//! Conditional compilation stripping. use crate::base::Annotatable; use rustc_ast::attr::HasAttrs; use rustc_ast::mut_visit::*; use rustc_ast::ptr::P; use rustc_ast::token::{DelimToken, Token, TokenKind}; use rustc_ast::tokenstream::{DelimSpan, LazyTokenStream, Spacing, TokenStream, TokenTree}; use rustc_ast::{self as ast, AttrItem, Attribute, MetaItem}; use rustc_attr as attr; use rustc_data_structures::fx::FxHashMap; use rustc_data_structures::map_in_place::MapInPlace; use rustc_errors::{error_code, struct_span_err, Applicability, Handler}; use rustc_feature::{Feature, Features, State as FeatureState}; use rustc_feature::{ ACCEPTED_FEATURES, ACTIVE_FEATURES, REMOVED_FEATURES, STABLE_REMOVED_FEATURES, }; use rustc_parse::{parse_in, validate_attr}; use rustc_session::parse::feature_err; use rustc_session::Session; use rustc_span::edition::{Edition, ALL_EDITIONS}; use rustc_span::symbol::{sym, Symbol}; use rustc_span::{Span, DUMMY_SP}; use smallvec::SmallVec; /// A folder that strips out items that do not belong in the current configuration. pub struct StripUnconfigured<'a> { pub sess: &'a Session, pub features: Option<&'a Features>, pub modified: bool, } fn get_features( sess: &Session, span_handler: &Handler, krate_attrs: &[ast::Attribute], ) -> Features { fn feature_removed(span_handler: &Handler, span: Span, reason: Option<&str>) { let mut err = struct_span_err!(span_handler, span, E0557, "feature has been removed"); err.span_label(span, "feature has been removed"); if let Some(reason) = reason { err.note(reason); } err.emit(); } fn active_features_up_to(edition: Edition) -> impl Iterator { ACTIVE_FEATURES.iter().filter(move |feature| { if let Some(feature_edition) = feature.edition { feature_edition <= edition } else { false } }) } let mut features = Features::default(); let mut edition_enabled_features = FxHashMap::default(); let crate_edition = sess.edition(); for &edition in ALL_EDITIONS { if edition <= crate_edition { // The `crate_edition` implies its respective umbrella feature-gate // (i.e., `#![feature(rust_20XX_preview)]` isn't needed on edition 20XX). edition_enabled_features.insert(edition.feature_name(), edition); } } for feature in active_features_up_to(crate_edition) { feature.set(&mut features, DUMMY_SP); edition_enabled_features.insert(feature.name, crate_edition); } // Process the edition umbrella feature-gates first, to ensure // `edition_enabled_features` is completed before it's queried. for attr in krate_attrs { if !sess.check_name(attr, sym::feature) { continue; } let list = match attr.meta_item_list() { Some(list) => list, None => continue, }; for mi in list { if !mi.is_word() { continue; } let name = mi.name_or_empty(); let edition = ALL_EDITIONS.iter().find(|e| name == e.feature_name()).copied(); if let Some(edition) = edition { if edition <= crate_edition { continue; } for feature in active_features_up_to(edition) { // FIXME(Manishearth) there is currently no way to set // lib features by edition feature.set(&mut features, DUMMY_SP); edition_enabled_features.insert(feature.name, edition); } } } } for attr in krate_attrs { if !sess.check_name(attr, sym::feature) { continue; } let list = match attr.meta_item_list() { Some(list) => list, None => continue, }; let bad_input = |span| { struct_span_err!(span_handler, span, E0556, "malformed `feature` attribute input") }; for mi in list { let name = match mi.ident() { Some(ident) if mi.is_word() => ident.name, Some(ident) => { bad_input(mi.span()) .span_suggestion( mi.span(), "expected just one word", format!