use crate::convert::TryInto; use crate::fmt; use crate::io::{self, Error, ErrorKind}; use crate::ptr; use crate::sys; use crate::sys::cvt; use crate::sys::process::process_common::*; #[cfg(target_os = "vxworks")] use libc::RTP_ID as pid_t; #[cfg(not(target_os = "vxworks"))] use libc::{c_int, gid_t, pid_t, uid_t}; //////////////////////////////////////////////////////////////////////////////// // Command //////////////////////////////////////////////////////////////////////////////// impl Command { pub fn spawn( &mut self, default: Stdio, needs_stdin: bool, ) -> io::Result<(Process, StdioPipes)> { const CLOEXEC_MSG_FOOTER: [u8; 4] = *b"NOEX"; let envp = self.capture_env(); if self.saw_nul() { return Err(io::Error::new(ErrorKind::InvalidInput, "nul byte found in provided data")); } let (ours, theirs) = self.setup_io(default, needs_stdin)?; if let Some(ret) = self.posix_spawn(&theirs, envp.as_ref())? { return Ok((ret, ours)); } let (input, output) = sys::pipe::anon_pipe()?; // Whatever happens after the fork is almost for sure going to touch or // look at the environment in one way or another (PATH in `execvp` or // accessing the `environ` pointer ourselves). Make sure no other thread // is accessing the environment when we do the fork itself. // // Note that as soon as we're done with the fork there's no need to hold // a lock any more because the parent won't do anything and the child is // in its own process. let result = unsafe { let _env_lock = sys::os::env_read_lock(); cvt(libc::fork())? }; let pid = unsafe { match result { 0 => { drop(input); let Err(err) = self.do_exec(theirs, envp.as_ref()); let errno = err.raw_os_error().unwrap_or(libc::EINVAL) as u32; let errno = errno.to_be_bytes(); let bytes = [ errno[0], errno[1], errno[2], errno[3], CLOEXEC_MSG_FOOTER[0], CLOEXEC_MSG_FOOTER[1], CLOEXEC_MSG_FOOTER[2], CLOEXEC_MSG_FOOTER[3], ]; // pipe I/O up to PIPE_BUF bytes should be atomic, and then // we want to be sure we *don't* run at_exit destructors as // we're being torn down regardless rtassert!(output.write(&bytes).is_ok()); libc::_exit(1) } n => n, } }; let mut p = Process { pid, status: None }; drop(output); let mut bytes = [0; 8]; // loop to handle EINTR loop { match input.read(&mut bytes) { Ok(0) => return Ok((p, ours)), Ok(8) => { let (errno, footer) = bytes.split_at(4); assert_eq!( CLOEXEC_MSG_FOOTER, footer, "Validation on the CLOEXEC pipe failed: {:?}", bytes ); let errno = i32::from_be_bytes(errno.try_into().unwrap()); assert!(p.wait().is_ok(), "wait() should either return Ok or panic"); return Err(Error::from_raw_os_error(errno)); } Err(ref e) if e.kind() == ErrorKind::Interrupted => {} Err(e) => { assert!(p.wait().is_ok(), "wait() should either return Ok or panic"); panic!("the CLOEXEC pipe failed: {:?}", e) } Ok(..) => { // pipe I/O up to PIPE_BUF bytes should be atomic assert!(p.wait().is_ok(), "wait() should either return Ok or panic"); panic!("short read on the CLOEXEC pipe") } } } } pub fn exec(&mut self, default: Stdio) -> io::Error { let envp = self.capture_env(); if self.saw_nul() { return io::Error::new(ErrorKind::InvalidInput, "nul byte found in provided data"); } match self.setup_io(default, true) { Ok((_, theirs)) => { unsafe { // Similar to when forking, we want to ensure that access to // the environment is synchronized, so make sure to grab the // environment lock before we try to exec. let _lock = sys::os::env_read_lock(); let Err(e) = self.do_exec(theirs, envp.as_ref()); e } } Err(e) => e, } } // And at this point we've reached a special time in the life of the // child. The child must now be considered hamstrung and unable to // do anything other than syscalls really. Consider the following // scenario: // // 