//! Handling of everything related to the calling convention. Also fills `fx.local_map`. mod comments; mod pass_mode; mod returning; use std::borrow::Cow; use std::mem; use cranelift_codegen::ir::{ArgumentPurpose, SigRef}; use cranelift_codegen::isa::CallConv; use cranelift_module::ModuleError; use rustc_abi::ExternAbi; use rustc_codegen_ssa::base::is_call_from_compiler_builtins_to_upstream_monomorphization; use rustc_codegen_ssa::errors::CompilerBuiltinsCannotCall; use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags; use rustc_middle::ty::TypeVisitableExt; use rustc_middle::ty::layout::FnAbiOf; use rustc_middle::ty::print::with_no_trimmed_paths; use rustc_session::Session; use rustc_span::source_map::Spanned; use rustc_target::callconv::{Conv, FnAbi, PassMode}; use self::pass_mode::*; pub(crate) use self::returning::codegen_return; use crate::prelude::*; fn clif_sig_from_fn_abi<'tcx>( tcx: TyCtxt<'tcx>, default_call_conv: CallConv, fn_abi: &FnAbi<'tcx, Ty<'tcx>>, ) -> Signature { let call_conv = conv_to_call_conv(tcx.sess, fn_abi.conv, default_call_conv); let inputs = fn_abi.args.iter().flat_map(|arg_abi| arg_abi.get_abi_param(tcx).into_iter()); let (return_ptr, returns) = fn_abi.ret.get_abi_return(tcx); // Sometimes the first param is a pointer to the place where the return value needs to be stored. let params: Vec<_> = return_ptr.into_iter().chain(inputs).collect(); Signature { params, returns, call_conv } } pub(crate) fn conv_to_call_conv(sess: &Session, c: Conv, default_call_conv: CallConv) -> CallConv { match c { Conv::Rust | Conv::C => default_call_conv, Conv::Cold | Conv::PreserveMost | Conv::PreserveAll => CallConv::Cold, Conv::X86_64SysV => CallConv::SystemV, Conv::X86_64Win64 => CallConv::WindowsFastcall, // Should already get a back compat warning Conv::X86Fastcall | Conv::X86Stdcall | Conv::X86ThisCall | Conv::X86VectorCall => { default_call_conv } Conv::X86Intr | Conv::RiscvInterrupt { .. } => { sess.dcx().fatal(format!("interrupt call conv {c:?} not yet implemented")) } Conv::ArmAapcs => sess.dcx().fatal("aapcs call conv not yet implemented"), Conv::CCmseNonSecureCall => { sess.dcx().fatal("C-cmse-nonsecure-call call conv is not yet implemented"); } Conv::CCmseNonSecureEntry => { sess.dcx().fatal("C-cmse-nonsecure-entry call conv is not yet implemented"); } Conv::Msp430Intr | Conv::PtxKernel | Conv::GpuKernel | Conv::AvrInterrupt | Conv::AvrNonBlockingInterrupt => { unreachable!("tried to use {c:?} call conv which only exists on an unsupported target"); } } } pub(crate) fn get_function_sig<'tcx>( tcx: TyCtxt<'tcx>, default_call_conv: CallConv, inst: Instance<'tcx>, ) -> Signature { assert!(!inst.args.has_infer()); clif_sig_from_fn_abi( tcx, default_call_conv, &FullyMonomorphizedLayoutCx(tcx).fn_abi_of_instance(inst, ty::List::empty()), ) } /// Instance must be monomorphized pub(crate) fn import_function<'tcx>( tcx: TyCtxt<'tcx>, module: &mut dyn Module, inst: Instance<'tcx>, ) -> FuncId { let name = tcx.symbol_name(inst).name; let sig = get_function_sig(tcx, module.target_config().default_call_conv, inst); match module.declare_function(name, Linkage::Import, &sig) { Ok(func_id) => func_id, Err(ModuleError::IncompatibleDeclaration(_)) => tcx.dcx().fatal(format!( "attempt to declare `{name}` as function, but it was already declared as static" )), Err(ModuleError::IncompatibleSignature(_, prev_sig, new_sig)) => tcx.dcx().fatal(format!( "attempt to declare `{name}` with signature {new_sig:?}, \ but it was already declared with signature {prev_sig:?}" )), Err(err) => Err::<_, _>(err).unwrap(), } } impl<'tcx> FunctionCx<'_, '_, 'tcx> { /// Instance must be monomorphized pub(crate) fn get_function_ref(&mut self, inst: Instance<'tcx>) -> FuncRef { let func_id = import_function(self.tcx, self.module, inst); let func_ref = self.module.declare_func_in_func(func_id, &mut self.bcx.func); if self.clif_comments.enabled() { self.add_comment(func_ref, format!("{:?