use rustc_data_structures::fx::FxHashSet; use rustc_hir as hir; use rustc_hir::LangItem; use rustc_hir::def::DefKind; use rustc_index::bit_set::DenseBitSet; use rustc_middle::bug; use rustc_middle::query::Providers; use rustc_middle::ty::fold::fold_regions; use rustc_middle::ty::{ self, EarlyBinder, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable, TypeVisitor, Upcast, }; use rustc_span::DUMMY_SP; use rustc_span::def_id::{CRATE_DEF_ID, DefId, LocalDefId}; use rustc_trait_selection::traits; use tracing::{debug, instrument}; #[instrument(level = "debug", skip(tcx), ret)] fn sized_constraint_for_ty<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Option> { use rustc_type_ir::TyKind::*; match ty.kind() { // these are always sized Bool | Char | Int(..) | Uint(..) | Float(..) | RawPtr(..) | Ref(..) | FnDef(..) | FnPtr(..) | Array(..) | Closure(..) | CoroutineClosure(..) | Coroutine(..) | CoroutineWitness(..) | Never | Dynamic(_, _, ty::DynStar) => None, UnsafeBinder(_) => todo!(), // these are never sized Str | Slice(..) | Dynamic(_, _, ty::Dyn) | Foreign(..) => Some(ty), Pat(ty, _) => sized_constraint_for_ty(tcx, *ty), Tuple(tys) => tys.last().and_then(|&ty| sized_constraint_for_ty(tcx, ty)), // recursive case Adt(adt, args) => adt.sized_constraint(tcx).and_then(|intermediate| { let ty = intermediate.instantiate(tcx, args); sized_constraint_for_ty(tcx, ty) }), // these can be sized or unsized Param(..) | Alias(..) | Error(_) => Some(ty), Placeholder(..) | Bound(..) | Infer(..) => { bug!("unexpected type `{ty:?}` in sized_constraint_for_ty") } } } fn defaultness(tcx: TyCtxt<'_>, def_id: LocalDefId) -> hir::Defaultness { match tcx.hir_node_by_def_id(def_id) { hir::Node::Item(hir::Item { kind: hir::ItemKind::Impl(impl_), .. }) => impl_.defaultness, hir::Node::ImplItem(hir::ImplItem { defaultness, .. }) | hir::Node::TraitItem(hir::TraitItem { defaultness, .. }) => *defaultness, node => { bug!("`defaultness` called on {:?}", node); } } } /// Calculates the `Sized` constraint. /// /// In fact, there are only a few options for the types in the constraint: /// - an obviously-unsized type /// - a type parameter or projection whose sizedness can't be known #[instrument(level = "debug", skip(tcx), ret)] fn adt_sized_constraint<'tcx>( tcx: TyCtxt<'tcx>, def_id: DefId, ) -> Option>> { if let Some(def_id) = def_id.as_local() { if let ty::Representability::Infinite(_) = tcx.representability(def_id) { return None; } } let def = tcx.adt_def(def_id); if !def.is_struct() { bug!("`adt_sized_constraint` called on non-struct type: {def:?}"); } let tail_def = def.non_enum_variant().tail_opt()?; let tail_ty = tcx.type_of(tail_def.did).instantiate_identity(); let constraint_ty = sized_constraint_for_ty(tcx, tail_ty)?; // perf hack: if there is a `constraint_ty: Sized` bound, then we know // that the type is sized and do not need to check it on the impl. let sized_trait_def_id = tcx.require_lang_item(LangItem::Sized, None); let predicates = tcx.predicates_of(def.did()).predicates; if predicates.iter().any(|(p, _)| { p.as_trait_clause().is_some_and(|trait_pred| { trait_pred.def_id() == sized_trait_def_id && trait_pred.self_ty().skip_binder() == constraint_ty }) }) { return None; } Some(ty::EarlyBinder::bind(constraint_ty)) } /// See `ParamEnv` struct definition for details. fn param_env(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ParamEnv<'_> { // Compute the bounds on Self and the type parameters. let ty::InstantiatedPredicates { mut predicates, .. } = tcx.predicates_of(def_id).instantiate_identity(tcx); // Finally, we have to normalize the bounds in the environment, in // case they contain any associated type projections. This process // can yield errors if the put in illegal associated types, like // `::Bar` where `i32` does not implement `Foo`. We // report these errors right here; this