// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use ast::{P, Block, Crate, DeclLocal, ExprMac, PatMac}; use ast::{Local, Ident, MacInvocTT}; use ast::{ItemMac, Mrk, Stmt, StmtDecl, StmtMac, StmtExpr, StmtSemi}; use ast::TokenTree; use ast; use ext::mtwt; use ext::build::AstBuilder; use attr; use attr::AttrMetaMethods; use codemap; use codemap::{Span, Spanned, ExpnInfo, NameAndSpan, MacroBang, MacroAttribute}; use ext::base::*; use fold; use fold::*; use parse; use parse::token::{fresh_mark, fresh_name, intern}; use parse::token; use visit; use visit::Visitor; use util::small_vector::SmallVector; use std::gc::{Gc, GC}; pub fn expand_expr(e: Gc, fld: &mut MacroExpander) -> Gc { match e.node { // expr_mac should really be expr_ext or something; it's the // entry-point for all syntax extensions. ExprMac(ref mac) => { let expanded_expr = match expand_mac_invoc(mac,&e.span, |r|{r.make_expr()}, |expr,fm|{mark_expr(expr,fm)}, fld) { Some(expr) => expr, None => { return DummyResult::raw_expr(e.span); } }; // Keep going, outside-in. // // FIXME(pcwalton): Is it necessary to clone the // node here? let fully_expanded = fld.fold_expr(expanded_expr).node.clone(); fld.cx.bt_pop(); box(GC) ast::Expr { id: ast::DUMMY_NODE_ID, node: fully_expanded, span: e.span, } } // Desugar expr_for_loop // From: `[':] for in ` // FIXME #6993: change type of opt_ident to Option ast::ExprForLoop(src_pat, src_expr, src_loop_block, opt_ident) => { let span = e.span; // to: // // match &mut { // i => { // [':] loop { // match i.next() { // None => break ['], // Some(mut value) => { // let = value; // // } // } // } // } // } // // (The use of the `let` is to give better error messages // when the pattern is refutable.) let local_ident = token::gensym_ident("i"); let next_ident = fld.cx.ident_of("next"); let none_ident = fld.cx.ident_of("None"); let local_path = fld.cx.path_ident(span, local_ident); let some_path = fld.cx.path_ident(span, fld.cx.ident_of("Some")); // `None => break ['],` let none_arm = { let break_expr = fld.cx.expr(span, ast::ExprBreak(opt_ident)); let none_pat = fld.cx.pat_ident(span, none_ident); fld.cx.arm(span, vec!(none_pat), break_expr) }; // let = value; // use underscore to suppress lint error: let value_ident = token::gensym_ident("_value"); // this is careful to use src_pat.span so that error // messages point exact at that. let local = box(GC) ast::Local { ty: fld.cx.ty_infer(src_pat.span), pat: src_pat, init: Some(fld.cx.expr_ident(src_pat.span, value_ident)), id: ast::DUMMY_NODE_ID, span: src_pat.span, source: ast::LocalFor }; let local = codemap::respan(src_pat.span, ast::DeclLocal(local)); let local = box(GC) codemap::respan(span, ast::StmtDecl(box(GC) local, ast::DUMMY_NODE_ID)); // { let ...; } let block = fld.cx.block(span, vec![local], Some(fld.cx.expr_block(src_loop_block))); // `Some(mut value) => { ... }` // Note the _'s in the name will stop any unused mutability warnings. let value_pat = fld.cx.pat_ident_binding_mode(span, value_ident, ast::BindByValue(ast::MutMutable)); let some_arm = fld.cx.arm(span, vec!(fld.cx.pat_enum(span, some_path, vec!(value_pat))), fld.cx.expr_block(block)); // `match i.next() { ... }` let match_expr = { let next_call_expr = fld.cx.expr_method_call(span, fld.cx.expr_path(local_path), next_ident, Vec::new()); fld.cx.expr_match(span, next_call_expr, vec!(none_arm, some_arm)) }; // ['ident:] loop { ... } let loop_expr = fld.cx.expr(span, ast::ExprLoop(fld.cx.block_expr(match_expr), opt_ident)); // `i => loop { ... }` // `match &mut { i => loop { ... } }` let discrim = fld.cx.expr_mut_addr_of(span, src_expr); let i_pattern = fld.cx.pat_ident(span, local_ident); let arm = fld.cx.arm(span, vec!(i_pattern), loop_expr); // why these clone()'s everywhere? I guess I'll follow the pattern.... let match_expr = fld.cx.expr_match(span, discrim, vec!(arm)); fld.fold_expr(match_expr).clone() } ast::ExprLoop(loop_block, opt_ident) => { let (loop_block, opt_ident) = expand_loop_block(loop_block, opt_ident, fld); fld.cx.expr(e.span, ast::ExprLoop(loop_block, opt_ident)) } ast::ExprFnBlock(fn_decl, block) => { let (rewritten_fn_decl, rewritten_block) = expand_and_rename_fn_decl_and_block(fn_decl, block, fld); let new_node = ast::ExprFnBlock(rewritten_fn_decl, rewritten_block); box(GC) ast::Expr{id:e.id, node: new_node, span: fld.new_span(e.span)} } ast::ExprProc(fn_decl, block) => { let (rewritten_fn_decl, rewritten_block) = expand_and_rename_fn_decl_and_block(fn_decl, block, fld); let new_node = ast::ExprProc(rewritten_fn_decl, rewritten_block); box(GC) ast::Expr{id:e.id, node: new_node, span: fld.new_span(e.span)} } _ => noop_fold_expr(e, fld) } } /// Expand a (not-ident-style) macro invocation. Returns the result /// of expansion and the mark which must be applied to the result. /// Our current interface doesn't allow us to apply the mark to the /// result until after calling make_expr, make_items, etc. fn expand_mac_invoc(mac: &ast::Mac, span: &codemap::Span, parse_thunk: |Box|->Option, mark_thunk: |T,Mrk|->T, fld: &mut MacroExpander) -> Option { match (*mac).node { // it would almost certainly be cleaner to pass the whole // macro invocation in, rather than pulling it apart and // marking the tts and the ctxt separately. This also goes // for the other three macro invocation chunks of code // in this file. // Token-tree macros: MacInvocTT(ref pth, ref tts, _) => { if pth.segments.len() > 1u { fld.cx.span_err(pth.span, "expected macro name without module \ separators"); // let compilation continue return None; } let extname = pth.segments.get(0).identifier; let extnamestr = token::get_ident(extname); match fld.extsbox.find(&extname.name) { None => { fld.cx.span_err( pth.span, format!