1. Thread A of process 1 grabs the malloc() mutex // 2. Thread B of process 1 forks(), creating thread C // 3. Thread C of process 2 then attempts to malloc() // 4. The memory of process 2 is the same as the memory of // process 1, so the mutex is locked. // // This situation looks a lot like deadlock, right? It turns out // that this is what pthread_atfork() takes care of, which is // presumably implemented across platforms. The first thing that // threads to *before* forking is to do things like grab the malloc // mutex, and then after the fork they unlock it. // // Despite this information, libnative's spawn has been witnessed to // deadlock on both macOS and FreeBSD. I'm not entirely sure why, but // all collected backtraces point at malloc/free traffic in the // child spawned process. // // For this reason, the block of code below should contain 0 // invocations of either malloc of free (or their related friends). // // As an example of not having malloc/free traffic, we don't close // this file descriptor by dropping the FileDesc (which contains an // allocation). Instead we just close it manually. This will never // have the drop glue anyway because this code never returns (the // child will either exec() or invoke libc::exit) unsafe fn do_exec( &mut self, stdio: ChildPipes, maybe_envp: Option<&CStringArray>, ) -> Result { use crate::sys::{self, cvt_r}; if let Some(fd) = stdio.stdin.fd() { cvt_r(|| libc::dup2(fd, libc::STDIN_FILENO))?; } if let Some(fd) = stdio.stdout.fd() { cvt_r(|| libc::dup2(fd, libc::STDOUT_FILENO))?; } if let Some(fd) = stdio.stderr.fd() { cvt_r(|| libc::dup2(fd, libc::STDERR_FILENO))?; } #[cfg(not(target_os = "l4re"))] { if let Some(_g) = self.get_groups() { //FIXME: Redox kernel does not support setgroups yet #[cfg(not(target_os = "redox"))] cvt(libc::setgroups(_g.len().try_into().unwrap(), _g.as_ptr()))?; } if let Some(u) = self.get_gid() { cvt(libc::setgid(u as gid_t))?; } if let Some(u) = self.get_uid() { // When dropping privileges from root, the `setgroups` call // will remove any extraneous groups. We only drop groups // if the current uid is 0 and we weren't given an explicit // set of groups. If we don't call this, then even though our // uid has dropped, we may still have groups that enable us to // do super-user things. //FIXME: Redox kernel does not support setgroups yet #[cfg(not(target_os = "redox"))] if libc::getuid() == 0 && self.get_groups().is_none() { cvt(libc::setgroups(0, ptr::null()))?; } cvt(libc::setuid(u as uid_t))?; } } if let Some(ref cwd) = *self.get_cwd() { cvt(libc::chdir(cwd.as_ptr()))?; } // emscripten has no signal support. #[cfg(not(target_os = "emscripten"))] { use crate::mem::MaybeUninit; // Reset signal handling so the child process starts in a // standardized state. libstd ignores SIGPIPE, and signal-handling // libraries often set a mask. Child processes inherit ignored // signals and the signal mask from their parent, but most // UNIX programs do not reset these things on their own, so we // need to clean things up now to avoid confusing the program // we're about to run. let mut set = MaybeUninit::::uninit(); cvt(sigemptyset(set.as_mut_ptr()))?; cvt(libc::pthread_sigmask(libc::SIG_SETMASK, set.as_ptr(), ptr::null_mut()))?; let ret = sys::signal(libc::SIGPIPE, libc::SIG_DFL); if ret == libc::SIG_ERR { return Err(io::Error::last_os_error()); } } for callback in self.get_closures().iter_mut() { callback()?; } // Although we're performing an exec here we may also return with an // error from this function (without actually exec'ing) in which case we // want to be sure to restore the global environment back to what it // once was, ensuring that our temporary override, when free'd, doesn't // corrupt our process's environment. let mut _reset = None; if let Some(envp) = maybe_envp { struct Reset(*const *const libc::c_char); impl Drop for Reset { fn drop(&mut self) { unsafe { *sys::os::environ() = self.0; } } } _reset = Some(Reset(*sys::os::environ())); *sys::os::environ() = envp.as_ptr(); } libc::execvp(self.get_program_cstr().as_ptr(), self.get_argv().as_ptr()); Err(io::Error::last_os_error()) } #[cfg(not(any( target_os = "macos", target_os = "freebsd", all(target_os = "linux", target_env = "gnu"), all(target_os = "linux", target_env = "musl"), )))] fn posix_spawn( &mut self, _: &ChildPipes, _: Option<&CStringArray>, ) -> io::Result> { Ok(None) } // Only support platforms for which posix_spawn() can return ENOENT // directly. #[cfg(any( target_os = "macos", target_os = "freebsd", all(target_os = "linux", target_env = "gnu"), all(target_os = "linux", target_env = "musl"), ))] fn posix_spawn( &mut self, stdio: &ChildPipes, envp: Option<&CStringArray>, ) -> io::Result> { use crate::mem::MaybeUninit; use crate::sys::{self, cvt_nz}; if self.get_gid().is_some() || self.get_uid().is_some() || (self.env_saw_path() && !self.program_is_path()) || !self.get_closures().is_empty() || self.get_groups().is_some() { return Ok(None); } // Only glibc 2.24+ posix_spawn() supports returning ENOENT directly. #[cfg(all(target_os = "linux", target_env = "gnu"))] { if let Some(version) = sys::os::glibc_version() { if version < (2, 24) { return Ok(None); } } else { return Ok(None); } } // Solaris, glibc 2.29+, and musl 1.24+ can set a new working directory, // and maybe others will gain this non-POSIX function too. We'll check // for this weak symbol as soon as it's needed, so we can return early // otherwise to do a manual chdir before exec. weak! { fn posix_spawn_file_actions_addchdir_np( *mut libc::posix_spawn_file_actions_t, *const libc::c_char ) -> libc::c_int } let addchdir = match self.get_cwd() { Some(cwd) => { if cfg!(target_os = "macos") { // There is a bug in macOS where a relative executable // path like "../myprogram" will cause `posix_spawn` to // successfully launch the program, but erroneously return // ENOENT when used with posix_spawn_file_actions_addchdir_np // which was introduced in macOS 10.15. return Ok(None); } match posix_spawn_file_actions_addchdir_np.get() { Some(f) => Some((f, cwd)), None => return Ok(None), } } None => None, }; let mut p = Process { pid: 0, status: None }; struct PosixSpawnFileActions<'a>(&'a mut MaybeUninit); impl Drop for PosixSpawnFileActions<'_> { fn drop(&mut self) { unsafe { libc::posix_spawn_file_actions_destroy(self.0.as_mut_ptr()); } } } struct PosixSpawnattr<'a>(&'a mut MaybeUninit); impl Drop for PosixSpawnattr<'_> { fn drop(&mut self) { unsafe { libc::posix_spawnattr_destroy(self.0.as_mut_ptr()); } } } unsafe { let mut attrs = MaybeUninit::uninit(); cvt_nz(libc::posix_spawnattr_init(attrs.as_mut_ptr()))?; let attrs = PosixSpawnattr(&mut attrs); let mut file_actions = MaybeUninit::uninit(); cvt_nz(libc::posix_spawn_file_actions_init(file_actions.as_mut_ptr()))?; let file_actions = PosixSpawnFileActions(&mut file_actions); if let Some(fd) = stdio.stdin.fd() { cvt_nz(libc::posix_spawn_file_actions_adddup2( file_actions.0.as_mut_ptr(), fd, libc::STDIN_FILENO, ))?; } if let Some(fd) = stdio.stdout.fd() { cvt_nz(libc::posix_spawn_file_actions_adddup2( file_actions.0.as_mut_ptr(), fd, libc::STDOUT_FILENO, ))?; } if let Some(fd) = stdio.stderr.fd() { cvt_nz(libc::posix_spawn_file_actions_adddup2( file_actions.0.as_mut_ptr(), fd, libc::STDERR_FILENO, ))?; } if let Some((f, cwd)) = addchdir { cvt_nz(f(file_actions.0.as_mut_ptr(), cwd.as_ptr()))?; } let mut set = MaybeUninit::::uninit(); cvt(sigemptyset(set.as_mut_ptr()))?; cvt_nz(libc::posix_spawnattr_setsigmask(attrs.0.as_mut_ptr(), set.as_ptr()))?; cvt(sigaddset(set.as_mut_ptr(), libc::SIGPIPE))?; cvt_nz(libc::posix_spawnattr_setsigdefault(attrs.0.as_mut_ptr(), set.as_ptr()))?; let flags = libc::POSIX_SPAWN_SETSIGDEF | libc::POSIX_SPAWN_SETSIGMASK; cvt_nz(libc::posix_spawnattr_setflags(attrs.0.as_mut_ptr(), flags as _))?; // Make sure we synchronize access to the global `environ` resource let _env_lock = sys::os::env_read_lock(); let envp = envp.map(|c| c.as_ptr()).unwrap_or_else(|| *sys::os::environ() as *const _); cvt_nz(libc::posix_spawnp( &mut p.pid, self.get_program_cstr().as_ptr(), file_actions.0.as_ptr(), attrs.0.as_ptr(), self.get_argv().as_ptr() as *const _, envp as *const _, ))?; Ok(Some(p)) } } } //////////////////////////////////////////////////////////////////////////////// // Processes //////////////////////////////////////////////////////////////////////////////// /// The unique ID of the process (this should never be negative). pub struct Process { pid: pid_t, status: Option, } impl Process { pub fn id(&self) -> u32 { self.pid as u32 } pub fn kill(&mut self) -> io::Result<()> { // If we've already waited on this process then the pid can be recycled // and used for another process, and we probably shouldn't be killing // random processes, so just return an error. if self.status.is_some() { Err(Error::new( ErrorKind::InvalidInput, "invalid argument: can't kill an exited process", )) } else { cvt(unsafe { libc::kill(self.pid, libc::SIGKILL) }).map(drop) } } pub fn wait(&mut self) -> io::Result { use crate::sys::cvt_r; if let Some(status) = self.status { return Ok(status); } let mut status = 0 as c_int; cvt_r(|| unsafe { libc::waitpid(self.pid, &mut status, 0) })?; self.status = Some(ExitStatus::new(status)); Ok(ExitStatus::new(status)) } pub fn try_wait(&mut self) -> io::Result> { if let Some(status) = self.status { return Ok(Some(status)); } let mut status = 0 as c_int; let pid = cvt(unsafe { libc::waitpid(self.pid, &mut status, libc::WNOHANG) })?; if pid == 0 { Ok(None) } else { self.status = Some(ExitStatus::new(status)); Ok(Some(ExitStatus::new(status))) } } } /// Unix exit statuses #[derive(PartialEq, Eq, Clone, Copy, Debug)] pub struct ExitStatus(c_int); impl ExitStatus { pub fn new(status: c_int) -> ExitStatus { ExitStatus(status) } fn exited(&self) -> bool { libc::WIFEXITED(self.0) } pub fn success(&self) -> bool { self.code() == Some(0) } pub fn code(&self) -> Option { if self.exited() { Some(libc::WEXITSTATUS(self.0)) } else { None } } pub fn signal(&self) -> Option { if libc::WIFSIGNALED(self.0) { Some(libc::WTERMSIG(self.0)) } else { None } } pub fn core_dumped(&self) -> bool { libc::WIFSIGNALED(self.0) && libc::WCOREDUMP(self.0) } pub fn stopped_signal(&self) -> Option { if libc::WIFSTOPPED(self.0) { Some(libc::WSTOPSIG(self.0)) } else { None } } pub fn continued(&self) -> bool { libc::WIFCONTINUED(self.0) } pub fn into_raw(&self) -> c_int { self.0 } } /// Converts a raw `c_int` to a type-safe `ExitStatus` by wrapping it without copying. impl From for ExitStatus { fn from(a: c_int) -> ExitStatus { ExitStatus(a) } } impl fmt::Display for ExitStatus { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { if let Some(code) = self.code() { write!(f, "exit code: {}", code) } else if let Some(signal) = self.signal() { if self.core_dumped() { write!(f, "signal: {} (core dumped)", signal) } else { write!(f, "signal: {}", signal) } } else if let Some(signal) = self.stopped_signal() { write!(f, "stopped (not terminated) by signal: {}", signal) } else if self.continued() { write!(f, "continued (WIFCONTINUED)") } else { write!(f, "unrecognised wait status: {} {:#x}", self.0, self.0) } } }