// Not in interpret to make sure we do not use private implementation details use std::convert::TryFrom; use rustc_hir::Mutability; use rustc_middle::mir; use rustc_middle::mir::interpret::{EvalToValTreeResult, GlobalId}; use rustc_middle::ty::{self, TyCtxt}; use rustc_span::{source_map::DUMMY_SP, symbol::Symbol}; use crate::interpret::{ intern_const_alloc_recursive, ConstValue, InternKind, InterpCx, InterpResult, MemPlaceMeta, Scalar, }; mod error; mod eval_queries; mod fn_queries; mod machine; mod valtrees; pub use error::*; pub use eval_queries::*; pub use fn_queries::*; pub use machine::*; pub(crate) use valtrees::{const_to_valtree_inner, valtree_to_const_value}; pub(crate) fn const_caller_location( tcx: TyCtxt<'_>, (file, line, col): (Symbol, u32, u32), ) -> ConstValue<'_> { trace!("const_caller_location: {}:{}:{}", file, line, col); let mut ecx = mk_eval_cx(tcx, DUMMY_SP, ty::ParamEnv::reveal_all(), false); let loc_place = ecx.alloc_caller_location(file, line, col); if intern_const_alloc_recursive(&mut ecx, InternKind::Constant, &loc_place).is_err() { bug!("intern_const_alloc_recursive should not error in this case") } ConstValue::Scalar(Scalar::from_maybe_pointer(loc_place.ptr, &tcx)) } // We forbid type-level constants that contain more than `VALTREE_MAX_NODES` nodes. const VALTREE_MAX_NODES: usize = 1000; pub(crate) enum ValTreeCreationError { NodesOverflow, NonSupportedType, Other, } pub(crate) type ValTreeCreationResult<'tcx> = Result, ValTreeCreationError>; /// Evaluates a constant and turns it into a type-level constant value. pub(crate) fn eval_to_valtree<'tcx>( tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>, cid: GlobalId<'tcx>, ) -> EvalToValTreeResult<'tcx> { let const_alloc = tcx.eval_to_allocation_raw(param_env.and(cid))?; let ecx = mk_eval_cx( tcx, DUMMY_SP, param_env, // It is absolutely crucial for soundness that // we do not read from static items or other mutable memory. false, ); let place = ecx.raw_const_to_mplace(const_alloc).unwrap(); debug!(?place); let mut num_nodes = 0; let valtree_result = const_to_valtree_inner(&ecx, &place, &mut num_nodes); match valtree_result { Ok(valtree) => Ok(Some(valtree)), Err(err) => { let did = cid.instance.def_id(); let s = cid.display(tcx); match err { ValTreeCreationError::NodesOverflow => { let msg = format!("maximum number of nodes exceeded in constant {}", &s); let mut diag = match tcx.hir().span_if_local(did) { Some(span) => tcx.sess.struct_span_err(span, &msg), None => tcx.sess.struct_err(&msg), }; diag.emit(); Ok(None) } ValTreeCreationError::NonSupportedType | ValTreeCreationError::Other => Ok(None), } } } } /// This function should never fail for validated constants. However, it is also invoked from the /// pretty printer which might attempt to format invalid constants and in that case it might fail. pub(crate) fn try_destructure_const<'tcx>( tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>, val: ty::Const<'tcx>, ) -> InterpResult<'tcx, mir::DestructuredConst<'tcx>> { trace!("destructure_const: {:?}", val); let ecx = mk_eval_cx(tcx, DUMMY_SP, param_env, false); let op = ecx.const_to_op(val, None)?; // We go to `usize` as we cannot allocate anything bigger anyway. let (field_count, variant, down) = match val.ty().kind() { ty::Array(_, len) => (usize::try_from(len.eval_usize(tcx, param_env)).unwrap(), None, op), // Checks if we have any variants, to avoid downcasting to a non-existing variant (when // there are no variants `read_discriminant` successfully returns a non-existing variant // index). ty::Adt(def, _) if def.variants().is_empty() => throw_ub!(Unreachable), ty::Adt(def, _) => { let variant = ecx.read_discriminant(&op)?.1; let down = ecx.operand_downcast(&op, variant)?; (def.variant(variant).fields.len(), Some(variant), down) } ty::Tuple(substs) => (substs.len(), None, op), _ => bug!("cannot destructure constant {:?