("macro undefined: '{}!'", extnamestr.get()).as_slice()); // let compilation continue None } Some(&NormalTT(ref expandfun, exp_span)) => { fld.cx.bt_push(ExpnInfo { call_site: *span, callee: NameAndSpan { name: extnamestr.get().to_string(), format: MacroBang, span: exp_span, }, }); let fm = fresh_mark(); let marked_before = mark_tts(tts.as_slice(), fm); // The span that we pass to the expanders we want to // be the root of the call stack. That's the most // relevant span and it's the actual invocation of // the macro. let mac_span = original_span(fld.cx); let expanded = expandfun.expand(fld.cx, mac_span.call_site, marked_before.as_slice()); let parsed = match parse_thunk(expanded) { Some(e) => e, None => { fld.cx.span_err( pth.span, format!("non-expression macro in expression position: {}", extnamestr.get().as_slice() ).as_slice()); return None; } }; Some(mark_thunk(parsed,fm)) } _ => { fld.cx.span_err( pth.span, format!("'{}' is not a tt-style macro", extnamestr.get()).as_slice()); None } } } } } /// Rename loop label and expand its loop body /// /// The renaming procedure for loop is different in the sense that the loop /// body is in a block enclosed by loop head so the renaming of loop label /// must be propagated to the enclosed context. fn expand_loop_block(loop_block: P, opt_ident: Option, fld: &mut MacroExpander) -> (P, Option) { match opt_ident { Some(label) => { let new_label = fresh_name(&label); let rename = (label, new_label); // The rename *must not* be added to the pending list of current // syntax context otherwise an unrelated `break` or `continue` in // the same context will pick that up in the deferred renaming pass // and be renamed incorrectly. let mut rename_list = vec!(rename); let mut rename_fld = IdentRenamer{renames: &mut rename_list}; let renamed_ident = rename_fld.fold_ident(label); // The rename *must* be added to the enclosed syntax context for // `break` or `continue` to pick up because by definition they are // in a block enclosed by loop head. fld.extsbox.push_frame(); fld.extsbox.info().pending_renames.push(rename); let expanded_block = expand_block_elts(&*loop_block, fld); fld.extsbox.pop_frame(); (expanded_block, Some(renamed_ident)) } None => (fld.fold_block(loop_block), opt_ident) } } // eval $e with a new exts frame. // must be a macro so that $e isn't evaluated too early. macro_rules! with_exts_frame ( ($extsboxexpr:expr,$macros_escape:expr,$e:expr) => ({$extsboxexpr.push_frame(); $extsboxexpr.info().macros_escape = $macros_escape; let result = $e; $extsboxexpr.pop_frame(); result }) ) // When we enter a module, record it, for the sake of `module!` fn expand_item(it: Gc, fld: &mut MacroExpander) -> SmallVector> { let it = expand_item_modifiers(it, fld); let mut decorator_items = SmallVector::zero(); let mut new_attrs = Vec::new(); for attr in it.attrs.iter() { let mname = attr.name(); match fld.extsbox.find(&intern(mname.get())) { Some(&ItemDecorator(dec_fn)) => { attr::mark_used(attr); fld.cx.bt_push(ExpnInfo { call_site: attr.span, callee: NameAndSpan { name: mname.get().to_string(), format: MacroAttribute, span: None } }); // we'd ideally decorator_items.push_all(expand_item(item, fld)), // but that double-mut-borrows fld let mut items: SmallVector> = SmallVector::zero(); dec_fn(fld.cx, attr.span, attr.node.value, it, |item| items.push(item)); decorator_items.extend(items.move_iter() .flat_map(|item| expand_item(item, fld).move_iter())); fld.cx.bt_pop(); } _ => new_attrs.push((*attr).clone()), } } let mut new_items = match it.node { ast::ItemMac(..) => expand_item_mac(it, fld), ast::ItemMod(_) | ast::ItemForeignMod(_) => { fld.cx.mod_push(it.ident); let macro_escape = contains_macro_escape(new_attrs.as_slice()); let result = with_exts_frame!(fld.extsbox, macro_escape, noop_fold_item(&*it, fld)); fld.cx.mod_pop(); result }, _ => { let it = box(GC) ast::Item { attrs: new_attrs, ..(*it).clone() }; noop_fold_item(&*it, fld) } }; new_items.push_all(decorator_items); new_items } fn expand_item_modifiers(mut it: Gc, fld: &mut MacroExpander) -> Gc { // partition the attributes into ItemModifiers and others let (modifiers, other_attrs) = it.attrs.partitioned(|attr| { match fld.extsbox.find(&intern(attr.name().get())) { Some(&ItemModifier(_)) => true, _ => false } }); // update the attrs, leave everything else alone. Is this mutation really a good idea? it = box(GC) ast::Item { attrs: other_attrs, ..(*it).clone() }; if modifiers.is_empty() { return it; } for attr in modifiers.iter() { let mname = attr.name(); match fld.extsbox.find(&intern(mname.get())) { Some(&ItemModifier(dec_fn)) => { attr::mark_used(attr); fld.cx.bt_push(ExpnInfo { call_site: attr.span, callee: NameAndSpan { name: mname.get().to_string(), format: MacroAttribute, span: None, } }); it = dec_fn(fld.cx, attr.span, attr.node.value, it); fld.cx.bt_pop(); } _ => unreachable!() } } // expansion may have added new ItemModifiers expand_item_modifiers(it, fld) } /// Expand item_underscore fn expand_item_underscore(item: &ast::Item_, fld: &mut MacroExpander) -> ast::Item_ { match *item { ast::ItemFn(decl, fn_style, abi, ref generics, body) => { let (rewritten_fn_decl, rewritten_body) = expand_and_rename_fn_decl_and_block(decl,body,fld); let expanded_generics = fold::fold_generics(generics,fld); ast::ItemFn(rewritten_fn_decl, fn_style, abi, expanded_generics, rewritten_body) } _ => noop_fold_item_underscore(&*item, fld) } } // does this attribute list contain "macro_escape" ? fn contains_macro_escape(attrs: &[ast::Attribute]) -> bool { attr::contains_name(attrs, "macro_escape") } // Support for item-position macro invocations, exactly the same // logic as for expression-position macro invocations. fn expand_item_mac(it: Gc, fld: &mut MacroExpander) -> SmallVector> { let (pth, tts) = match it.node { ItemMac(codemap::Spanned { node: MacInvocTT(ref pth, ref tts, _), .. }) => { (pth, (*tts).clone()) } _ => fld.cx.span_bug(it.span, "invalid item macro invocation") }; let extname = pth.segments.get(0).identifier; let extnamestr = token::get_ident(extname); let fm = fresh_mark(); let expanded = match fld.extsbox.find(&extname.name) { None => { fld.cx.span_err(pth.span, format!("macro undefined: '{}!'", extnamestr).as_slice()); // let compilation continue return SmallVector::zero(); } Some(&NormalTT(ref expander, span)) => { if it.ident.name != parse::token::special_idents::invalid.name { fld.cx .span_err(pth.span, format!