//! This module contains the `InterpCx` methods for executing a single step of the interpreter. //! //! The main entry point is the `step` method. use rustc_middle::mir; use rustc_middle::mir::interpret::{InterpResult, Scalar}; use rustc_target::abi::LayoutOf; use super::{InterpCx, Machine}; /// Classify whether an operator is "left-homogeneous", i.e., the LHS has the /// same type as the result. #[inline] fn binop_left_homogeneous(op: mir::BinOp) -> bool { use rustc_middle::mir::BinOp::*; match op { Add | Sub | Mul | Div | Rem | BitXor | BitAnd | BitOr | Offset | Shl | Shr => true, Eq | Ne | Lt | Le | Gt | Ge => false, } } /// Classify whether an operator is "right-homogeneous", i.e., the RHS has the /// same type as the LHS. #[inline] fn binop_right_homogeneous(op: mir::BinOp) -> bool { use rustc_middle::mir::BinOp::*; match op { Add | Sub | Mul | Div | Rem | BitXor | BitAnd | BitOr | Eq | Ne | Lt | Le | Gt | Ge => true, Offset | Shl | Shr => false, } } impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> { pub fn run(&mut self) -> InterpResult<'tcx> { while self.step()? {} Ok(()) } /// Returns `true` as long as there are more things to do. /// /// This is used by [priroda](https://github.com/oli-obk/priroda) /// /// This is marked `#inline(always)` to work around adverserial codegen when `opt-level = 3` #[inline(always)] pub fn step(&mut self) -> InterpResult<'tcx, bool> { if self.stack().is_empty() { return Ok(false); } let loc = match self.frame().loc { Ok(loc) => loc, Err(_) => { // We are unwinding and this fn has no cleanup code. // Just go on unwinding. trace!("unwinding: skipping frame"); self.pop_stack_frame(/* unwinding */ true)?; return Ok(true); } }; let basic_block = &self.body().basic_blocks()[loc.block]; let old_frames = self.frame_idx(); if let Some(stmt) = basic_block.statements.get(loc.statement_index) { assert_eq!(old_frames, self.frame_idx()); self.statement(stmt)?; return Ok(true); } M::before_terminator(self)?; let terminator = basic_block.terminator(); assert_eq!(old_frames, self.frame_idx()); self.terminator(terminator)?; Ok(true) } /// Runs the interpretation logic for the given `mir::Statement` at the current frame and /// statement counter. This also moves the statement counter forward. crate fn statement(&mut self, stmt: &mir::Statement<'tcx>) -> InterpResult<'tcx> { info!("{:?}", stmt); use rustc_middle::mir::StatementKind::*; // Some statements (e.g., box) push new stack frames. // We have to record the stack frame number *before* executing the statement. let frame_idx = self.frame_idx(); match &stmt.kind { Assign(box (place, rvalue)) => self.eval_rvalue_into_place(rvalue, *place)?, SetDiscriminant { place, variant_index } => { let dest = self.eval_place(**place)?; self.write_discriminant(*variant_index, dest)?; } // Mark locals as alive StorageLive(local) => { self.storage_live(*local)?; } // Mark locals as dead StorageDead(local) => { self.storage_dead(*local)?; } // No dynamic semantics attached to `FakeRead`; MIR // interpreter is solely intended for borrowck'ed code. FakeRead(..) => {} // Stacked Borrows. Retag(kind, place) => { let dest = self.eval_place(**place)?; M::retag(self, *kind, dest)?; } // Statements we do not track. AscribeUserType(..) => {} // Currently, Miri discards Coverage statements. Coverage statements are only injected // via an optional compile time MIR pass and have no side effects. Since Coverage // statements don't exist at the source level, it is safe for Miri to ignore them, even // for undefined behavior (UB) checks. // // A coverage counter inside a const expression (for example, a counter injected in a // const function) is discarded when the const is evaluated at compile time. Whether // this should change, and/or how to implement a const eval counter, is a subject of the // following issue: // // FIXME(#73156): Handle source code coverage in const eval Coverage(..) => {} // Defined to do nothing. These are added by optimization passes, to avoid changing the // size of MIR constantly. Nop => {} LlvmInlineAsm { .. } => throw_unsup_format!