("{}", ident.name), Applicability::MaybeIncorrect, ) .emit(); continue; } None => { bad_input(mi.span()).span_label(mi.span(), "expected just one word").emit(); continue; } }; if let Some(edition) = edition_enabled_features.get(&name) { let msg = &format!("the feature `{}` is included in the Rust {} edition", name, edition); span_handler.struct_span_warn_with_code(mi.span(), msg, error_code!(E0705)).emit(); continue; } if ALL_EDITIONS.iter().any(|e| name == e.feature_name()) { // Handled in the separate loop above. continue; } let removed = REMOVED_FEATURES.iter().find(|f| name == f.name); let stable_removed = STABLE_REMOVED_FEATURES.iter().find(|f| name == f.name); if let Some(Feature { state, .. }) = removed.or(stable_removed) { if let FeatureState::Removed { reason } | FeatureState::Stabilized { reason } = state { feature_removed(span_handler, mi.span(), *reason); continue; } } if let Some(Feature { since, .. }) = ACCEPTED_FEATURES.iter().find(|f| name == f.name) { let since = Some(Symbol::intern(since)); features.declared_lang_features.push((name, mi.span(), since)); continue; } if let Some(allowed) = sess.opts.debugging_opts.allow_features.as_ref() { if allowed.iter().find(|&f| name.as_str() == *f).is_none() { struct_span_err!( span_handler, mi.span(), E0725, "the feature `{}` is not in the list of allowed features", name ) .emit(); continue; } } if let Some(f) = ACTIVE_FEATURES.iter().find(|f| name == f.name) { f.set(&mut features, mi.span()); features.declared_lang_features.push((name, mi.span(), None)); continue; } features.declared_lib_features.push((name, mi.span())); } } features } // `cfg_attr`-process the crate's attributes and compute the crate's features. pub fn features(sess: &Session, mut krate: ast::Crate) -> (ast::Crate, Features) { let mut strip_unconfigured = StripUnconfigured { sess, features: None, modified: false }; let unconfigured_attrs = krate.attrs.clone(); let diag = &sess.parse_sess.span_diagnostic; let err_count = diag.err_count(); let features = match strip_unconfigured.configure(krate.attrs) { None => { // The entire crate is unconfigured. krate.attrs = Vec::new(); krate.module.items = Vec::new(); Features::default() } Some(attrs) => { krate.attrs = attrs; let features = get_features(sess, diag, &krate.attrs); if err_count == diag.err_count() { // Avoid reconfiguring malformed `cfg_attr`s. strip_unconfigured.features = Some(&features); strip_unconfigured.configure(unconfigured_attrs); } features } }; (krate, features) } #[macro_export] macro_rules! configure { ($this:ident, $node:ident) => { match $this.configure($node) { Some(node) => node, None => return Default::default(), } }; } const CFG_ATTR_GRAMMAR_HELP: &str = "#[cfg_attr(condition, attribute, other_attribute, ...)]"; const CFG_ATTR_NOTE_REF: &str = "for more information, visit \ "; impl<'a> StripUnconfigured<'a> { pub fn configure(&mut self, mut node: T) -> Option { self.process_cfg_attrs(&mut node); if self.in_cfg(node.attrs()) { Some(node) } else { self.modified = true; None } } /// Parse and expand all `cfg_attr` attributes into a list of attributes /// that are within each `cfg_attr` that has a true configuration predicate. /// /// Gives compiler warnings if any `cfg_attr` does not contain any /// attributes and is in the original source code. Gives compiler errors if /// the syntax of any `cfg_attr` is incorrect. pub fn process_cfg_attrs(&mut self, node: &mut