("macro {}! expects no ident argument, \ given '{}'", extnamestr, token::get_ident(it.ident)).as_slice()); return SmallVector::zero(); } fld.cx.bt_push(ExpnInfo { call_site: it.span, callee: NameAndSpan { name: extnamestr.get().to_string(), format: MacroBang, span: span } }); // mark before expansion: let marked_before = mark_tts(tts.as_slice(), fm); expander.expand(fld.cx, it.span, marked_before.as_slice()) } Some(&IdentTT(ref expander, span)) => { if it.ident.name == parse::token::special_idents::invalid.name { fld.cx.span_err(pth.span, format!("macro {}! expects an ident argument", extnamestr.get()).as_slice()); return SmallVector::zero(); } fld.cx.bt_push(ExpnInfo { call_site: it.span, callee: NameAndSpan { name: extnamestr.get().to_string(), format: MacroBang, span: span } }); // mark before expansion: let marked_tts = mark_tts(tts.as_slice(), fm); expander.expand(fld.cx, it.span, it.ident, marked_tts) } Some(&LetSyntaxTT(ref expander, span)) => { if it.ident.name == parse::token::special_idents::invalid.name { fld.cx.span_err(pth.span, format!("macro {}! expects an ident argument", extnamestr.get()).as_slice()); return SmallVector::zero(); } fld.cx.bt_push(ExpnInfo { call_site: it.span, callee: NameAndSpan { name: extnamestr.get().to_string(), format: MacroBang, span: span } }); // DON'T mark before expansion: expander.expand(fld.cx, it.span, it.ident, tts) } _ => { fld.cx.span_err(it.span, format!("{}! is not legal in item position", extnamestr.get()).as_slice()); return SmallVector::zero(); } }; let items = match expanded.make_def() { Some(MacroDef { name, ext }) => { // hidden invariant: this should only be possible as the // result of expanding a LetSyntaxTT, and thus doesn't // need to be marked. Not that it could be marked anyway. // create issue to recommend refactoring here? fld.extsbox.insert(intern(name.as_slice()), ext); if attr::contains_name(it.attrs.as_slice(), "macro_export") { fld.cx.push_exported_macro(it.span); } SmallVector::zero() } None => { match expanded.make_items() { Some(items) => { items.move_iter() .map(|i| mark_item(i, fm)) .flat_map(|i| fld.fold_item(i).move_iter()) .collect() } None => { fld.cx.span_err(pth.span, format!("non-item macro in item position: {}", extnamestr.get()).as_slice()); return SmallVector::zero(); } } } }; fld.cx.bt_pop(); return items; } /// Expand a stmt // // I don't understand why this returns a vector... it looks like we're // half done adding machinery to allow macros to expand into multiple statements. fn expand_stmt(s: &Stmt, fld: &mut MacroExpander) -> SmallVector> { let (mac, semi) = match s.node { StmtMac(ref mac, semi) => (mac, semi), _ => return expand_non_macro_stmt(s, fld) }; let expanded_stmt = match expand_mac_invoc(mac,&s.span, |r|{r.make_stmt()}, |sts,mrk|{mark_stmt(sts,mrk)}, fld) { Some(stmt) => stmt, None => { return SmallVector::zero(); } }; // Keep going, outside-in. let fully_expanded = fld.fold_stmt(&*expanded_stmt); fld.cx.bt_pop(); let fully_expanded: SmallVector> = fully_expanded.move_iter() .map(|s| box(GC) Spanned { span: s.span, node: s.node.clone() }) .collect(); fully_expanded.move_iter().map(|s| { match s.node { StmtExpr(e, stmt_id) if semi => { box(GC) Spanned { span: s.span, node: StmtSemi(e, stmt_id) } } _ => s /* might already have a semi */ } }).collect() } // expand a non-macro stmt. this is essentially the fallthrough for // expand_stmt, above. fn expand_non_macro_stmt(s: &Stmt, fld: &mut MacroExpander) -> SmallVector> { // is it a let? match s.node { StmtDecl(decl, node_id) => { match *decl { Spanned { node: DeclLocal(ref local), span: stmt_span } => { // take it apart: let Local { ty: _, pat: pat, init: init, id: id, span: span, source: source, } = **local; // expand the pat (it might contain macro uses): let expanded_pat = fld.fold_pat(pat); // find the PatIdents in the pattern: // oh dear heaven... this is going to include the enum // names, as well... but that should be okay, as long as // the new names are gensyms for the old ones. // generate fresh names, push them to a new pending list let idents = pattern_bindings(expanded_pat); let mut new_pending_renames = idents.iter().map(|ident| (*ident, fresh_name(ident))).collect(); // rewrite the pattern using the new names (the old // ones have already been applied): let rewritten_pat = { // nested binding to allow borrow to expire: let mut rename_fld = IdentRenamer{renames: &mut new_pending_renames}; rename_fld.fold_pat(expanded_pat) }; // add them to the existing pending renames: fld.extsbox.info().pending_renames.push_all_move(new_pending_renames); // also, don't forget to expand the init: let new_init_opt = init.map(|e| fld.fold_expr(e)); let rewritten_local = box(GC) Local { ty: local.ty, pat: rewritten_pat, init: new_init_opt, id: id, span: span, source: source }; SmallVector::one(box(GC) Spanned { node: StmtDecl(box(GC) Spanned { node: DeclLocal(rewritten_local), span: stmt_span }, node_id), span: span }) } _ => noop_fold_stmt(s, fld), } }, _ => noop_fold_stmt(s, fld), } } // expand the arm of a 'match', renaming for macro hygiene fn expand_arm(arm: &ast::Arm, fld: &mut MacroExpander) -> ast::Arm { // expand pats... they might contain macro uses: let expanded_pats : Vec> = arm.pats.iter().map(|pat| fld.fold_pat(*pat)).collect(); if expanded_pats.len() == 0 { fail!