use std::map::HashMap; use ast::{crate, expr_, expr_mac, mac_invoc, mac_invoc_tt, tt_delim, tt_tok, item_mac}; use fold::*; use ext::base::*; use ext::qquote::{qq_helper}; use parse::{parser, parse_expr_from_source_str, new_parser_from_tt}; use codemap::{span, expanded_from}; fn expand_expr(exts: HashMap<~str, syntax_extension>, cx: ext_ctxt, e: expr_, s: span, fld: ast_fold, orig: fn@(expr_, span, ast_fold) -> (expr_, span)) -> (expr_, span) { return match e { // expr_mac should really be expr_ext or something; it's the // entry-point for all syntax extensions. expr_mac(mac) => { // Old-style macros, for compatibility, will erase this whole // block once we've transitioned. match mac.node { mac_invoc(pth, args, body) => { assert (vec::len(pth.idents) > 0u); /* using idents and token::special_idents would make the the macro names be hygienic */ let extname = cx.parse_sess().interner.get(pth.idents[0]); match exts.find(*extname) { None => { cx.span_fatal(pth.span, fmt!("macro undefined: '%s'", *extname)) } Some(item_decorator(_)) => { cx.span_fatal( pth.span, fmt!("%s can only be used as a decorator", *extname)); } Some(normal({expander: exp, span: exp_sp})) => { let expanded = exp(cx, mac.span, args, body); cx.bt_push(expanded_from({call_site: s, callie: {name: *extname, span: exp_sp}})); //keep going, outside-in let fully_expanded = fld.fold_expr(expanded).node; cx.bt_pop(); (fully_expanded, s) } Some(macro_defining(ext)) => { let named_extension = ext(cx, mac.span, args, body); exts.insert(named_extension.name, named_extension.ext); (ast::expr_rec(~[], None), s) } Some(expr_tt(_)) => { cx.span_fatal(pth.span, fmt!("this tt-style macro should be \ invoked '%s!(...)'", *extname)) } Some(item_tt(*)) => { cx.span_fatal(pth.span, ~"cannot use item macros in this context"); } } } // Token-tree macros, these will be the only case when we're // finished transitioning. mac_invoc_tt(pth, tts) => { assert (vec::len(pth.idents) == 1u); /* using idents and token::special_idents would make the the macro names be hygienic */ let extname = cx.parse_sess().interner.get(pth.idents[0]); match exts.find(*extname) { None => { cx.span_fatal(pth.span, fmt!("macro undefined: '%s'", *extname)) } Some(expr_tt({expander: exp, span: exp_sp})) => { let expanded = match exp(cx, mac.span, tts) { mr_expr(e) => e, _ => cx.span_fatal( pth.span, fmt!("non-expr macro in expr pos: %s", *extname)) }; cx.bt_push(expanded_from({call_site: s, callie: {name: *extname, span: exp_sp}})); //keep going, outside-in let fully_expanded = fld.fold_expr(expanded).node; cx.bt_pop(); (fully_expanded, s) } Some(normal({expander: exp, span: exp_sp})) => { //convert the new-style invoc for the old-style macro let arg = base::tt_args_to_original_flavor(cx, pth.span, tts); let expanded = exp(cx, mac.span, arg, None); cx.bt_push(expanded_from({call_site: s, callie: {name: *extname, span: exp_sp}})); //keep going, outside-in let fully_expanded = fld.fold_expr(expanded).node; cx.bt_pop(); (fully_expanded, s) } _ => { cx.span_fatal(pth.span, fmt!("'%s' is not a tt-style macro", *extname)) } } } _ => cx.span_bug(mac.span, ~"naked syntactic bit") } } _ => orig(e, s, fld) }; } // This is a secondary mechanism for invoking syntax extensions on items: // "decorator" attributes, such as #[auto_serialize2]. These are invoked by an // attribute prefixing an item, and are interpreted by feeding the item // through the named attribute _as a syntax extension_ and splicing in the // resulting item vec into place in favour of the decorator. Note that // these do _not_ work for macro extensions, just item_decorator ones. // // NB: there is some redundancy between this and expand_item, below, and // they might benefit from some amount of semantic and language-UI merger. fn expand_mod_items(exts: HashMap<~str, syntax_extension>, cx: ext_ctxt, module_: ast::_mod, fld: ast_fold, orig: fn@(ast::_mod, ast_fold) -> ast::_mod) -> ast::_mod { // Fold the contents first: let module_ = orig(module_, fld); // For each item, look through the attributes. If any of them are // decorated with "item decorators", then use that function to transform // the item into a new set of items. let new_items = do vec::flat_map(module_.items) |item| { do vec::foldr(item.attrs, ~[*item]) |attr, items| { let mname = match attr.node.value.node { ast::meta_word(n) => n, ast::meta_name_value(n, _) => n, ast::meta_list(n, _) => n }; match exts.find(mname) { None | Some(normal(_)) | Some(macro_defining(_)) | Some(expr_tt(_)) | Some(item_tt(*)) => items, Some(item_decorator(dec_fn)) => { dec_fn(cx, attr.span, attr.node.value, items) } } } }; return {items: new_items, ..module_}; } // When we enter a module, record it, for the sake of `module!` fn expand_item(exts: HashMap<~str, syntax_extension>, cx: ext_ctxt, &&it: @ast::item, fld: ast_fold, orig: fn@(&&v: @ast::item, ast_fold) -> Option<@ast::item>) -> Option<@ast::item> { let is_mod = match it.node { ast::item_mod(_) | ast::item_foreign_mod(_) => true, _ => false }; let maybe_it = match it.node { ast::item_mac(*) => expand_item_mac(exts, cx, it, fld), _ => Some(it) }; match maybe_it { Some(it) => { if is_mod { cx.mod_push(it.ident); } let ret_val = orig(it, fld); if is_mod { cx.mod_pop(); } return ret_val; } None => return None } } // Support for item-position macro invocations, exactly the same // logic as for expression-position macro invocations. fn expand_item_mac(exts: HashMap<~str, syntax_extension>, cx: ext_ctxt, &&it: @ast::item, fld: ast_fold) -> Option<@ast::item> { match it.node { item_mac({node: mac_invoc_tt(pth, tts), _}) => { let extname = cx.parse_sess().interner.get(pth.idents[0]); match exts.find(*extname) { None => { cx.span_fatal(pth.span, fmt!("macro undefined: '%s'", *extname)) } Some(item_tt(expand)) => { let expanded = expand.expander(cx, it.span, it.ident, tts); cx.bt_push(expanded_from({call_site: it.span, callie: {name: *extname, span: expand.span}})); let maybe_it = match expanded { mr_item(it) => fld.fold_item(it), mr_expr(_) => cx.span_fatal(pth.span, ~"expr macro in item position: " + *extname), mr_def(mdef) => { exts.insert(mdef.name, mdef.ext); None } }; cx.bt_pop(); return maybe_it } _ => cx.span_fatal(it.span, fmt!("%s is not a legal here", *extname)) } } _ => cx.span_bug(it.span, ~"invalid item macro invocation") } } fn new_span(cx: ext_ctxt, sp: span) -> span { /* this discards information in the case of macro-defining macros */ return {lo: sp.lo, hi: sp.hi, expn_info: cx.backtrace()}; } // FIXME (#2247): this is a terrible kludge to inject some macros into // the default compilation environment. When the macro-definition system // is substantially more mature, these should move from here, into a // compiled part of libcore at very least. fn core_macros() -> ~str { return ~"{ macro_rules! ignore (($($x:tt)*) => (())) #macro[[#error[f, ...], log(core::error, #fmt[f, ...])]]; #macro[[#warn[f, ...], log(core::warn, #fmt[f, ...])]]; #macro[[#info[f, ...], log(core::info, #fmt[f, ...])]]; #macro[[#debug[f, ...], log(core::debug, #fmt[f, ...])]]; }"; } fn expand_crate(parse_sess: parse::parse_sess, cfg: ast::crate_cfg, c: @crate) -> @crate { let exts = syntax_expander_table(); let afp = default_ast_fold(); let cx: ext_ctxt = mk_ctxt(parse_sess, cfg); let f_pre = @{fold_expr: |a,b,c| expand_expr(exts, cx, a, b, c, afp.fold_expr), fold_mod: |a,b| expand_mod_items(exts, cx, a, b, afp.fold_mod), fold_item: |a,b| expand_item(exts, cx, a, b, afp.fold_item), new_span: |a|new_span(cx, a), .. *afp}; let f = make_fold(f_pre); let cm = parse_expr_from_source_str(~"", @core_macros(), cfg, parse_sess); // This is run for its side-effects on the expander env, // as it registers all the core macros as expanders. f.fold_expr(cm); let res = @f.fold_crate(*c); return res; } // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: