use std::cmp::Ordering; use rustc_type_ir::data_structures::HashMap; use rustc_type_ir::fold::{TypeFoldable, TypeFolder, TypeSuperFoldable}; use rustc_type_ir::inherent::*; use rustc_type_ir::solve::{Goal, QueryInput}; use rustc_type_ir::visit::TypeVisitableExt; use rustc_type_ir::{ self as ty, Canonical, CanonicalTyVarKind, CanonicalVarInfo, CanonicalVarKind, InferCtxtLike, Interner, }; use crate::delegate::SolverDelegate; /// Whether we're canonicalizing a query input or the query response. /// /// When canonicalizing an input we're in the context of the caller /// while canonicalizing the response happens in the context of the /// query. #[derive(Debug, Clone, Copy)] enum CanonicalizeMode { /// When canonicalizing the `param_env`, we keep `'static` as merging /// trait candidates relies on it when deciding whether a where-bound /// is trivial. Input { keep_static: bool }, /// FIXME: We currently return region constraints referring to /// placeholders and inference variables from a binder instantiated /// inside of the query. /// /// In the long term we should eagerly deal with these constraints /// inside of the query and only propagate constraints which are /// actually nameable by the caller. Response { /// The highest universe nameable by the caller. /// /// All variables in a universe nameable by the caller get mapped /// to the root universe in the response and then mapped back to /// their correct universe when applying the query response in the /// context of the caller. /// /// This doesn't work for universes created inside of the query so /// we do remember their universe in the response. max_input_universe: ty::UniverseIndex, }, } pub struct Canonicalizer<'a, D: SolverDelegate, I: Interner> { delegate: &'a D, // Immutable field. canonicalize_mode: CanonicalizeMode, // Mutable fields. variables: &'a mut Vec, primitive_var_infos: Vec>, variable_lookup_table: HashMap, binder_index: ty::DebruijnIndex, /// We only use the debruijn index during lookup. We don't need to /// track the `variables` as each generic arg only results in a single /// bound variable regardless of how many times it is encountered. cache: HashMap<(ty::DebruijnIndex, I::Ty), I::Ty>, } impl<'a, D: SolverDelegate, I: Interner> Canonicalizer<'a, D, I> { pub fn canonicalize_response>( delegate: &'a D, max_input_universe: ty::UniverseIndex, variables: &'a mut Vec, value: T, ) -> ty::Canonical { let mut canonicalizer = Canonicalizer { delegate, canonicalize_mode: CanonicalizeMode::Response { max_input_universe }, variables, variable_lookup_table: Default::default(), primitive_var_infos: Vec::new(), binder_index: ty::INNERMOST, cache: Default::default(), }; let value = value.fold_with(&mut canonicalizer); assert!(!value.has_infer(), "unexpected infer in {value:?}"); assert!(!value.has_placeholders(), "unexpected placeholders in {value:?}"); let (max_universe, variables) = canonicalizer.finalize(); Canonical { max_universe, variables, value } } /// When canonicalizing query inputs, we keep `'static` in the `param_env` /// but erase it everywhere else. We generally don't want to depend on region /// identity, so while it should not matter whether `'static` is kept in the /// value or opaque type storage as well, this prevents us from accidentally /// relying on it in the future. /// /// We want to keep the option of canonicalizing `'static` to an existential /// variable in the future by changing the way we detect global where-bounds. pub fn canonicalize_input>( delegate: &'a D, variables: &'a mut Vec, input: QueryInput, ) -> ty::Canonical> { // First canonicalize the `param_env` while keeping `'static` let mut env_canonicalizer = Canonicalizer { delegate, canonicalize_mode: CanonicalizeMode::Input { keep_static: true }, variables, variable_lookup_table: Default::default(), primitive_var_infos: Vec::new(), binder_index: ty::INNERMOST, cache: Default::default(), }; let param_env = input.goal.param_env.fold_with(&mut env_canonicalizer); debug_assert_eq!(env_canonicalizer.binder_index, ty::INNERMOST); // Then canonicalize the rest of the input without keeping `'static` // while *mostly* reusing the canonicalizer from above. let mut rest_canonicalizer = Canonicalizer { delegate, canonicalize_mode: CanonicalizeMode::Input { keep_static: false }, variables: env_canonicalizer.variables, // We're able to reuse the `variable_lookup_table` as whether or not // it already contains an entry for `'static` does not matter. variable_lookup_table: env_canonicalizer.variable_lookup_table, primitive_var_infos: env_canonicalizer.primitive_var_infos, binder_index: ty::INNERMOST, // We do not reuse the cache as it may contain entries whose canonicalized // value contains `'static`. While we could alternatively handle this by // checking for `'static` when using cached entries, this does not // feel worth the effort. I do not expect that a `ParamEnv` will ever // contain large enough types for caching to be necessary. cache: Default::default(), }; let predicate = input.goal.predicate.fold_with(&mut rest_canonicalizer); let goal = Goal { param_env, predicate }; let predefined_opaques_in_body = input.predefined_opaques_in_body.fold_with(&mut rest_canonicalizer); let value = QueryInput { goal, predefined_opaques_in_body }; assert!(!value.has_infer(), "unexpected infer in {value:?}"); assert!(!value.has_placeholders(), "unexpected placeholders in {value:?}"); let (max_universe, variables) = rest_canonicalizer.finalize(); Canonical { max_universe, variables, value } } fn get_or_insert_bound_var( &mut self, arg: impl Into, canonical_var_info: CanonicalVarInfo, ) -> ty::BoundVar { // FIXME: 16 is made up and arbitrary. We should look at some // perf data here. let arg = arg.into(); let idx = if self.variables.len() > 16 { if self.variable_lookup_table.is_empty() { self.variable_lookup_table.extend(self.variables.iter().copied().zip(0..)); } *self.variable_lookup_table.entry(arg).or_insert_with(|| { let var = self.variables.len(); self.variables.push(arg); self.primitive_var_infos.push(canonical_var_info); var }) } else { self.variables.iter().position(|&v| v == arg).unwrap_or_else(|| { let var = self.variables.len(); self.variables.push(arg); self.primitive_var_infos.push(canonical_var_info); var }) }; ty::BoundVar::from(idx) } fn finalize(self) -> (ty::UniverseIndex, I::CanonicalVars) { let mut var_infos = self.primitive_var_infos; // See the rustc-dev-guide section about how we deal with universes // during canonicalization in the new solver. match self.canonicalize_mode { // We try to deduplicate as many query calls as possible and hide // all information which should not matter for the solver. // // For this we compress universes as much as possible. CanonicalizeMode::Input { .. } => {} // When canonicalizing a response we map a universes already entered // by the caller to the root universe and only return useful universe // information for placeholders and inference variables created inside // of the query. CanonicalizeMode::Response { max_input_universe } => { for var in var_infos.iter_mut() { let uv = var.universe(); let new_uv = ty::UniverseIndex::from( uv.index().saturating_sub(max_input_universe.index()), ); *var = var.with_updated_universe(new_uv); } let max_universe = var_infos .iter() .map(|info| info.universe()) .max() .unwrap_or(ty::UniverseIndex::ROOT); let var_infos = self.delegate.cx().mk_canonical_var_infos(&var_infos); return (max_universe, var_infos); } } // Given a `var_infos` with existentials `En` and universals `Un` in // universes `n`, this algorithm compresses them in place so that: // // - the new universe indices are as small as possible // - we create a new universe if we would otherwise // 1. put existentials from a different universe into the same one // 2. put a placeholder in the same universe as an existential which cannot name it // // Let's walk through an example: // - var_infos: [E0, U1, E5, U2, E2, E6, U6], curr_compressed_uv: 0, next_orig_uv: 0 // - var_infos: [E0, U1, E5, U2, E2, E6, U6], curr_compressed_uv: 0, next_orig_uv: 1 // - var_infos: [E0, U1, E5, U2, E2, E6, U6], curr_compressed_uv: 1, next_orig_uv: 2 // - var_infos: [E0, U1, E5, U1, E1, E6, U6], curr_compressed_uv: 1, next_orig_uv: 5 // - var_infos: [E0, U1, E2, U1, E1, E6, U6], curr_compressed_uv: 2, next_orig_uv: 6 // - var_infos: [E0, U1, E1, U1, E1, E3, U3], curr_compressed_uv: 2, next_orig_uv: - // // This algorithm runs in `O(mn)` where `n` is the number of different universes and // `m` the number of variables. This should be fine as both are expected to be small. let mut curr_compressed_uv = ty::UniverseIndex::ROOT; let mut existential_in_new_uv = None; let mut next_orig_uv = Some(ty::UniverseIndex::ROOT); while let Some(orig_uv) = next_orig_uv.take() { let mut update_uv = |var: &mut