("encountered match arm with 0 patterns"); } // all of the pats must have the same set of bindings, so use the // first one to extract them and generate new names: let first_pat = expanded_pats.get(0); let idents = pattern_bindings(*first_pat); let new_renames = idents.iter().map(|id| (*id,fresh_name(id))).collect(); // apply the renaming, but only to the PatIdents: let mut rename_pats_fld = PatIdentRenamer{renames:&new_renames}; let rewritten_pats = expanded_pats.iter().map(|pat| rename_pats_fld.fold_pat(*pat)).collect(); // apply renaming and then expansion to the guard and the body: let mut rename_fld = IdentRenamer{renames:&new_renames}; let rewritten_guard = arm.guard.map(|g| fld.fold_expr(rename_fld.fold_expr(g))); let rewritten_body = fld.fold_expr(rename_fld.fold_expr(arm.body)); ast::Arm { attrs: arm.attrs.iter().map(|x| fld.fold_attribute(*x)).collect(), pats: rewritten_pats, guard: rewritten_guard, body: rewritten_body, } } /// A visitor that extracts the PatIdent (binding) paths /// from a given thingy and puts them in a mutable /// array #[deriving(Clone)] struct PatIdentFinder { ident_accumulator: Vec , } impl Visitor<()> for PatIdentFinder { fn visit_pat(&mut self, pattern: &ast::Pat, _: ()) { match *pattern { ast::Pat { id: _, node: ast::PatIdent(_, ref path1, ref inner), span: _ } => { self.ident_accumulator.push(path1.node); // visit optional subpattern of PatIdent: for subpat in inner.iter() { self.visit_pat(&**subpat, ()) } } // use the default traversal for non-PatIdents _ => visit::walk_pat(self, pattern, ()) } } } /// find the PatIdent paths in a pattern fn pattern_bindings(pat : &ast::Pat) -> Vec { let mut name_finder = PatIdentFinder{ident_accumulator:Vec::new()}; name_finder.visit_pat(pat,()); name_finder.ident_accumulator } /// find the PatIdent paths in a fn fn_decl_arg_bindings(fn_decl: &ast::FnDecl) -> Vec { let mut pat_idents = PatIdentFinder{ident_accumulator:Vec::new()}; for arg in fn_decl.inputs.iter() { pat_idents.visit_pat(arg.pat,()); } pat_idents.ident_accumulator } // expand a block. pushes a new exts_frame, then calls expand_block_elts fn expand_block(blk: &Block, fld: &mut MacroExpander) -> P { // see note below about treatment of exts table with_exts_frame!(fld.extsbox,false, expand_block_elts(blk, fld)) } // expand the elements of a block. fn expand_block_elts(b: &Block, fld: &mut MacroExpander) -> P { let new_view_items = b.view_items.iter().map(|x| fld.fold_view_item(x)).collect(); let new_stmts = b.stmts.iter().flat_map(|x| { // perform all pending renames let renamed_stmt = { let pending_renames = &mut fld.extsbox.info().pending_renames; let mut rename_fld = IdentRenamer{renames:pending_renames}; rename_fld.fold_stmt(&**x).expect_one("rename_fold didn't return one value") }; // expand macros in the statement fld.fold_stmt(&*renamed_stmt).move_iter() }).collect(); let new_expr = b.expr.map(|x| { let expr = { let pending_renames = &mut fld.extsbox.info().pending_renames; let mut rename_fld = IdentRenamer{renames:pending_renames}; rename_fld.fold_expr(x) }; fld.fold_expr(expr) }); P(Block { view_items: new_view_items, stmts: new_stmts, expr: new_expr, id: fld.new_id(b.id), rules: b.rules, span: b.span, }) } fn expand_pat(p: Gc, fld: &mut MacroExpander) -> Gc { let (pth, tts) = match p.node { PatMac(ref mac) => { match mac.node { MacInvocTT(ref pth, ref tts, _) => { (pth, (*tts).clone()) } } } _ => return noop_fold_pat(p, fld), }; if pth.segments.len() > 1u { fld.cx.span_err(pth.span, "expected macro name without module separators"); return DummyResult::raw_pat(p.span); } let extname = pth.segments.get(0).identifier; let extnamestr = token::get_ident(extname); let marked_after = match fld.extsbox.find(&extname.name) { None => { fld.cx.span_err(pth.span, format!("macro undefined: '{}!'", extnamestr).as_slice()); // let compilation continue return DummyResult::raw_pat(p.span); } Some(&NormalTT(ref expander, span)) => { fld.cx.bt_push(ExpnInfo { call_site: p.span, callee: NameAndSpan { name: extnamestr.get().to_string(), format: MacroBang, span: span } }); let fm = fresh_mark(); let marked_before = mark_tts(tts.as_slice(), fm); let mac_span = original_span(fld.cx); let expanded = match expander.expand(fld.cx, mac_span.call_site, marked_before.as_slice()).make_pat() { Some(e) => e, None => { fld.cx.span_err( pth.span, format!( "non-pattern macro in pattern position: {}", extnamestr.get() ).as_slice() ); return DummyResult::raw_pat(p.span); } }; // mark after: mark_pat(expanded,fm) } _ => { fld.cx.span_err(p.span, format!("{}! is not legal in pattern position", extnamestr.get()).as_slice()); return DummyResult::raw_pat(p.span); } }; let fully_expanded = fld.fold_pat(marked_after).node.clone(); fld.cx.bt_pop(); box(GC) ast::Pat { id: ast::DUMMY_NODE_ID, node: fully_expanded, span: p.span, } } /// A tree-folder that applies every rename in its (mutable) list /// to every identifier, including both bindings and varrefs /// (and lots of things that will turn out to be neither) pub struct IdentRenamer<'a> { renames: &'a mtwt::RenameList, } impl<'a> Folder for IdentRenamer<'a> { fn fold_ident(&mut self, id: Ident) -> Ident { Ident { name: id.name, ctxt: mtwt::apply_renames(self.renames, id.ctxt), } } fn fold_mac(&mut self, macro: &ast::Mac) -> ast::Mac { fold::fold_mac(macro, self) } } /// A tree-folder that applies every rename in its list to /// the idents that are in PatIdent patterns. This is more narrowly /// focused than IdentRenamer, and is needed for FnDecl, /// where we want to rename the args but not the fn name or the generics etc. pub struct PatIdentRenamer<'a> { renames: &'a mtwt::RenameList, } impl<'a> Folder for PatIdentRenamer<'a> { fn fold_pat(&mut self, pat: Gc) -> Gc { match pat.node { ast::PatIdent(binding_mode, Spanned{span: ref sp, node: id}, ref sub) => { let new_ident = Ident{name: id.name, ctxt: mtwt::apply_renames(self.renames, id.ctxt)}; let new_node = ast::PatIdent(binding_mode, Spanned{span: self.new_span(*sp), node: new_ident}, sub.map(|p| self.fold_pat(p))); box(GC) ast::Pat { id: pat.id, span: self.new_span(pat.span), node: new_node, } }, _ => noop_fold_pat(pat, self) } } fn fold_mac(&mut self, macro: &ast::Mac) -> ast::Mac { fold::fold_mac(macro, self) } } // expand a method fn expand_method(m: &ast::Method, fld: &mut MacroExpander) -> SmallVector> { let id = fld.new_id(m.id); match m.node { ast::MethDecl(ident, ref generics, ref explicit_self, fn_style, decl, body, vis) => { let (rewritten_fn_decl, rewritten_body) = expand_and_rename_fn_decl_and_block(decl,body,fld); SmallVector::one(box(GC) ast::Method { attrs: m.attrs.iter().map(|a| fld.fold_attribute(*a)).collect(), id: id, span: fld.new_span(m.span), node: ast::MethDecl(fld.fold_ident(ident), fold_generics(generics, fld), fld.fold_explicit_self(explicit_self), fn_style, rewritten_fn_decl, rewritten_body, vis) }) }, ast::MethMac(ref mac) => { let maybe_new_methods = expand_mac_invoc(mac, &m.span, |r|{r.make_methods()}, |meths,mark|{ meths.move_iter().map(|m|{mark_method(m,mark)}) .collect()}, fld); let new_methods = match maybe_new_methods { Some(methods) => methods, None => SmallVector::zero() }; // expand again if necessary new_methods.move_iter().flat_map(|m| fld.fold_method(m).move_iter()).collect() } } } /// Given a fn_decl and a block and a MacroExpander, expand the fn_decl, then use the /// PatIdents in its arguments to perform renaming in the FnDecl and /// the block, returning both the new FnDecl and the new Block. fn expand_and_rename_fn_decl_and_block(fn_decl: &ast::FnDecl, block: Gc, fld: &mut MacroExpander) -> (Gc, Gc) { let expanded_decl = fld.fold_fn_decl(fn_decl); let idents = fn_decl_arg_bindings(expanded_decl); let renames = idents.iter().map(|id : &ast::Ident| (*id,fresh_name(id))).collect(); // first, a renamer for the PatIdents, for the fn_decl: let mut rename_pat_fld = PatIdentRenamer{renames: &renames}; let rewritten_fn_decl = rename_pat_fld.fold_fn_decl(expanded_decl); // now, a renamer for *all* idents, for the body: let mut rename_fld = IdentRenamer{renames: &renames}; let rewritten_body = fld.fold_block(rename_fld.fold_block(block)); (rewritten_fn_decl,rewritten_body) } /// A tree-folder that performs macro expansion pub struct MacroExpander<'a, 'b> { pub extsbox: SyntaxEnv, pub cx: &'a mut ExtCtxt<'b>, } impl<'a, 'b> Folder for MacroExpander<'a, 'b> { fn fold_expr(&mut self, expr: Gc) -> Gc { expand_expr(expr, self) } fn fold_pat(&mut self, pat: Gc) -> Gc { expand_pat(pat, self) } fn fold_item(&mut self, item: Gc) -> SmallVector> { expand_item(item, self) } fn fold_item_underscore(&mut self, item: &ast::Item_) -> ast::Item_ { expand_item_underscore(item, self) } fn fold_stmt(&mut self, stmt: &ast::Stmt) -> SmallVector> { expand_stmt(stmt, self) } fn fold_block(&mut self, block: P) -> P { expand_block(&*block, self) } fn fold_arm(&mut self, arm: &ast::Arm) -> ast::Arm { expand_arm(arm, self) } fn fold_method(&mut self, method: Gc) -> SmallVector> { expand_method(method, self) } fn new_span(&mut self, span: Span) -> Span { new_span(self.cx, span) } } fn new_span(cx: &ExtCtxt, sp: Span) -> Span { /* this discards information in the case of macro-defining macros */ Span { lo: sp.lo, hi: sp.hi, expn_info: cx.backtrace(), } } pub struct ExpansionConfig { pub deriving_hash_type_parameter: bool, pub crate_name: String, } pub struct ExportedMacros { pub crate_name: Ident, pub macros: Vec, } pub fn expand_crate(parse_sess: &parse::ParseSess, cfg: ExpansionConfig, // these are the macros being imported to this crate: macros: Vec, user_exts: Vec, c: Crate) -> Crate { let mut cx = ExtCtxt::new(parse_sess, c.config.clone(), cfg); let mut expander = MacroExpander { extsbox: syntax_expander_table(), cx: &mut cx, }; for ExportedMacros { crate_name, macros } in macros.move_iter() { let name = format!("<{} macros>", token::get_ident(crate_name)) .into_string(); for source in macros.move_iter() { let item = parse::parse_item_from_source_str(name.clone(), source, expander.cx.cfg(), expander.cx.parse_sess()) .expect("expected a serialized item"); expand_item_mac(item, &mut expander); } } for (name, extension) in user_exts.move_iter() { expander.extsbox.insert(name, extension); } let mut ret = expander.fold_crate(c); ret.exported_macros = expander.cx.exported_macros.clone(); parse_sess.span_diagnostic.handler().abort_if_errors(); return ret; } // HYGIENIC CONTEXT EXTENSION: // all of these functions are for walking over // ASTs and making some change to the context of every // element that has one. a CtxtFn is a trait-ified // version of a closure in (SyntaxContext -> SyntaxContext). // the ones defined here include: // Marker - add a mark to a context // A Marker adds the given mark to the syntax context struct Marker { mark: Mrk } impl Folder for Marker { fn fold_ident(&mut self, id: Ident) -> Ident { ast::Ident { name: id.name, ctxt: mtwt::apply_mark(self.mark, id.ctxt) } } fn fold_mac(&mut self, m: &ast::Mac) -> ast::Mac { let macro = match m.node { MacInvocTT(ref path, ref tts, ctxt) => { MacInvocTT(self.fold_path(path), fold_tts(tts.as_slice(), self), mtwt::apply_mark(self.mark, ctxt)) } }; Spanned { node: macro, span: m.span, } } } // apply a given mark to the given token trees. Used prior to expansion of a macro. fn mark_tts(tts: &[TokenTree], m: Mrk) -> Vec { fold_tts(tts, &mut Marker{mark:m}) } // apply a given mark to the given expr. Used following the expansion of a macro. fn mark_expr(expr: Gc, m: Mrk) -> Gc { Marker{mark:m}.fold_expr(expr) } // apply a given mark to the given pattern. Used following the expansion of a macro. fn mark_pat(pat: Gc, m: Mrk) -> Gc { Marker{mark:m}.fold_pat(pat) } // apply a given mark to the given stmt. Used following the expansion of a macro. fn mark_stmt(expr: &ast::Stmt, m: Mrk) -> Gc { Marker{mark:m}.fold_stmt(expr) .expect_one("marking a stmt didn't return exactly one stmt") } // apply a given mark to the given item. Used following the expansion of a macro. fn mark_item(expr: Gc, m: Mrk) -> Gc { Marker{mark:m}.fold_item(expr) .expect_one("marking an item didn't return exactly one item") } // apply a given mark to the given item. Used following the expansion of a macro. fn mark_method(expr: Gc, m: Mrk) -> Gc { Marker{mark:m}.fold_method(expr) .expect_one("marking an item didn't return exactly one method") } fn original_span(cx: &ExtCtxt) -> Gc { let mut relevant_info = cx.backtrace(); let mut einfo = relevant_info.unwrap(); loop { match relevant_info { None => { break } Some(e) => { einfo = e; relevant_info = einfo.call_site.expn_info; } } } return einfo; } /// Check that there are no macro invocations left in the AST: pub fn check_for_macros(sess: &parse::ParseSess, krate: &ast::Crate) { visit::walk_crate(&mut MacroExterminator{sess:sess}, krate, ()); } /// A visitor that ensures that no macro invocations remain in an AST. struct