T) { node.visit_attrs(|attrs| { attrs.flat_map_in_place(|attr| self.process_cfg_attr(attr)); }); } /// Parse and expand a single `cfg_attr` attribute into a list of attributes /// when the configuration predicate is true, or otherwise expand into an /// empty list of attributes. /// /// Gives a compiler warning when the `cfg_attr` contains no attributes and /// is in the original source file. Gives a compiler error if the syntax of /// the attribute is incorrect. fn process_cfg_attr(&mut self, attr: Attribute) -> Vec { if !attr.has_name(sym::cfg_attr) { return vec![attr]; } // A `#[cfg_attr]` either gets removed, or replaced with a new attribute self.modified = true; let (cfg_predicate, expanded_attrs) = match self.parse_cfg_attr(&attr) { None => return vec![], Some(r) => r, }; // Lint on zero attributes in source. if expanded_attrs.is_empty() { return vec![attr]; } // At this point we know the attribute is considered used. self.sess.mark_attr_used(&attr); if !attr::cfg_matches(&cfg_predicate, &self.sess.parse_sess, self.features) { return vec![]; } // We call `process_cfg_attr` recursively in case there's a // `cfg_attr` inside of another `cfg_attr`. E.g. // `#[cfg_attr(false, cfg_attr(true, some_attr))]`. expanded_attrs .into_iter() .flat_map(|(item, span)| { let orig_tokens = attr.tokens(); // We are taking an attribute of the form `#[cfg_attr(pred, attr)]` // and producing an attribute of the form `#[attr]`. We // have captured tokens for `attr` itself, but we need to // synthesize tokens for the wrapper `#` and `[]`, which // we do below. // Use the `#` in `#[cfg_attr(pred, attr)]` as the `#` token // for `attr` when we expand it to `#[attr]` let pound_token = orig_tokens.trees().next().unwrap(); if !matches!(pound_token, TokenTree::Token(Token { kind: TokenKind::Pound, .. })) { panic!("Bad tokens for attribute {:?}", attr); } // We don't really have a good span to use for the syntheized `[]` // in `#[attr]`, so just use the span of the `#` token. let bracket_group = TokenTree::Delimited( DelimSpan::from_single(pound_token.span()), DelimToken::Bracket, item.tokens .as_ref() .unwrap_or_else(|| panic!("Missing tokens for {:?}", item)) .create_token_stream(), ); let tokens = Some(LazyTokenStream::new(TokenStream::new(vec![ (pound_token, Spacing::Alone), (bracket_group, Spacing::Alone), ]))); self.process_cfg_attr(attr::mk_attr_from_item(item, tokens, attr.style, span)) }) .collect() } fn parse_cfg_attr(&self, attr: &Attribute) -> Option<(MetaItem, Vec<(AttrItem, Span)>)> { match attr.get_normal_item().args { ast::MacArgs::Delimited(dspan, delim, ref tts) if !tts.is_empty() => { let msg = "wrong `cfg_attr` delimiters"; validate_attr::check_meta_bad_delim(&self.sess.parse_sess, dspan, delim, msg); match parse_in(&self.sess.parse_sess, tts.clone(), "`cfg_attr` input", |p| { p.parse_cfg_attr() }) { Ok(r) => return Some(r), Err(mut e) => { e.help(&format!("the valid syntax is `{}`", CFG_ATTR_GRAMMAR_HELP)) .note(CFG_ATTR_NOTE_REF) .emit(); } } } _ => self.error_malformed_cfg_attr_missing(attr.span), } None } fn error_malformed_cfg_attr_missing(&self, span: Span) { self.sess .parse_sess .span_diagnostic .struct_span_err(span, "malformed `cfg_attr` attribute input") .span_suggestion( span, "missing condition and attribute", CFG_ATTR_GRAMMAR_HELP.to_string(), Applicability::HasPlaceholders, ) .note(CFG_ATTR_NOTE_REF) .emit(); } /// Determines if a node with the given attributes should be included in this configuration. pub fn in_cfg(&self, attrs: &[Attribute]) -> bool { attrs.iter().all(|attr| { if !is_cfg(self.sess, attr) { return true; } let meta_item = match validate_attr::parse_meta(&self.sess.parse_sess, attr) { Ok(meta_item) => meta_item, Err(mut err) => { err.emit(); return true; } }; let error = |span, msg, suggestion: &str| { let mut err = self.sess.parse_sess.span_diagnostic.struct_span_err(span, msg); if !suggestion.is_empty() { err.span_suggestion( span, "expected syntax is", suggestion.into(), Applicability::MaybeIncorrect, ); } err.emit(); true }; let span = meta_item.span; match meta_item.meta_item_list() { None => error(span, "`cfg` is not followed by parentheses", "cfg(/* predicate */)"), Some([]) => error(span, "`cfg` predicate is not specified", ""), Some([_, .., l]) => error(l.span(), "multiple `cfg` predicates are specified", ""), Some([single]) => match single.meta_item() { Some(meta_item) => { attr::cfg_matches(meta_item, &self.sess.parse_sess, self.features) } None => error(single.span(), "`cfg` predicate key cannot be a literal", ""), }, } }) } /// Visit attributes on expression and statements (but not attributes on items in blocks). fn visit_expr_attrs(&mut self, attrs: &[Attribute]) { // flag the offending attributes for attr in attrs.iter() { self.maybe_emit_expr_attr_err(attr); } } /// If attributes are not allowed on expressions, emit an error for `attr` pub fn maybe_emit_expr_attr_err(&self, attr: &Attribute) { if !self.features.map(|features| features.stmt_expr_attributes).unwrap_or(true) { let mut err = feature_err( &self.sess.parse_sess, sym::stmt_expr_attributes, attr.span, "attributes on expressions are experimental", ); if attr.is_doc_comment() { err.help("`///` is for documentation comments. For a plain comment, use `//`."); } err.emit(); } } pub fn configure_foreign_mod(&mut self, foreign_mod: &mut ast::ForeignMod) { let ast::ForeignMod { unsafety: _, abi: _, items } = foreign_mod; items.flat_map_in_place(|item| self.configure(item)); } fn configure_variant_data(&mut self, vdata: &mut ast::VariantData) { match vdata { ast::VariantData::Struct(fields, ..) | ast::VariantData::Tuple(fields, _) => { fields.flat_map_in_place(|field| self.configure(field)) } ast::VariantData::Unit(_) => {} } } pub fn configure_item_kind(&mut self, item: &mut ast::ItemKind) { match item { ast::ItemKind::Struct(def, _generics) | ast::ItemKind::Union(def, _generics) => { self.configure_variant_data(def) } ast::ItemKind::Enum(ast::EnumDef { variants }, _generics) => { variants.flat_map_in_place(|variant| self.configure(variant)); for variant in variants { self.configure_variant_data(&mut variant.data); } } _ => {} } } pub fn configure_expr_kind(&mut self, expr_kind: &mut ast::ExprKind) { match expr_kind { ast::ExprKind::Match(_m, arms) => { arms.flat_map_in_place(|arm| self.configure(arm)); } ast::ExprKind::Struct(_path, fields, _base) => { fields.flat_map_in_place(|field| self.configure(field)); } _ => {} } } pub fn configure_expr(&mut self, expr: &mut P) { self.visit_expr_attrs(expr.attrs()); // If an expr is valid to cfg away it will have been removed by the // outer stmt or expression folder before descending in here. // Anything else is always required, and thus has to error out // in case of a cfg attr. // // N.B., this is intentionally not part of the visit_expr() function // in order for filter_map_expr() to be able to avoid this check if let Some(attr) = expr.attrs().iter().find(|a| is_cfg(self.sess, a)) { let msg = "removing an expression is not supported in this