}", val), }; let fields = (0..field_count) .map(|i| { let field_op = ecx.operand_field(&down, i)?; let val = op_to_const(&ecx, &field_op); Ok(ty::Const::from_value(tcx, val, field_op.layout.ty)) }) .collect::>>()?; let fields = tcx.arena.alloc_from_iter(fields); Ok(mir::DestructuredConst { variant, fields }) } #[instrument(skip(tcx), level = "debug")] pub(crate) fn try_destructure_mir_constant<'tcx>( tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>, val: mir::ConstantKind<'tcx>, ) -> InterpResult<'tcx, mir::DestructuredMirConstant<'tcx>> { trace!("destructure_mir_constant: {:?}", val); let ecx = mk_eval_cx(tcx, DUMMY_SP, param_env, false); let op = ecx.mir_const_to_op(&val, None)?; // We go to `usize` as we cannot allocate anything bigger anyway. let (field_count, variant, down) = match val.ty().kind() { ty::Array(_, len) => (len.eval_usize(tcx, param_env) as usize, None, op), ty::Adt(def, _) if def.variants().is_empty() => { throw_ub!(Unreachable) } ty::Adt(def, _) => { let variant = ecx.read_discriminant(&op).unwrap().1; let down = ecx.operand_downcast(&op, variant).unwrap(); (def.variants()[variant].fields.len(), Some(variant), down) } ty::Tuple(substs) => (substs.len(), None, op), _ => bug!("cannot destructure mir constant {:?}", val), }; let fields_iter = (0..field_count) .map(|i| { let field_op = ecx.operand_field(&down, i)?; let val = op_to_const(&ecx, &field_op); Ok(mir::ConstantKind::Val(val, field_op.layout.ty)) }) .collect::>>()?; let fields = tcx.arena.alloc_from_iter(fields_iter); Ok(mir::DestructuredMirConstant { variant, fields }) } #[instrument(skip(tcx), level = "debug")] pub(crate) fn deref_const<'tcx>( tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>, val: ty::Const<'tcx>, ) -> ty::Const<'tcx> { trace!("deref_const: {:?}", val); let ecx = mk_eval_cx(tcx, DUMMY_SP, param_env, false); let op = ecx.const_to_op(val, None).unwrap(); let mplace = ecx.deref_operand(&op).unwrap(); if let Some(alloc_id) = mplace.ptr.provenance { assert_eq!( tcx.get_global_alloc(alloc_id).unwrap().unwrap_memory().inner().mutability, Mutability::Not, "deref_const cannot be used with mutable allocations as \ that could allow pattern matching to observe mutable statics", ); } let ty = match mplace.meta { MemPlaceMeta::None => mplace.layout.ty, MemPlaceMeta::Poison => bug!("poison metadata in `deref_const`: {:#?}", mplace), // In case of unsized types, figure out the real type behind. MemPlaceMeta::Meta(scalar) => match mplace.layout.ty.kind() { ty::Str => bug!("there's no sized equivalent of a `str`"), ty::Slice(elem_ty) => tcx.mk_array(*elem_ty, scalar.to_machine_usize(&tcx).unwrap()), _ => bug!( "type {} should not have metadata, but had {:?}", mplace.layout.ty, mplace.meta ), }, }; tcx.mk_const(ty::ConstS { kind: ty::ConstKind::Value(op_to_const(&ecx, &mplace.into())), ty }) } #[instrument(skip(tcx), level = "debug")] pub(crate) fn deref_mir_constant<'tcx>( tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>, val: mir::ConstantKind<'tcx>, ) -> mir::ConstantKind<'tcx> { let ecx = mk_eval_cx(tcx, DUMMY_SP, param_env, false); let op = ecx.mir_const_to_op(&val, None).unwrap(); let mplace = ecx.deref_operand(&op).unwrap(); if let Some(alloc_id) = mplace.ptr.provenance { assert_eq!( tcx.get_global_alloc(alloc_id).unwrap().unwrap_memory().0.0.mutability, Mutability::Not, "deref_const cannot be used with mutable allocations as \ that could allow pattern matching to observe mutable statics", ); } let ty = match mplace.meta { MemPlaceMeta::None => mplace.layout.ty, MemPlaceMeta::Poison => bug!("poison metadata in `deref_const`: {:#?}", mplace), // In case of unsized types, figure out the real type behind. MemPlaceMeta::Meta(scalar) => match mplace.layout.ty.kind() { ty::Str => bug!("there's no sized equivalent of a `str`"), ty::Slice(elem_ty) => tcx.mk_array(*elem_ty, scalar.to_machine_usize(&tcx).unwrap()), _ => bug!( "type {} should not have metadata, but had {:?}", mplace.layout.ty, mplace.meta ), }, }; mir::ConstantKind::Val(op_to_const(&ecx, &mplace.into()), ty) }