MacroExterminator<'a>{ sess: &'a parse::ParseSess } impl<'a> visit::Visitor<()> for MacroExterminator<'a> { fn visit_mac(&mut self, macro: &ast::Mac, _:()) { self.sess.span_diagnostic.span_bug(macro.span, "macro exterminator: expected AST \ with no macro invocations"); } } #[cfg(test)] mod test { use super::{pattern_bindings, expand_crate, contains_macro_escape}; use super::{PatIdentFinder, IdentRenamer, PatIdentRenamer}; use ast; use ast::{Attribute_, AttrOuter, MetaWord, Name}; use attr; use codemap; use codemap::Spanned; use ext::mtwt; use fold::Folder; use parse; use parse::token; use util::parser_testing::{string_to_parser}; use util::parser_testing::{string_to_pat, string_to_crate, strs_to_idents}; use visit; use visit::Visitor; use std::gc::GC; // a visitor that extracts the paths // from a given thingy and puts them in a mutable // array (passed in to the traversal) #[deriving(Clone)] struct PathExprFinderContext { path_accumulator: Vec , } impl Visitor<()> for PathExprFinderContext { fn visit_expr(&mut self, expr: &ast::Expr, _: ()) { match *expr { ast::Expr{id:_,span:_,node:ast::ExprPath(ref p)} => { self.path_accumulator.push(p.clone()); // not calling visit_path, but it should be fine. } _ => visit::walk_expr(self,expr,()) } } } // find the variable references in a crate fn crate_varrefs(the_crate : &ast::Crate) -> Vec { let mut path_finder = PathExprFinderContext{path_accumulator:Vec::new()}; visit::walk_crate(&mut path_finder, the_crate, ()); path_finder.path_accumulator } /// A Visitor that extracts the identifiers from a thingy. // as a side note, I'm starting to want to abstract over these.... struct IdentFinder{ ident_accumulator: Vec } impl Visitor<()> for IdentFinder { fn visit_ident(&mut self, _: codemap::Span, id: ast::Ident, _: ()){ self.ident_accumulator.push(id); } } /// Find the idents in a crate fn crate_idents(the_crate: &ast::Crate) -> Vec { let mut ident_finder = IdentFinder{ident_accumulator: Vec::new()}; visit::walk_crate(&mut ident_finder, the_crate, ()); ident_finder.ident_accumulator } // these following tests are quite fragile, in that they don't test what // *kind* of failure occurs. // make sure that macros can't escape fns #[should_fail] #[test] fn macros_cant_escape_fns_test () { let src = "fn bogus() {macro_rules! z (() => (3+4))}\ fn inty() -> int { z!() }".to_string(); let sess = parse::new_parse_sess(); let crate_ast = parse::parse_crate_from_source_str( "".to_string(), src, Vec::new(), &sess); // should fail: let cfg = ::syntax::ext::expand::ExpansionConfig { deriving_hash_type_parameter: false, crate_name: "test".to_string(), }; expand_crate(&sess,cfg,vec!(),vec!(),crate_ast); } // make sure that macros can't escape modules #[should_fail] #[test] fn macros_cant_escape_mods_test () { let src = "mod foo {macro_rules! z (() => (3+4))}\ fn inty() -> int { z!() }".to_string(); let sess = parse::new_parse_sess(); let crate_ast = parse::parse_crate_from_source_str( "".to_string(), src, Vec::new(), &sess); let cfg = ::syntax::ext::expand::ExpansionConfig { deriving_hash_type_parameter: false, crate_name: "test".to_string(), }; expand_crate(&sess,cfg,vec!(),vec!(),crate_ast); } // macro_escape modules should allow macros to escape #[test] fn macros_can_escape_flattened_mods_test () { let src = "#[macro_escape] mod foo {macro_rules! z (() => (3+4))}\ fn inty() -> int { z!() }".to_string(); let sess = parse::new_parse_sess(); let crate_ast = parse::parse_crate_from_source_str( "".to_string(), src, Vec::new(), &sess); let cfg = ::syntax::ext::expand::ExpansionConfig { deriving_hash_type_parameter: false, crate_name: "test".to_string(), }; expand_crate(&sess, cfg, vec!(), vec!(), crate_ast); } #[test] fn test_contains_flatten (){ let attr1 = make_dummy_attr ("foo"); let attr2 = make_dummy_attr ("bar"); let escape_attr = make_dummy_attr ("macro_escape"); let attrs1 = vec!(attr1, escape_attr, attr2); assert_eq!(contains_macro_escape(attrs1.as_slice()),true); let attrs2 = vec!(attr1,attr2); assert_eq!(contains_macro_escape(attrs2.as_slice()),false); } // make a MetaWord outer attribute with the given name fn make_dummy_attr(s: &str) -> ast::Attribute { Spanned { span:codemap::DUMMY_SP, node: Attribute_ { id: attr::mk_attr_id(), style: AttrOuter, value: box(GC) Spanned { node: MetaWord(token::intern_and_get_ident(s)), span: codemap::DUMMY_SP, }, is_sugared_doc: false, } } } fn expand_crate_str(crate_str: String) -> ast::Crate { let ps = parse::new_parse_sess(); let crate_ast = string_to_parser(&ps, crate_str).parse_crate_mod(); // the cfg argument actually does matter, here... let cfg = ::syntax::ext::expand::ExpansionConfig { deriving_hash_type_parameter: false, crate_name: "test".to_string(), }; expand_crate(&ps,cfg,vec!(),vec!(),crate_ast) } // find the pat_ident paths in a crate fn crate_bindings(the_crate : &ast::Crate) -> Vec { let mut name_finder = PatIdentFinder{ident_accumulator:Vec::new()}; visit::walk_crate(&mut name_finder, the_crate, ()); name_finder.ident_accumulator } //fn expand_and_resolve(crate_str: @str) -> ast::crate { //let expanded_ast = expand_crate_str(crate_str); // println!("expanded: {:?}\n",expanded_ast); //mtwt_resolve_crate(expanded_ast) //} //fn expand_and_resolve_and_pretty_print (crate_str: @str) -> String { //let resolved_ast = expand_and_resolve(crate_str); //pprust::to_string(&resolved_ast,fake_print_crate,get_ident_interner()) //} #[test] fn macro_tokens_should_match(){ expand_crate_str( "macro_rules! m((a)=>(13)) fn main(){m!(a);}".to_string()); } // should be able to use a bound identifier as a literal in a macro definition: #[test] fn self_macro_parsing(){ expand_crate_str( "macro_rules! foo ((zz) => (287u;)) fn f(zz : int) {foo!