// run-pass #![feature(dropck_eyepatch)] // The point of this test is to illustrate that the `#[may_dangle]` // attribute specifically allows, in the context of a type // implementing `Drop`, a generic parameter to be instantiated with a // lifetime that does not strictly outlive the owning type itself. // // Here we test that a model use of `#[may_dangle]` will compile and run. // // The illustration is made concrete by comparison with two variations // on the type with `#[may_dangle]`: // // 1. an analogous type that does not implement `Drop` (and thus // should exhibit maximal flexibility with respect to dropck), and // // 2. an analogous type that does not use `#[may_dangle]` (and thus // should exhibit the standard limitations imposed by dropck. // // The types in this file follow a pattern, {D,P,S}{t,r}, where: // // - D means "I implement Drop" // // - P means "I implement Drop but guarantee my (first) parameter is // pure, i.e., not accessed from the destructor"; no other parameters // are pure. // // - S means "I do not implement Drop" // // - t suffix is used when the first generic is a type // // - r suffix is used when the first generic is a lifetime. trait Foo { fn foo(&self, _: &str); } struct Dt(&'static str, A); struct Dr<'a, B:'a+Foo>(&'static str, &'a B); struct Pt(&'static str, #[allow(dead_code)] A, B); struct Pr<'a, 'b, B:'a+'b+Foo>(&'static str, #[allow(dead_code)] &'a B, &'b B); struct St(&'static str, #[allow(dead_code)] A); struct Sr<'a, B:'a+Foo>(&'static str, #[allow(dead_code)] &'a B); impl Drop for Dt { fn drop(&mut self) { println!("drop {}", self.0); self.1.foo(self.0); } } impl<'a, B: Foo> Drop for Dr<'a, B> { fn drop(&mut self) { println!("drop {}", self.0); self.1.foo(self.0); } } unsafe impl<#[may_dangle] A, B: Foo> Drop for Pt { // (unsafe to access self.1 due to #[may_dangle] on A) fn drop(&mut self) { println!("drop {}", self.0); self.2.foo(self.0); } } unsafe impl<#[may_dangle] 'a, 'b, B: Foo> Drop for Pr<'a, 'b, B> { // (unsafe to access self.1 due to #[may_dangle] on 'a) fn drop(&mut self) { println!("drop {}", self.0); self.2.foo(self.0); } } fn main() { use std::cell::RefCell; impl Foo for RefCell { fn foo(&self, s: &str) { let s2 = format!("{}|{}", *self.borrow(), s); *self.borrow_mut() = s2; } } impl<'a, T:Foo> Foo for &'a T { fn foo(&self, s: &str) { (*self).foo(s); } } struct CheckOnDrop(RefCell, &'static str); impl Drop for CheckOnDrop { fn drop(&mut self) { assert_eq!(*self.0.borrow(), self.1); } } let c_long; let (c, dt, dr, pt, pr, st, sr) : (CheckOnDrop, Dt<_>, Dr<_>, Pt<_, _>, Pr<_>, St<_>, Sr<_>); c_long = CheckOnDrop(RefCell::new("c_long".to_string()), "c_long|pr|pt|dr|dt"); c = CheckOnDrop(RefCell::new("c".to_string()), "c"); // No error: sufficiently long-lived state can be referenced in dtors dt = Dt("dt", &c_long.0); dr = Dr("dr", &c_long.0); // No error: Drop impl asserts .1 (A and &'a _) are not accessed pt = Pt("pt", &c.0, &c_long.0); pr = Pr("pr", &c.0, &c_long.0); // No error: St and Sr have no destructor. st = St("st", &c.0); sr = Sr("sr", &c.0); println!("{:?}", (dt.0, dr.0, pt.0, pr.0, st.0, sr.0)); assert_eq!(*c_long.0.borrow(), "c_long"); assert_eq!(*c.0.borrow(), "c"); }