CanonicalVarInfo, orig_uv, is_existential| { let uv = var.universe(); match uv.cmp(&orig_uv) { Ordering::Less => (), // Already updated Ordering::Equal => { if is_existential { if existential_in_new_uv.is_some_and(|uv| uv < orig_uv) { // Condition 1. // // We already put an existential from a outer universe // into the current compressed universe, so we need to // create a new one. curr_compressed_uv = curr_compressed_uv.next_universe(); } // `curr_compressed_uv` will now contain an existential from // `orig_uv`. Trying to canonicalizing an existential from // a higher universe has to therefore use a new compressed // universe. existential_in_new_uv = Some(orig_uv); } else if existential_in_new_uv.is_some() { // Condition 2. // // `var` is a placeholder from a universe which is not nameable // by an existential which we already put into the compressed // universe `curr_compressed_uv`. We therefore have to create a // new universe for `var`. curr_compressed_uv = curr_compressed_uv.next_universe(); existential_in_new_uv = None; } *var = var.with_updated_universe(curr_compressed_uv); } Ordering::Greater => { // We can ignore this variable in this iteration. We only look at // universes which actually occur in the input for performance. // // For this we set `next_orig_uv` to the next smallest, not yet compressed, // universe of the input. if next_orig_uv.is_none_or(|curr_next_uv| uv.cannot_name(curr_next_uv)) { next_orig_uv = Some(uv); } } } }; // For each universe which occurs in the input, we first iterate over all // placeholders and then over all inference variables. // // Whenever we compress the universe of a placeholder, no existential with // an already compressed universe can name that placeholder. for is_existential in [false, true] { for var in var_infos.iter_mut() { // We simply put all regions from the input into the highest // compressed universe, so we only deal with them at the end. if !var.is_region() { if is_existential == var.is_existential() { update_uv(var, orig_uv, is_existential) } } } } } // We put all regions into a separate universe. let mut first_region = true; for var in var_infos.iter_mut() { if var.is_region() { if first_region { first_region = false; curr_compressed_uv = curr_compressed_uv.next_universe(); } assert!(var.is_existential()); *var = var.with_updated_universe(curr_compressed_uv); } } let var_infos = self.delegate.cx().mk_canonical_var_infos(&var_infos); (curr_compressed_uv, var_infos) } fn cached_fold_ty(&mut self, t: I::Ty) -> I::Ty { let kind = match t.kind() { ty::Infer(i) => match i { ty::TyVar(vid) => { assert_eq!( self.delegate.opportunistic_resolve_ty_var(vid), t, "ty vid should have been resolved fully before canonicalization" ); CanonicalVarKind::Ty(CanonicalTyVarKind::General( self.delegate .universe_of_ty(vid) .unwrap_or_else(|| panic!("ty var should have been resolved: {t:?}")), )) } ty::IntVar(vid) => { assert_eq!( self.delegate.opportunistic_resolve_int_var(vid), t, "ty vid should have been resolved fully before canonicalization" ); CanonicalVarKind::Ty(CanonicalTyVarKind::Int) } ty::FloatVar(vid) => { assert_eq!( self.delegate.opportunistic_resolve_float_var(vid), t, "ty vid should have been resolved fully before canonicalization" ); CanonicalVarKind::Ty(CanonicalTyVarKind::Float) } ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_) => { panic!("fresh vars not expected in canonicalization") } }, ty::Placeholder(placeholder) => match self.canonicalize_mode { CanonicalizeMode::Input { .. } => CanonicalVarKind::PlaceholderTy( PlaceholderLike::new(placeholder.universe(), self.variables.len().into()), ), CanonicalizeMode::Response { .. } => CanonicalVarKind::PlaceholderTy(placeholder), }, ty::Param(_) => match self.canonicalize_mode { CanonicalizeMode::Input { .. } => CanonicalVarKind::PlaceholderTy( PlaceholderLike::new(ty::UniverseIndex::ROOT, self.variables.len().into()), ), CanonicalizeMode::Response { .. } => panic!("param ty in response: {t:?