(zz);}".to_string() ); } // renaming tests expand a crate and then check that the bindings match // the right varrefs. The specification of the test case includes the // text of the crate, and also an array of arrays. Each element in the // outer array corresponds to a binding in the traversal of the AST // induced by visit. Each of these arrays contains a list of indexes, // interpreted as the varrefs in the varref traversal that this binding // should match. So, for instance, in a program with two bindings and // three varrefs, the array ~[~[1,2],~[0]] would indicate that the first // binding should match the second two varrefs, and the second binding // should match the first varref. // // Put differently; this is a sparse representation of a boolean matrix // indicating which bindings capture which identifiers. // // Note also that this matrix is dependent on the implicit ordering of // the bindings and the varrefs discovered by the name-finder and the path-finder. // // The comparisons are done post-mtwt-resolve, so we're comparing renamed // names; differences in marks don't matter any more. // // oog... I also want tests that check "bound-identifier-=?". That is, // not just "do these have the same name", but "do they have the same // name *and* the same marks"? Understanding this is really pretty painful. // in principle, you might want to control this boolean on a per-varref basis, // but that would make things even harder to understand, and might not be // necessary for thorough testing. type RenamingTest = (&'static str, Vec>, bool); #[test] fn automatic_renaming () { let tests: Vec = vec!(// b & c should get new names throughout, in the expr too: ("fn a() -> int { let b = 13; let c = b; b+c }", vec!(vec!(0,1),vec!(2)), false), // both x's should be renamed (how is this causing a bug?) ("fn main () {let x: int = 13;x;}", vec!(vec!(0)), false), // the use of b after the + should be renamed, the other one not: ("macro_rules! f (($x:ident) => (b + $x)) fn a() -> int { let b = 13; f!(b)}", vec!(vec!(1)), false), // the b before the plus should not be renamed (requires marks) ("macro_rules! f (($x:ident) => ({let b=9; ($x + b)})) fn a() -> int { f!(b)}", vec!(vec!(1)), false), // the marks going in and out of letty should cancel, allowing that $x to // capture the one following the semicolon. // this was an awesome test case, and caught a *lot* of bugs. ("macro_rules! letty(($x:ident) => (let $x = 15;)) macro_rules! user(($x:ident) => ({letty!($x); $x})) fn main() -> int {user!(z)}", vec!(vec!(0)), false) ); for (idx,s) in tests.iter().enumerate() { run_renaming_test(s,idx); } } // no longer a fixme #8062: this test exposes a *potential* bug; our system does // not behave exactly like MTWT, but a conversation with Matthew Flatt // suggests that this can only occur in the presence of local-expand, which // we have no plans to support. ... unless it's needed for item hygiene.... #[ignore] #[test] fn issue_8062(){ run_renaming_test( &("fn main() {let hrcoo = 19; macro_rules! getx(()=>(hrcoo)); getx!();}", vec!(vec!(0)), true), 0) } // FIXME #6994: // the z flows into and out of two macros (g & f) along one path, and one // (just g) along the other, so the result of the whole thing should // be "let z_123 = 3; z_123" #[ignore] #[test] fn issue_6994(){ run_renaming_test( &("macro_rules! g (($x:ident) => ({macro_rules! f(($y:ident)=>({let $y=3;$x}));f!($x)})) fn a(){g!(z)}", vec!(vec!(0)),false), 0) } // match variable hygiene. Should expand into // fn z() {match 8 {x_1 => {match 9 {x_2 | x_2 if x_2 == x_1 => x_2 + x_1}}}} #[test] fn issue_9384(){ run_renaming_test( &("macro_rules! bad_macro (($ex:expr) => ({match 9 {x | x if x == $ex => x + $ex}})) fn z() {match 8 {x => bad_macro!(x)}}", // NB: the third "binding" is the repeat of the second one. vec!(vec!(1,3),vec!(0,2),vec!(0,2)), true), 0) } // interpolated nodes weren't getting labeled. // should expand into // fn main(){let g1_1 = 13; g1_1}} #[test] fn pat_expand_issue_15221(){ run_renaming_test( &("macro_rules! inner ( ($e:pat ) => ($e)) macro_rules! outer ( ($e:pat ) => (inner!($e))) fn main() { let outer!(g) = 13; g;}", vec!(vec!(0)), true), 0) } // create a really evil test case where a $x appears inside a binding of $x // but *shouldn't* bind because it was inserted by a different macro.... // can't write this test case until we have macro-generating macros. // method arg hygiene // method expands to fn get_x(&self_0, x_1:int) {self_0 + self_2 + x_3 + x_1} #[test] fn method_arg_hygiene(){ run_renaming_test( &("macro_rules! inject_x (()=>(x)) macro_rules! inject_self (()=>(self)) struct A; impl A{fn get_x(&self, x: int) {self + inject_self!() + inject_x!() + x;} }", vec!(vec!(0),vec!(3)), true), 0) } // ooh, got another bite? // expands to struct A; impl A {fn thingy(&self_1) {self_1;}} #[test] fn method_arg_hygiene_2(){ run_renaming_test( &("struct A; macro_rules! add_method (($T:ty) => (impl $T { fn thingy(&self) {self;} })) add_method!(A)", vec!(vec!(0)), true), 0) } // item fn hygiene // expands to fn q(x_1:int){fn g(x_2:int){x_2 + x_1};} #[test] fn issue_9383(){ run_renaming_test( &("macro_rules! bad_macro (($ex:expr) => (fn g(x:int){ x + $ex })) fn q(x:int) { bad_macro!(x); }", vec!(vec!(1),vec!(0)),true), 0) } // closure arg hygiene (ExprFnBlock) // expands to fn f(){(|x_1 : int| {(x_2 + x_1)})(3);} #[test] fn closure_arg_hygiene(){ run_renaming_test( &("macro_rules! inject_x (()=>(x)) fn f(){(|x : int| {(inject_x!() + x)})(3);}", vec!(vec!(1)), true), 0) } // closure arg hygiene (ExprProc) // expands to fn f(){(proc(x_1 : int) {(x_2 + x_1)})(3);} #[test] fn closure_arg_hygiene_2(){ run_renaming_test( &("macro_rules! inject_x (()=>(x)) fn f(){ (proc(x : int){(inject_x!() + x)})(3); }", vec!(vec!(1)), true), 0) } // macro_rules in method position. Sadly, unimplemented. #[test] fn macro_in_method_posn(){ expand_crate_str( "macro_rules! my_method (() => (fn thirteen(&self) -> int {13})) struct A; impl A{ my_method!()} fn f(){A.thirteen;}".to_string()); } // another nested macro // expands to impl Entries {fn size_hint(&self_1) {self_1;} #[test] fn item_macro_workaround(){ run_renaming_test( &("macro_rules! item { ($i:item) => {$i}} struct Entries; macro_rules! iterator_impl { () => { item!( impl Entries { fn size_hint(&self) { self;}})}} iterator_impl! { }", vec!(vec!