("inline assembly is not supported"), } self.stack_mut()[frame_idx].loc.as_mut().unwrap().statement_index += 1; Ok(()) } /// Evaluate an assignment statement. /// /// There is no separate `eval_rvalue` function. Instead, the code for handling each rvalue /// type writes its results directly into the memory specified by the place. pub fn eval_rvalue_into_place( &mut self, rvalue: &mir::Rvalue<'tcx>, place: mir::Place<'tcx>, ) -> InterpResult<'tcx> { let dest = self.eval_place(place)?; use rustc_middle::mir::Rvalue::*; match *rvalue { ThreadLocalRef(did) => { let id = M::thread_local_static_alloc_id(self, did)?; let val = self.global_base_pointer(id.into())?; self.write_scalar(val, dest)?; } Use(ref operand) => { // Avoid recomputing the layout let op = self.eval_operand(operand, Some(dest.layout))?; self.copy_op(op, dest)?; } BinaryOp(bin_op, ref left, ref right) => { let layout = binop_left_homogeneous(bin_op).then_some(dest.layout); let left = self.read_immediate(self.eval_operand(left, layout)?)?; let layout = binop_right_homogeneous(bin_op).then_some(left.layout); let right = self.read_immediate(self.eval_operand(right, layout)?)?; self.binop_ignore_overflow(bin_op, left, right, dest)?; } CheckedBinaryOp(bin_op, ref left, ref right) => { // Due to the extra boolean in the result, we can never reuse the `dest.layout`. let left = self.read_immediate(self.eval_operand(left, None)?)?; let layout = binop_right_homogeneous(bin_op).then_some(left.layout); let right = self.read_immediate(self.eval_operand(right, layout)?)?; self.binop_with_overflow(bin_op, left, right, dest)?; } UnaryOp(un_op, ref operand) => { // The operand always has the same type as the result. let val = self.read_immediate(self.eval_operand(operand, Some(dest.layout))?)?; let val = self.unary_op(un_op, val)?; assert_eq!(val.layout, dest.layout, "layout mismatch for result of {:?}", un_op); self.write_immediate(*val, dest)?; } Aggregate(ref kind, ref operands) => { let (dest, active_field_index) = match **kind { mir::AggregateKind::Adt(adt_def, variant_index, _, _, active_field_index) => { self.write_discriminant(variant_index, dest)?; if adt_def.is_enum() { (self.place_downcast(dest, variant_index)?, active_field_index) } else { (dest, active_field_index) } } _ => (dest, None), }; for (i, operand) in operands.iter().enumerate() { let op = self.eval_operand(operand, None)?; // Ignore zero-sized fields. if !op.layout.is_zst() { let field_index = active_field_index.unwrap_or(i); let field_dest = self.place_field(dest, field_index)?; self.copy_op(op, field_dest)?; } } } Repeat(ref operand, _) => { let op = self.eval_operand(operand, None)?; let dest = self.force_allocation(dest)?; let length = dest.len(self)?; if let Some(first_ptr) = self.check_mplace_access(dest, None)? { // Write the first. let first = self.mplace_field(dest, 0)?; self.copy_op(op, first.into())?; if length > 1 { let elem_size = first.layout.size; // Copy the rest. This is performance-sensitive code // for big static/const arrays! let rest_ptr = first_ptr.offset(elem_size, self)?; self.memory.copy_repeatedly( first_ptr, rest_ptr, elem_size, length - 1, /*nonoverlapping:*/ true, )?; } } } Len(place) => { // FIXME(CTFE): don't allow computing the length of arrays in const eval let src = self.eval_place(place)?; let mplace = self.force_allocation(src)?; let len = mplace.len(self)?; self.write_scalar(Scalar::from_machine_usize(len, self), dest)?; } AddressOf(_, place) | Ref(_, _, place) => { let src = self.eval_place(place)?; let place = self.force_allocation(src)?; if place.layout.size.bytes() > 0 { // definitely not a ZST assert!(place.ptr.is_ptr(), "non-ZST places should be normalized to `Pointer`"); } self.write_immediate(place.to_ref(), dest)?; } NullaryOp(mir::NullOp::Box, _) => { M::box_alloc(self, dest)?; } NullaryOp(mir::NullOp::SizeOf, ty) => { let ty = self.subst_from_current_frame_and_normalize_erasing_regions(ty); let layout = self.layout_of(ty)?; assert!( !layout.is_unsized(), "SizeOf nullary MIR operator called for unsized type" ); self.write_scalar(Scalar::from_machine_usize(layout.size.bytes(), self), dest)?; } Cast(cast_kind, ref operand, cast_ty) => { let src = self.eval_operand(operand, None)?; let cast_ty = self.subst_from_current_frame_and_normalize_erasing_regions(cast_ty); self.cast(src, cast_kind, cast_ty, dest)?; } Discriminant(place) => { let op = self.eval_place_to_op(place, None)?; let discr_val = self.read_discriminant(op)?.0; self.write_scalar(discr_val, dest)?; } } trace!("{:?}", self.dump_place(*dest)); Ok(()) } fn terminator(&mut self, terminator: &mir::Terminator<'tcx>) -> InterpResult<'tcx> { info!("{:?}", terminator.kind); self.eval_terminator(terminator)?; if !self.stack().is_empty() { if let Ok(loc) = self.frame().loc { info!("// executing {:?}", loc.block); } } Ok(()) } }