position"; self.sess.parse_sess.span_diagnostic.span_err(attr.span, msg); } self.process_cfg_attrs(expr) } pub fn configure_pat(&mut self, pat: &mut P) { if let ast::PatKind::Struct(_path, fields, _etc) = &mut pat.kind { fields.flat_map_in_place(|field| self.configure(field)); } } pub fn configure_fn_decl(&mut self, fn_decl: &mut ast::FnDecl) { fn_decl.inputs.flat_map_in_place(|arg| self.configure(arg)); } pub fn fully_configure(&mut self, item: Annotatable) -> Annotatable { // Since the item itself has already been configured by the InvocationCollector, // we know that fold result vector will contain exactly one element match item { Annotatable::Item(item) => Annotatable::Item(self.flat_map_item(item).pop().unwrap()), Annotatable::TraitItem(item) => { Annotatable::TraitItem(self.flat_map_trait_item(item).pop().unwrap()) } Annotatable::ImplItem(item) => { Annotatable::ImplItem(self.flat_map_impl_item(item).pop().unwrap()) } Annotatable::ForeignItem(item) => { Annotatable::ForeignItem(self.flat_map_foreign_item(item).pop().unwrap()) } Annotatable::Stmt(stmt) => { Annotatable::Stmt(stmt.map(|stmt| self.flat_map_stmt(stmt).pop().unwrap())) } Annotatable::Expr(mut expr) => Annotatable::Expr({ self.visit_expr(&mut expr); expr }), Annotatable::Arm(arm) => Annotatable::Arm(self.flat_map_arm(arm).pop().unwrap()), Annotatable::Field(field) => { Annotatable::Field(self.flat_map_field(field).pop().unwrap()) } Annotatable::FieldPat(fp) => { Annotatable::FieldPat(self.flat_map_field_pattern(fp).pop().unwrap()) } Annotatable::GenericParam(param) => { Annotatable::GenericParam(self.flat_map_generic_param(param).pop().unwrap()) } Annotatable::Param(param) => { Annotatable::Param(self.flat_map_param(param).pop().unwrap()) } Annotatable::StructField(sf) => { Annotatable::StructField(self.flat_map_struct_field(sf).pop().unwrap()) } Annotatable::Variant(v) => { Annotatable::Variant(self.flat_map_variant(v).pop().unwrap()) } } } } impl<'a> MutVisitor for StripUnconfigured<'a> { fn visit_foreign_mod(&mut self, foreign_mod: &mut ast::ForeignMod) { self.configure_foreign_mod(foreign_mod); noop_visit_foreign_mod(foreign_mod, self); } fn visit_item_kind(&mut self, item: &mut ast::ItemKind) { self.configure_item_kind(item); noop_visit_item_kind(item, self); } fn visit_expr(&mut self, expr: &mut P) { self.configure_expr(expr); self.configure_expr_kind(&mut expr.kind); noop_visit_expr(expr, self); } fn filter_map_expr(&mut self, expr: P) -> Option> { let mut expr = configure!(self, expr); self.configure_expr_kind(&mut expr.kind); noop_visit_expr(&mut expr, self); Some(expr) } fn flat_map_generic_param( &mut self, param: ast::GenericParam, ) -> SmallVec<[ast::GenericParam; 1]> { noop_flat_map_generic_param(configure!(self, param), self) } fn flat_map_stmt(&mut self, stmt: ast::Stmt) -> SmallVec<[ast::Stmt; 1]> { noop_flat_map_stmt(configure!(self, stmt), self) } fn flat_map_item(&mut self, item: P) -> SmallVec<[P; 1]> { noop_flat_map_item(configure!(self, item), self) } fn flat_map_impl_item(&mut self, item: P) -> SmallVec<[P; 1]> { noop_flat_map_assoc_item(configure!(self, item), self) } fn flat_map_trait_item(&mut self, item: P) -> SmallVec<[P; 1]> { noop_flat_map_assoc_item(configure!(self, item), self) } fn visit_pat(&mut self, pat: &mut P) { self.configure_pat(pat); noop_visit_pat(pat, self) } fn visit_fn_decl(&mut self, mut fn_decl: &mut P) { self.configure_fn_decl(&mut fn_decl); noop_visit_fn_decl(fn_decl, self); } } fn is_cfg(sess: &Session, attr: &Attribute) -> bool { sess.check_name(attr, sym::cfg) }