
/// Convenience function for internal use, clients should use one of the
/// public methods above.
///
/// Used by `proc_macro_server` for implementing `server::Diagnostic`.
pub fn sub(&mut self, level: Level, message: impl Into<SubdiagMessage>, span: MultiSpan) {
self.deref_mut().sub(level, message, span);
}
/// Convenience function for internal use, clients should use one of the
/// public methods above.
fn sub_with_highlights(&mut self, level: Level, messages: Vec<StringPart>, span: MultiSpan) {
let messages = messages
.into_iter()
.map(|m| (self.subdiagnostic_message_to_diagnostic_message(m.content), m.style))
.collect();
let sub = Subdiag { level, messages, span };
self.children.push(sub);
}
/// Takes the diagnostic. For use by methods that consume the Diag: `emit`,
/// `cancel`, etc. Afterwards, `drop` is the only code that will be run on
/// `self`.
fn take_diag(&mut self) -> DiagInner {
if let Some(path) = &self.long_ty_path {
self.note(format!(
"the full name for the type has been written to '{}'",
path.display()
));
self.note("consider using `--verbose` to print the full type name to the console");
}
Box::into_inner(self.diag.take().unwrap())
}
/// This method allows us to access the path of the file where "long types" are written to.
///
/// When calling `Diag::emit`, as part of that we will check if a `long_ty_path` has been set,
/// and if it has been then we add a note mentioning the file where the "long types" were
/// written to.
///
/// When calling `tcx.short_string()` after a `Diag` is constructed, the preferred way of doing
/// so is `tcx.short_string(ty, diag.long_ty_path())`. The diagnostic itself is the one that
/// keeps the existence of a "long type" anywhere in the diagnostic, so the note telling the
/// user where we wrote the file to is only printed once at most, *and* it makes it much harder
/// to forget to set it.
///
/// If the diagnostic hasn't been created before a "short ty string" is created, then you should
/// ensure that this method is called to set it `*diag.long_ty_path() = path`.
///
/// As a rule of thumb, if you see or add at least one `tcx.short_string()` call anywhere, in a
/// scope, `diag.long_ty_path()` should be called once somewhere close by.
pub fn long_ty_path(&mut self) -> &mut Option<PathBuf> {
&mut self.long_ty_path
}
/// Most `emit_producing_guarantee` functions use this as a starting point.
fn emit_producing_nothing(mut self) {
let diag = self.take_diag();
self.dcx.emit_diagnostic(diag);
}
/// `ErrorGuaranteed::emit_producing_guarantee` uses this.
fn emit_producing_error_guaranteed(mut self) -> ErrorGuaranteed {
let diag = self.take_diag();
// The only error levels that produce `ErrorGuaranteed` are
// `Error` and `DelayedBug`. But `DelayedBug` should never occur here
// because delayed bugs have their level changed to `Bug` when they are
// actually printed, so they produce an ICE.
//
// (Also, even though `level` isn't `pub`, the whole `DiagInner` could
// be overwritten with a new one thanks to `DerefMut`. So this assert
// protects against that, too.)
assert!(
matches!(diag.level, Level::Error | Level::DelayedBug),
"invalid diagnostic level ({:?})",
diag.level,
);
let guar = self.dcx.emit_diagnostic(diag);
guar.unwrap()
}
/// Emit and consume the diagnostic.
#[track_caller]
pub fn emit(self) -> G::EmitResult {
G::emit_producing_guarantee(self)
}
/// Emit the diagnostic unless `delay` is true,
/// in which case the emission will be delayed as a bug.
///
/// See `emit` and `delay_as_bug` for details.
#[track_caller]
pub fn emit_unless(mut self, delay: bool) -> G::EmitResult {
if delay {
self.downgrade_to_delayed_bug();
}
self.emit()
}
/// Cancel and consume the diagnostic. (A diagnostic must either be emitted or
/// cancelled or it will panic when dropped).
pub fn cancel(mut self) {
self.diag = None;
drop(self);
}
/// See `DiagCtxt::stash_diagnostic` for details.
pub fn stash(mut self, span: Span, key: StashKey) -> Option<ErrorGuaranteed> {
let diag = self.take_diag();
self.dcx.stash_diagnostic(span, key, diag)
}
/// Delay emission of this diagnostic as a bug.
///
/// This can be useful in contexts where an error indicates a bug but
/// typically this only happens when other compilation errors have already
/// happened. In those cases this can be used to defer emission of this
/// diagnostic as a bug in the compiler only if no other errors have been
/// emitted.
///
/// In the meantime, though, callsites are required to deal with the "bug"
/// locally in whichever way makes the most sense.
#[track_caller]
pub fn delay_as_bug(mut self) -> G::EmitResult {
self.downgrade_to_delayed_bug();
self.emit()
}
}
/// Destructor bomb: every `Diag` must be consumed (emitted, cancelled, etc.)
/// or we emit a bug.
impl<G: EmissionGuarantee> Drop for Diag<'_, G> {
fn drop(&mut self) {
match self.diag.take() {
Some(diag) if !panicking() => {
self.dcx.emit_diagnostic(DiagInner::new(
Level::Bug,
DiagMessage::from("the following error was constructed but not emitted"),
));
self.dcx.emit_diagnostic(*diag);
panic!("error was constructed but not emitted");
}
_ => {}
}
}
}
#[macro_export]
macro_rules! struct_span_code_err {
($dcx:expr, $span:expr, $code:expr, $($message:tt)*) => ({
$dcx.struct_span_err($span, format!($($message)*)).with_code($code)
})
}