pub(super) mod query; mod counters; mod graph; mod mappings; mod spans; #[cfg(test)] mod tests; mod unexpand; use rustc_hir as hir; use rustc_hir::intravisit::{Visitor, walk_expr}; use rustc_middle::hir::map::Map; use rustc_middle::hir::nested_filter; use rustc_middle::mir::coverage::{ CoverageKind, DecisionInfo, FunctionCoverageInfo, Mapping, MappingKind, }; use rustc_middle::mir::{self, BasicBlock, Statement, StatementKind, TerminatorKind}; use rustc_middle::ty::TyCtxt; use rustc_span::Span; use rustc_span::def_id::LocalDefId; use tracing::{debug, debug_span, trace}; use crate::coverage::counters::BcbCountersData; use crate::coverage::graph::CoverageGraph; use crate::coverage::mappings::ExtractedMappings; /// Inserts `StatementKind::Coverage` statements that either instrument the binary with injected /// counters, via intrinsic `llvm.instrprof.increment`, and/or inject metadata used during codegen /// to construct the coverage map. pub(super) struct InstrumentCoverage; impl<'tcx> crate::MirPass<'tcx> for InstrumentCoverage { fn is_enabled(&self, sess: &rustc_session::Session) -> bool { sess.instrument_coverage() } fn run_pass(&self, tcx: TyCtxt<'tcx>, mir_body: &mut mir::Body<'tcx>) { let mir_source = mir_body.source; // This pass runs after MIR promotion, but before promoted MIR starts to // be transformed, so it should never see promoted MIR. assert!(mir_source.promoted.is_none()); let def_id = mir_source.def_id().expect_local(); if !tcx.is_eligible_for_coverage(def_id) { trace!("InstrumentCoverage skipped for {def_id:?} (not eligible)"); return; } // An otherwise-eligible function is still skipped if its start block // is known to be unreachable. match mir_body.basic_blocks[mir::START_BLOCK].terminator().kind { TerminatorKind::Unreachable => { trace!("InstrumentCoverage skipped for unreachable `START_BLOCK`"); return; } _ => {} } instrument_function_for_coverage(tcx, mir_body); } fn is_required(&self) -> bool { false } } fn instrument_function_for_coverage<'tcx>(tcx: TyCtxt<'tcx>, mir_body: &mut mir::Body<'tcx>) { let def_id = mir_body.source.def_id(); let _span = debug_span!("instrument_function_for_coverage", ?def_id).entered(); let hir_info = extract_hir_info(tcx, def_id.expect_local()); // Build the coverage graph, which is a simplified view of the MIR control-flow // graph that ignores some details not relevant to coverage instrumentation. let graph = CoverageGraph::from_mir(mir_body); //////////////////////////////////////////////////// // Extract coverage spans and other mapping info from MIR. let extracted_mappings = mappings::extract_all_mapping_info_from_mir(tcx, mir_body, &hir_info, &graph); let mappings = create_mappings(&extracted_mappings); if mappings.is_empty() { // No spans could be converted into valid mappings, so skip this function. debug!("no spans could be converted into valid mappings; skipping"); return; } // Use the coverage graph to prepare intermediate data that will eventually // be used to assign physical counters and counter expressions to points in // the control-flow graph let BcbCountersData { node_flow_data, priority_list } = counters::prepare_bcb_counters_data(&graph); // Inject coverage statements into MIR. inject_coverage_statements(mir_body, &graph); inject_mcdc_statements(mir_body, &graph, &extracted_mappings); let mcdc_num_condition_bitmaps = extracted_mappings .mcdc_mappings .iter() .map(|&(mappings::MCDCDecision { decision_depth, .. }, _)| decision_depth) .max() .map_or(0, |max| usize::from(max) + 1); mir_body.function_coverage_info = Some(Box::new(FunctionCoverageInfo { function_source_hash: hir_info.function_source_hash, body_span: hir_info.body_span, node_flow_data, priority_list, mappings, mcdc_bitmap_bits: extracted_mappings.mcdc_bitmap_bits, mcdc_num_condition_bitmaps, })); } /// For each coverage span extracted from MIR, create a corresponding mapping. /// /// FIXME(Zalathar): This used to be where BCBs in the extracted mappings were /// resolved to a `CovTerm`. But that is now handled elsewhere, so this /// function can potentially be simplified even further. fn create_mappings(extracted_mappings: &ExtractedMappings) -> Vec { // Fully destructure the mappings struct to make sure we don't miss any kinds. let ExtractedMappings { code_mappings, branch_pairs, mcdc_bitmap_bits: _, mcdc_degraded_branches, mcdc_mappings, } = extracted_mappings; let mut mappings = Vec::new(); mappings.extend(code_mappings.iter().map( // Ordinary code mappings are the simplest kind. |&mappings::CodeMapping { span, bcb }| { let kind = MappingKind::Code { bcb }; Mapping { kind, span } }, )); mappings.extend(branch_pairs.iter().map( |&mappings::BranchPair { span, true_bcb, false_bcb }| { let kind = MappingKind::Branch { true_bcb, false_bcb }; Mapping { kind, span } }, )); // MCDC branch mappings are appended with their decisions in case decisions were ignored. mappings.extend(mcdc_degraded_branches.iter().map( |&mappings::MCDCBranch { span, true_bcb, false_bcb, condition_info: _, true_index: _, false_index: _, }| { Mapping { kind: MappingKind::Branch { true_bcb, false_bcb }, span } }, )); for (decision, branches) in mcdc_mappings { // FIXME(#134497): Previously it was possible for some of these branch // conversions to fail, in which case the remaining branches in the // decision would be degraded to plain `MappingKind::Branch`. // The changes in #134497 made that failure impossible, because the // fallible step was deferred to codegen. But the corresponding code // in codegen wasn't updated to detect the need for a degrade step. let conditions = branches .into_iter() .map( |&mappings::MCDCBranch { span, true_bcb, false_bcb, condition_info, true_index: _, false_index: _, }| { Mapping { kind: MappingKind::MCDCBranch { true_bcb, false_bcb, mcdc_params: condition_info, }, span, } }, ) .collect::>(); // LLVM requires end index for counter mapping regions. let kind = MappingKind::MCDCDecision(DecisionInfo { bitmap_idx: (decision.bitmap_idx + decision.num_test_vectors) as u32, num_conditions: u16::try_from(conditions.len()).unwrap(), }); let span = decision.span; mappings.extend(std::iter::once(Mapping { kind, span }).chain(conditions.into_iter())); } mappings } /// Inject any necessary coverage statements into MIR, so that they influence codegen. fn inject_coverage_statements<'tcx>(mir_body: &mut mir::Body<'tcx>, graph: &CoverageGraph) { for (bcb, data) in graph.iter_enumerated() { let target_bb = data.leader_bb(); inject_statement(mir_body, CoverageKind::VirtualCounter { bcb }, target_bb); } } /// For each conditions inject statements to update condition bitmap after it has been evaluated. /// For each decision inject statements to update test vector bitmap after it has been evaluated. fn inject_mcdc_statements<'tcx>( mir_body: &mut mir::Body<'tcx>, graph: &CoverageGraph, extracted_mappings: &ExtractedMappings, ) { for (decision, conditions) in &extracted_mappings.mcdc_mappings { // Inject test vector update first because `inject_statement` always insert new statement at head. for &end in &decision.end_bcbs { let end_bb = graph[end].leader_bb(); inject_statement( mir_body, CoverageKind::TestVectorBitmapUpdate { bitmap_idx: decision.bitmap_idx as u32, decision_depth: decision.decision_depth, }, end_bb, ); } for &mappings::MCDCBranch { span: _, true_bcb, false_bcb, condition_info: _, true_index, false_index, } in conditions { for (index, bcb) in [(false_index, false_bcb), (true_index, true_bcb)] { let bb = graph[bcb].leader_bb(); inject_statement( mir_body, CoverageKind::CondBitmapUpdate { index: index as u32, decision_depth: decision.decision_depth, }, bb, ); } } } } fn inject_statement(mir_body: &mut mir::Body<'_>, counter_kind: CoverageKind, bb: BasicBlock) { debug!(" injecting statement {counter_kind:?} for {bb:?