}"), }, ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Adt(_, _) | ty::Foreign(_) | ty::Str | ty::Array(_, _) | ty::Slice(_) | ty::RawPtr(_, _) | ty::Ref(_, _, _) | ty::Pat(_, _) | ty::FnDef(_, _) | ty::FnPtr(..) | ty::UnsafeBinder(_) | ty::Dynamic(_, _, _) | ty::Closure(..) | ty::CoroutineClosure(..) | ty::Coroutine(_, _) | ty::CoroutineWitness(..) | ty::Never | ty::Tuple(_) | ty::Alias(_, _) | ty::Bound(_, _) | ty::Error(_) => { return t.super_fold_with(self); } }; let var = self.get_or_insert_bound_var(t, CanonicalVarInfo { kind }); Ty::new_anon_bound(self.cx(), self.binder_index, var) } } impl, I: Interner> TypeFolder for Canonicalizer<'_, D, I> { fn cx(&self) -> I { self.delegate.cx() } fn fold_binder(&mut self, t: ty::Binder) -> ty::Binder where T: TypeFoldable, { self.binder_index.shift_in(1); let t = t.super_fold_with(self); self.binder_index.shift_out(1); t } fn fold_region(&mut self, r: I::Region) -> I::Region { let kind = match r.kind() { ty::ReBound(..) => return r, // We don't canonicalize `ReStatic` in the `param_env` as we use it // when checking whether a `ParamEnv` candidate is global. ty::ReStatic => match self.canonicalize_mode { CanonicalizeMode::Input { keep_static: false } => { CanonicalVarKind::Region(ty::UniverseIndex::ROOT) } CanonicalizeMode::Input { keep_static: true } | CanonicalizeMode::Response { .. } => return r, }, // `ReErased` should only be encountered in the hidden // type of an opaque for regions that are ignored for the purposes of // captures. // // FIXME: We should investigate the perf implications of not uniquifying // `ReErased`. We may be able to short-circuit registering region // obligations if we encounter a `ReErased` on one side, for example. ty::ReErased | ty::ReError(_) => match self.canonicalize_mode { CanonicalizeMode::Input { .. } => CanonicalVarKind::Region(ty::UniverseIndex::ROOT), CanonicalizeMode::Response { .. } => return r, }, ty::ReEarlyParam(_) | ty::ReLateParam(_) => match self.canonicalize_mode { CanonicalizeMode::Input { .. } => CanonicalVarKind::Region(ty::UniverseIndex::ROOT), CanonicalizeMode::Response { .. } => { panic!("unexpected region in response: {r:?}") } }, ty::RePlaceholder(placeholder) => match self.canonicalize_mode { // We canonicalize placeholder regions as existentials in query inputs. CanonicalizeMode::Input { .. } => CanonicalVarKind::Region(ty::UniverseIndex::ROOT), CanonicalizeMode::Response { max_input_universe } => { // If we have a placeholder region inside of a query, it must be from // a new universe. if max_input_universe.can_name(placeholder.universe()) { panic!("new placeholder in universe {max_input_universe:?}: {r:?}"); } CanonicalVarKind::PlaceholderRegion(placeholder) } }, ty::ReVar(vid) => { assert_eq!( self.delegate.opportunistic_resolve_lt_var(vid), r, "region vid should have been resolved fully before canonicalization" ); match self.canonicalize_mode { CanonicalizeMode::Input { keep_static: _ } => { CanonicalVarKind::Region(ty::UniverseIndex::ROOT) } CanonicalizeMode::Response { .. } => { CanonicalVarKind::Region(self.delegate.universe_of_lt(vid).unwrap()) } } } }; let var = self.get_or_insert_bound_var(r, CanonicalVarInfo { kind }); Region::new_anon_bound(self.cx(), self.binder_index, var) } fn fold_ty(&mut self, t: I::Ty) -> I::Ty { if let Some(&ty) = self.cache.get(&(self.binder_index, t)) { ty } else { let res = self.cached_fold_ty(t); assert!(self.cache.insert((self.binder_index, t), res).is_none()); res } } fn fold_const(&mut self, c: I::Const) -> I::Const { let kind = match c.kind() { ty::ConstKind::Infer(i) => match i { ty::InferConst::Var(vid) => { assert_eq!( self.delegate.opportunistic_resolve_ct_var(vid), c, "const vid should have been resolved fully before canonicalization" ); CanonicalVarKind::Const(self.delegate.universe_of_ct(vid).unwrap()) } ty::InferConst::Fresh(_) => todo!(), }, ty::ConstKind::Placeholder(placeholder) => match self.canonicalize_mode { CanonicalizeMode::Input { .. } => CanonicalVarKind::PlaceholderConst( PlaceholderLike::new(placeholder.universe(), self.variables.len().into()), ), CanonicalizeMode::Response { .. } => { CanonicalVarKind::PlaceholderConst(placeholder) } }, ty::ConstKind::Param(_) => match self.canonicalize_mode { CanonicalizeMode::Input { .. } => CanonicalVarKind::PlaceholderConst( PlaceholderLike::new(ty::UniverseIndex::ROOT, self.variables.len().into()), ), CanonicalizeMode::Response { .. } => panic!("param ty in response: {c:?}"), }, // FIXME: See comment above -- we could fold the region separately or something. ty::ConstKind::Bound(_, _) | ty::ConstKind::Unevaluated(_) | ty::ConstKind::Value(_) | ty::ConstKind::Error(_) | ty::ConstKind::Expr(_) => return c.super_fold_with(self), }; let var = self.get_or_insert_bound_var(c, CanonicalVarInfo { kind }); Const::new_anon_bound(self.cx(), self.binder_index, var) } }