(0)), true), 0) } // run one of the renaming tests fn run_renaming_test(t: &RenamingTest, test_idx: uint) { let invalid_name = token::special_idents::invalid.name; let (teststr, bound_connections, bound_ident_check) = match *t { (ref str,ref conns, bic) => (str.to_owned(), conns.clone(), bic) }; let cr = expand_crate_str(teststr.to_string()); let bindings = crate_bindings(&cr); let varrefs = crate_varrefs(&cr); // must be one check clause for each binding: assert_eq!(bindings.len(),bound_connections.len()); for (binding_idx,shouldmatch) in bound_connections.iter().enumerate() { let binding_name = mtwt::resolve(*bindings.get(binding_idx)); let binding_marks = mtwt::marksof(bindings.get(binding_idx).ctxt, invalid_name); // shouldmatch can't name varrefs that don't exist: assert!((shouldmatch.len() == 0) || (varrefs.len() > *shouldmatch.iter().max().unwrap())); for (idx,varref) in varrefs.iter().enumerate() { let print_hygiene_debug_info = || { // good lord, you can't make a path with 0 segments, can you? let final_varref_ident = match varref.segments.last() { Some(pathsegment) => pathsegment.identifier, None => fail!("varref with 0 path segments?") }; let varref_name = mtwt::resolve(final_varref_ident); let varref_idents : Vec = varref.segments.iter().map(|s| s.identifier) .collect(); println!("varref #{}: {}, resolves to {}",idx, varref_idents, varref_name); let string = token::get_ident(final_varref_ident); println!("varref's first segment's string: \"{}\"", string.get()); println!("binding #{}: {}, resolves to {}", binding_idx, *bindings.get(binding_idx), binding_name); mtwt::with_sctable(|x| mtwt::display_sctable(x)); }; if shouldmatch.contains(&idx) { // it should be a path of length 1, and it should // be free-identifier=? or bound-identifier=? to the given binding assert_eq!(varref.segments.len(),1); let varref_name = mtwt::resolve(varref.segments.get(0).identifier); let varref_marks = mtwt::marksof(varref.segments .get(0) .identifier .ctxt, invalid_name); if !(varref_name==binding_name) { println!("uh oh, should match but doesn't:"); print_hygiene_debug_info(); } assert_eq!(varref_name,binding_name); if bound_ident_check { // we're checking bound-identifier=?, and the marks // should be the same, too: assert_eq!(varref_marks,binding_marks.clone()); } } else { let varref_name = mtwt::resolve(varref.segments.get(0).identifier); let fail = (varref.segments.len() == 1) && (varref_name == binding_name); // temp debugging: if fail { println!("failure on test {}",test_idx); println!("text of test case: \"{}\"", teststr); println!(""); println!("uh oh, matches but shouldn't:"); print_hygiene_debug_info(); } assert!(!fail); } } } } #[test] fn fmt_in_macro_used_inside_module_macro() { let crate_str = "macro_rules! fmt_wrap(($b:expr)=>($b.to_string())) macro_rules! foo_module (() => (mod generated { fn a() { let xx = 147; fmt_wrap!(xx);}})) foo_module!() ".to_string(); let cr = expand_crate_str(crate_str); // find the xx binding let bindings = crate_bindings(&cr); let cxbinds: Vec<&ast::Ident> = bindings.iter().filter(|b| { let ident = token::get_ident(**b); let string = ident.get(); "xx" == string }).collect(); let cxbinds: &[&ast::Ident] = cxbinds.as_slice(); let cxbind = match cxbinds { [b] => b, _ => fail!("expected just one binding for ext_cx") }; let resolved_binding = mtwt::resolve(*cxbind); let varrefs = crate_varrefs(&cr); // the xx binding should bind all of the xx varrefs: for (idx,v) in varrefs.iter().filter(|p| { p.segments.len() == 1 && "xx" == token::get_ident(p.segments.get(0).identifier).get() }).enumerate() { if mtwt::resolve(v.segments.get(0).identifier) != resolved_binding { println!("uh oh, xx binding didn't match xx varref:"); println!("this is xx varref \\# {:?}",idx); println!("binding: {:?}",cxbind); println!("resolves to: {:?}",resolved_binding); println!("varref: {:?}",v.segments.get(0).identifier); println!("resolves to: {:?}", mtwt::resolve(v.segments.get(0).identifier)); mtwt::with_sctable(|x| mtwt::display_sctable(x)); } assert_eq!(mtwt::resolve(v.segments.get(0).identifier), resolved_binding); }; } #[test] fn pat_idents(){ let pat = string_to_pat( "(a,Foo{x:c @ (b,9),y:Bar(4,d)})".to_string()); let idents = pattern_bindings(pat); assert_eq!(idents, strs_to_idents(vec!("a","c","b","d"))); } // test the list of identifier patterns gathered by the visitor. Note that // 'None' is listed as an identifier pattern because we don't yet know that // it's the name of a 0-ary variant, and that 'i' appears twice in succession. #[test] fn crate_bindings_test(){ let the_crate = string_to_crate("fn main (a : int) -> int {|b| { match 34 {None => 3, Some(i) | i => j, Foo{k:z,l:y} => \"banana\"}} }".to_string()); let idents = crate_bindings(&the_crate); assert_eq!(idents, strs_to_idents(vec!("a","b","None","i","i","z","y"))); } // test the IdentRenamer directly #[test] fn ident_renamer_test () { let the_crate = string_to_crate("fn f(x : int){let x = x; x}".to_string()); let f_ident = token::str_to_ident("f"); let x_ident = token::str_to_ident("x"); let int_ident = token::str_to_ident("int"); let renames = vec!((x_ident,Name(16))); let mut renamer = IdentRenamer{renames: &renames}; let renamed_crate = renamer.fold_crate(the_crate); let idents = crate_idents(&renamed_crate); let resolved : Vec = idents.iter().map(|id| mtwt::resolve(*id)).collect(); assert_eq!(resolved,vec!(f_ident.name,Name(16),int_ident.name,Name(16),Name(16),Name(16))); } // test the PatIdentRenamer; only PatIdents get renamed #[test] fn pat_ident_renamer_test () { let the_crate = string_to_crate("fn f(x : int){let x = x; x}".to_string()); let f_ident = token::str_to_ident("f"); let x_ident = token::str_to_ident("x"); let int_ident = token::str_to_ident("int"); let renames = vec!((x_ident,Name(16))); let mut renamer = PatIdentRenamer{renames: &renames}; let renamed_crate = renamer.fold_crate(the_crate); let idents = crate_idents(&renamed_crate); let resolved : Vec = idents.iter().map(|id| mtwt::resolve(*id)).collect(); let x_name = x_ident.name; assert_eq!(resolved,vec!(f_ident.name,Name(16),int_ident.name,Name(16),x_name,x_name)); } }