}"); let data = &mut mir_body[bb]; let source_info = data.terminator().source_info; let statement = Statement { source_info, kind: StatementKind::Coverage(counter_kind) }; data.statements.insert(0, statement); } /// Function information extracted from HIR by the coverage instrumentor. #[derive(Debug)] struct ExtractedHirInfo { function_source_hash: u64, is_async_fn: bool, /// The span of the function's signature, extended to the start of `body_span`. /// Must have the same context and filename as the body span. fn_sig_span_extended: Option, body_span: Span, /// "Holes" are regions within the body span that should not be included in /// coverage spans for this function (e.g. closures and nested items). hole_spans: Vec, } fn extract_hir_info<'tcx>(tcx: TyCtxt<'tcx>, def_id: LocalDefId) -> ExtractedHirInfo { // FIXME(#79625): Consider improving MIR to provide the information needed, to avoid going back // to HIR for it. // HACK: For synthetic MIR bodies (async closures), use the def id of the HIR body. if tcx.is_synthetic_mir(def_id) { return extract_hir_info(tcx, tcx.local_parent(def_id)); } let hir_node = tcx.hir_node_by_def_id(def_id); let fn_body_id = hir_node.body_id().expect("HIR node is a function with body"); let hir_body = tcx.hir_body(fn_body_id); let maybe_fn_sig = hir_node.fn_sig(); let is_async_fn = maybe_fn_sig.is_some_and(|fn_sig| fn_sig.header.is_async()); let mut body_span = hir_body.value.span; use hir::{Closure, Expr, ExprKind, Node}; // Unexpand a closure's body span back to the context of its declaration. // This helps with closure bodies that consist of just a single bang-macro, // and also with closure bodies produced by async desugaring. if let Node::Expr(&Expr { kind: ExprKind::Closure(&Closure { fn_decl_span, .. }), .. }) = hir_node { body_span = body_span.find_ancestor_in_same_ctxt(fn_decl_span).unwrap_or(body_span); } // The actual signature span is only used if it has the same context and // filename as the body, and precedes the body. let fn_sig_span_extended = maybe_fn_sig .map(|fn_sig| fn_sig.span) .filter(|&fn_sig_span| { let source_map = tcx.sess.source_map(); let file_idx = |span: Span| source_map.lookup_source_file_idx(span.lo()); fn_sig_span.eq_ctxt(body_span) && fn_sig_span.hi() <= body_span.lo() && file_idx(fn_sig_span) == file_idx(body_span) }) // If so, extend it to the start of the body span. .map(|fn_sig_span| fn_sig_span.with_hi(body_span.lo())); let function_source_hash = hash_mir_source(tcx, hir_body); let hole_spans = extract_hole_spans_from_hir(tcx, body_span, hir_body); ExtractedHirInfo { function_source_hash, is_async_fn, fn_sig_span_extended, body_span, hole_spans, } } fn hash_mir_source<'tcx>(tcx: TyCtxt<'tcx>, hir_body: &'tcx hir::Body<'tcx>) -> u64 { // FIXME(cjgillot) Stop hashing HIR manually here. let owner = hir_body.id().hir_id.owner; tcx.hir_owner_nodes(owner).opt_hash_including_bodies.unwrap().to_smaller_hash().as_u64() } fn extract_hole_spans_from_hir<'tcx>( tcx: TyCtxt<'tcx>, body_span: Span, // Usually `hir_body.value.span`, but not always hir_body: &hir::Body<'tcx>, ) -> Vec { struct HolesVisitor<'hir, F> { hir: Map<'hir>, visit_hole_span: F, } impl<'hir, F: FnMut(Span)> Visitor<'hir> for HolesVisitor<'hir, F> { /// - We need `NestedFilter::INTRA = true` so that `visit_item` will be called. /// - Bodies of nested items don't actually get visited, because of the /// `visit_item` override. /// - For nested bodies that are not part of an item, we do want to visit any /// items contained within them. type NestedFilter = nested_filter::All; fn nested_visit_map(&mut self) -> Self::Map { self.hir } fn visit_item(&mut self, item: &'hir hir::Item<'hir>) { (self.visit_hole_span)(item.span); // Having visited this item, we don't care about its children, // so don't call `walk_item`. } // We override `visit_expr` instead of the more specific expression // visitors, so that we have direct access to the expression span. fn visit_expr(&mut self, expr: &'hir hir::Expr<'hir>) { match expr.kind { hir::ExprKind::Closure(_) | hir::ExprKind::ConstBlock(_) => { (self.visit_hole_span)(expr.span); // Having visited this expression, we don't care about its // children, so don't call `walk_expr`. } // For other expressions, recursively visit as normal. _ => walk_expr(self, expr), } } } let mut hole_spans = vec![]; let mut visitor = HolesVisitor { hir: tcx.hir(), visit_hole_span: |hole_span| { // Discard any holes that aren't directly visible within the body span. if body_span.contains(hole_span) && body_span.eq_ctxt(hole_span) { hole_spans.push(hole_span); } }, }; visitor.visit_body(hir_body); hole_spans }