doesn't actually feel // right to me, because constructing the environment feels like a // kind of an "idempotent" action, but I'm not sure where would be // a better place. In practice, we construct environments for // every fn once during type checking, and we'll abort if there // are any errors at that point, so outside of type inference you can be // sure that this will succeed without errors anyway. if tcx.def_kind(def_id) == DefKind::AssocFn && let assoc_item = tcx.associated_item(def_id) && assoc_item.container == ty::AssocItemContainer::Trait && assoc_item.defaultness(tcx).has_value() { let sig = tcx.fn_sig(def_id).instantiate_identity(); // We accounted for the binder of the fn sig, so skip the binder. sig.skip_binder().visit_with(&mut ImplTraitInTraitFinder { tcx, fn_def_id: def_id, bound_vars: sig.bound_vars(), predicates: &mut predicates, seen: FxHashSet::default(), depth: ty::INNERMOST, }); } // We extend the param-env of our item with the const conditions of the item, // since we're allowed to assume `~const` bounds hold within the item itself. if tcx.is_conditionally_const(def_id) { predicates.extend( tcx.const_conditions(def_id).instantiate_identity(tcx).into_iter().map( |(trait_ref, _)| trait_ref.to_host_effect_clause(tcx, ty::BoundConstness::Maybe), ), ); } let local_did = def_id.as_local(); let unnormalized_env = ty::ParamEnv::new(tcx.mk_clauses(&predicates)); let body_id = local_did.unwrap_or(CRATE_DEF_ID); let cause = traits::ObligationCause::misc(tcx.def_span(def_id), body_id); traits::normalize_param_env_or_error(tcx, unnormalized_env, cause) } /// Walk through a function type, gathering all RPITITs and installing a /// `NormalizesTo(Projection(RPITIT) -> Opaque(RPITIT))` predicate into the /// predicates list. This allows us to observe that an RPITIT projects to /// its corresponding opaque within the body of a default-body trait method. struct ImplTraitInTraitFinder<'a, 'tcx> { tcx: TyCtxt<'tcx>, predicates: &'a mut Vec>, fn_def_id: DefId, bound_vars: &'tcx ty::List, seen: FxHashSet, depth: ty::DebruijnIndex, } impl<'tcx> TypeVisitor> for ImplTraitInTraitFinder<'_, 'tcx> { fn visit_binder>>(&mut self, binder: &ty::Binder<'tcx, T>) { self.depth.shift_in(1); binder.super_visit_with(self); self.depth.shift_out(1); } fn visit_ty(&mut self, ty: Ty<'tcx>) { if let ty::Alias(ty::Projection, unshifted_alias_ty) = *ty.kind() && let Some( ty::ImplTraitInTraitData::Trait { fn_def_id, .. } | ty::ImplTraitInTraitData::Impl { fn_def_id, .. }, ) = self.tcx.opt_rpitit_info(unshifted_alias_ty.def_id) && fn_def_id == self.fn_def_id && self.seen.insert(unshifted_alias_ty.def_id) { // We have entered some binders as we've walked into the // bounds of the RPITIT. Shift these binders back out when // constructing the top-level projection predicate. let shifted_alias_ty = fold_regions(self.tcx, unshifted_alias_ty, |re, depth| { if let ty::ReBound(index, bv) = re.kind() { if depth != ty::INNERMOST { return ty::Region::new_error_with_message( self.tcx, DUMMY_SP, "we shouldn't walk non-predicate binders with `impl Trait`...", ); } ty::Region::new_bound(self.tcx, index.shifted_out_to_binder(self.depth), bv) } else { re } }); // If we're lowering to associated item, install the opaque type which is just // the `type_of` of the trait's associated item. If we're using the old lowering // strategy, then just reinterpret the associated type like an opaque :^) let default_ty = self .tcx .type_of(shifted_alias_ty.def_id) .instantiate(self.tcx, shifted_alias_ty.args); self.predicates.push( ty::Binder::bind_with_vars( ty::ProjectionPredicate { projection_term: shifted_alias_ty.into(), term: default_ty.into(), }, self.bound_vars, ) .upcast(self.tcx), ); // We walk the *un-shifted* alias ty, because we're tracking the de bruijn // binder depth, and if we were to walk `shifted_alias_ty` instead, we'd // have to reset `self.depth` back to `ty::INNERMOST` or something. It's // easier to just do this. for bound in self .tcx .item_bounds(unshifted_alias_ty.def_id) .iter_instantiated(self.tcx, unshifted_alias_ty.args) { bound.visit_with(self); } } ty.super_visit_with(self) } } fn param_env_normalized_for_post_analysis(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ParamEnv<'_> { // This is a bit ugly but the easiest way to avoid code duplication. let typing_env = ty::TypingEnv::non_body_analysis(tcx, def_id); typing_env.with_post_analysis_normalized(tcx).param_env } /// If the given trait impl enables exploiting the former order dependence of trait objects, /// returns its self type; otherwise, returns `None`. /// /// See [`ty::ImplOverlapKind::FutureCompatOrderDepTraitObjects`] for more details. #[instrument(level = "debug", skip(tcx))] fn self_ty_of_trait_impl_enabling_order_dep_trait_object_hack( tcx: TyCtxt<'_>, def_id: DefId, ) -> Option>> { let impl_ = tcx.impl_trait_header(def_id).unwrap_or_else(|| bug!("called on inherent impl {def_id:?}")); let trait_ref = impl_.trait_ref.skip_binder(); debug!(?trait_ref); let is_marker_like = impl_.polarity == ty::ImplPolarity::Positive && tcx.associated_item_def_ids(trait_ref.def_id).is_empty(); // Check whether these impls would be ok for a marker trait. if !is_marker_like { debug!("not marker-like!"); return None; } // impl must be `impl Trait for dyn Marker1 + Marker2 + ...` if trait_ref.args.len() != 1 { debug!("impl has args!"); return None; } let predicates = tcx.predicates_of(def_id); if predicates.parent.is_some() || !predicates.predicates.is_empty() { debug!(?predicates, "impl has predicates!"); return None; } let self_ty = trait_ref.self_ty(); let self_ty_matches = match self_ty.kind() { ty::Dynamic(data, re, _) if re.is_static() => data.principal().is_none(), _ => false, }; if self_ty_matches { debug!("MATCHES!"); Some(EarlyBinder::bind(self_ty)) } else { debug!("non-matching self type"); None } } /// Check if a function is async. fn asyncness(tcx: TyCtxt<'_>, def_id: LocalDefId) -> ty::Asyncness { let node = tcx.hir_node_by_def_id(def_id); node.fn_sig().map_or(ty::Asyncness::No, |sig| match sig.header.asyncness { hir::IsAsync::Async(_) => ty::Asyncness::Yes, hir::IsAsync::NotAsync => ty::Asyncness::No, }) } fn unsizing_params_for_adt<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId) -> DenseBitSet { let def = tcx.adt_def(def_id); let num_params = tcx.generics_of(def_id).count(); let maybe_unsizing_param_idx = |arg: ty::GenericArg<'tcx>| match arg.unpack() { ty::GenericArgKind::Type(ty) => match ty.kind() { ty::Param(p) => Some(p.index), _ => None, }, // We can't unsize a lifetime ty::GenericArgKind::Lifetime(_) => None, ty::GenericArgKind::Const(ct) => match ct.kind() { ty::ConstKind::Param(p) => Some(p.index), _ => None, }, }; // The last field of the structure has to exist and contain type/const parameters. let Some((tail_field, prefix_fields)) = def.non_enum_variant().fields.raw.split_last() else { return DenseBitSet::new_empty(num_params); }; let mut unsizing_params = DenseBitSet::new_empty(num_params); for arg in tcx.type_of(tail_field.did).instantiate_identity().walk() { if let Some(i) = maybe_unsizing_param_idx(arg) { unsizing_params.insert(i); } } // Ensure none of the other fields mention the parameters used // in unsizing. for field in prefix_fields { for arg in tcx.type_of(field.did).instantiate_identity().walk() { if let Some(i) = maybe_unsizing_param_idx(arg) { unsizing_params.remove(i); } } } unsizing_params } pub(crate) fn provide(providers: &mut Providers) { *providers = Providers { asyncness, adt_sized_constraint, param_env, param_env_normalized_for_post_analysis, self_ty_of_trait_impl_enabling_order_dep_trait_object_hack, defaultness, unsizing_params_for_adt, ..*providers }; }