}", inst)); } func_ref } pub(crate) fn lib_call( &mut self, name: &str, params: Vec, mut returns: Vec, args: &[Value], ) -> Cow<'_, [Value]> { // Pass i128 arguments by-ref on Windows. let (params, args): (Vec<_>, Cow<'_, [_]>) = if self.tcx.sess.target.is_like_windows { let (params, args): (Vec<_>, Vec<_>) = params .into_iter() .zip(args) .map(|(param, &arg)| { if param.value_type == types::I128 { let arg_ptr = self.create_stack_slot(16, 16); arg_ptr.store(self, arg, MemFlags::trusted()); (AbiParam::new(self.pointer_type), arg_ptr.get_addr(self)) } else { (param, arg) } }) .unzip(); (params, args.into()) } else { (params, args.into()) }; let ret_single_i128 = returns.len() == 1 && returns[0].value_type == types::I128; if ret_single_i128 && self.tcx.sess.target.is_like_windows { // Return i128 using the vector ABI on Windows returns[0].value_type = types::I64X2; let ret = self.lib_call_unadjusted(name, params, returns, &args)[0]; // FIXME(bytecodealliance/wasmtime#6104) use bitcast instead of store to get from i64x2 to i128 let ret_ptr = self.create_stack_slot(16, 16); ret_ptr.store(self, ret, MemFlags::trusted()); Cow::Owned(vec![ret_ptr.load(self, types::I128, MemFlags::trusted())]) } else if ret_single_i128 && self.tcx.sess.target.arch == "s390x" { // Return i128 using a return area pointer on s390x. let mut params = params; let mut args = args.to_vec(); params.insert(0, AbiParam::new(self.pointer_type)); let ret_ptr = self.create_stack_slot(16, 16); args.insert(0, ret_ptr.get_addr(self)); self.lib_call_unadjusted(name, params, vec![], &args); Cow::Owned(vec![ret_ptr.load(self, types::I128, MemFlags::trusted())]) } else { Cow::Borrowed(self.lib_call_unadjusted(name, params, returns, &args)) } } fn lib_call_unadjusted( &mut self, name: &str, params: Vec, returns: Vec, args: &[Value], ) -> &[Value] { let sig = Signature { params, returns, call_conv: self.target_config.default_call_conv }; let func_id = self.module.declare_function(name, Linkage::Import, &sig).unwrap(); let func_ref = self.module.declare_func_in_func(func_id, &mut self.bcx.func); if self.clif_comments.enabled() { self.add_comment(func_ref, format!("{:?}", name)); } let call_inst = self.bcx.ins().call(func_ref, args); if self.clif_comments.enabled() { self.add_comment(call_inst, format!("lib_call {}", name)); } let results = self.bcx.inst_results(call_inst); assert!(results.len() <= 2, "{}", results.len()); results } } /// Make a [`CPlace`] capable of holding value of the specified type. fn make_local_place<'tcx>( fx: &mut FunctionCx<'_, '_, 'tcx>, local: Local, layout: TyAndLayout<'tcx>, is_ssa: bool, ) -> CPlace<'tcx> { if layout.is_unsized() { fx.tcx.dcx().span_fatal( fx.mir.local_decls[local].source_info.span, "unsized locals are not yet supported", ); } let place = if is_ssa { if let BackendRepr::ScalarPair(_, _) = layout.backend_repr { CPlace::new_var_pair(fx, local, layout) } else { CPlace::new_var(fx, local, layout) } } else { CPlace::new_stack_slot(fx, layout) }; self::comments::add_local_place_comments(fx, place, local); place } pub(crate) fn codegen_fn_prelude<'tcx>(fx: &mut FunctionCx<'_, '_, 'tcx>, start_block: Block) { fx.bcx.append_block_params_for_function_params(start_block); fx.bcx.switch_to_block(start_block); fx.bcx.ins().nop(); let ssa_analyzed = crate::analyze::analyze(fx); self::comments::add_args_header_comment(fx); let mut block_params_iter = fx.bcx.func.dfg.block_params(start_block).to_vec().into_iter(); let ret_place = self::returning::codegen_return_param(fx, &ssa_analyzed, &mut block_params_iter); assert_eq!(fx.local_map.push(ret_place), RETURN_PLACE); // None means pass_mode == NoPass enum ArgKind<'tcx> { Normal(Option>), Spread(Vec>>), } // FIXME implement variadics in cranelift if fx.fn_abi.c_variadic { fx.tcx.dcx().span_fatal( fx.mir.span, "Defining variadic functions is not yet supported by Cranelift", ); } let mut arg_abis_iter = fx.fn_abi.args.iter(); let func_params = fx .mir .args_iter() .map(|local| { let arg_ty = fx.monomorphize(fx.mir.local_decls[local].ty); // Adapted from https://github.com/rust-lang/rust/blob/145155dc96757002c7b2e9de8489416e2fdbbd57/src/librustc_codegen_llvm/mir/mod.rs#L442-L482 if Some(local) == fx.mir.spread_arg { // This argument (e.g. the last argument in the "rust-call" ABI) // is a tuple that was spread at the ABI level and now we have // to reconstruct it into a tuple local variable, from multiple // individual function arguments. let tupled_arg_tys = match arg_ty.kind() { ty::Tuple(ref tys) => tys, _ => bug!("spread argument isn't a tuple?! but {:?}", arg_ty), }; let mut params = Vec::new(); for (i, _arg_ty) in tupled_arg_tys.iter().enumerate() { let arg_abi = arg_abis_iter.next().unwrap(); let param = cvalue_for_param(fx, Some(local), Some(i), arg_abi, &mut block_params_iter); params.push(param); } (local, ArgKind::Spread(params), arg_ty) } else { let arg_abi = arg_abis_iter.next().unwrap(); let param = cvalue_for_param(fx, Some(local), None, arg_abi, &mut block_params_iter); (local, ArgKind::Normal(param), arg_ty) } }) .collect::, Ty<'tcx>)>>(); assert!(fx.caller_location.is_none()); if fx.instance.def.requires_caller_location(fx.tcx) { // Store caller location for `#[track_caller]`. let arg_abi = arg_abis_iter.next().unwrap(); fx.caller_location = Some(cvalue_for_param(fx, None, None, arg_abi, &mut block_params_iter).unwrap()); } assert!(arg_abis_iter.next().is_none(), "ArgAbi left behind"); assert!(block_params_iter.next().is_none(), "arg_value left behind"); self::comments::add_locals_header_comment(fx); for (local, arg_kind, ty) in func_params { // While this is normally an optimization to prevent an unnecessary copy when an argument is // not mutated by the current function, this is necessary to support unsized arguments. if let ArgKind::Normal(Some(val)) = arg_kind { if let Some((addr, meta)) = val.try_to_ptr() { // Ownership of the value at the backing storage for an argument is passed to the // callee per the ABI, so it is fine to borrow the backing storage of this argument // to prevent a copy. let place = if let Some(meta) = meta { CPlace::for_ptr_with_extra(addr, meta, val.layout()) } else { CPlace::for_ptr(addr, val.layout()) }; self::comments::add_local_place_comments(fx, place, local); assert_eq!(fx.local_map.push(place), local); continue; } } let layout = fx.layout_of(ty); let is_ssa = ssa_analyzed[local].is_ssa(fx, ty); let place = make_local_place(fx, local, layout, is_ssa); assert_eq!(fx.local_map.push(place), local); match arg_kind { ArgKind::Normal(param) => { if let Some(param) = param { place.write_cvalue(fx, param); } } ArgKind::Spread(params) => { for (i, param) in params.into_iter().enumerate() { if let Some(param) = param { place.place_field(fx, FieldIdx::new(i)).write_cvalue(fx, param); } } } } } for local in fx.mir.vars_and_temps_iter() { let ty = fx.monomorphize(fx.mir.local_decls[local].ty); let layout = fx.layout_of(ty); let is_ssa = ssa_analyzed[local].is_ssa(fx, ty); let place = make_local_place(fx, local, layout, is_ssa); assert_eq!(fx.local_map.push(place), local); } fx.bcx.ins().jump(*fx.block_map.get(START_BLOCK).unwrap(), &[]); } struct CallArgument<'tcx> { value: CValue<'tcx>, is_owned: bool, } // FIXME avoid intermediate `CValue` before calling `adjust_arg_for_abi` fn codegen_call_argument_operand<'tcx>( fx: &mut FunctionCx<'_, '_, 'tcx>, operand: &Operand<'tcx>, ) -> CallArgument<'tcx> { CallArgument { value: codegen_operand(fx, operand), is_owned: matches!(operand, Operand::Move(_)), } } pub(crate) fn codegen_terminator_call<'tcx>( fx: &mut FunctionCx<'_, '_, 'tcx>, source_info: mir::SourceInfo, func: &Operand<'tcx>, args: &[Spanned>], destination: Place<'tcx>, target: Option, ) { let func = codegen_operand(fx, func); let fn_sig = func.layout().ty.fn_sig(fx.tcx); let ret_place = codegen_place(fx, destination); // Handle special calls like intrinsics and empty drop glue. let instance = if let ty::FnDef(def_id, fn_args) = *func.layout().ty.kind() { let instance = ty::Instance::expect_resolve( fx.tcx, ty::TypingEnv::fully_monomorphized(), def_id, fn_args, source_info.span, ); if is_call_from_compiler_builtins_to_upstream_monomorphization(fx.tcx, instance) { if target.is_some() { let caller = with_no_trimmed_paths!(fx.tcx.def_path_str(fx.instance.def_id())); let callee = with_no_trimmed_paths!(fx.tcx.def_path_str(def_id)); fx.tcx.dcx().emit_err(CompilerBuiltinsCannotCall { caller, callee }); } else { fx.bcx.ins().trap(TrapCode::user(2).unwrap()); return; } } if fx.tcx.symbol_name(instance).name.starts_with("llvm.") { crate::intrinsics::codegen_llvm_intrinsic_call( fx, &fx.tcx.symbol_name(instance).name, args, ret_place, target, source_info.span, ); return; } match instance.def { InstanceKind::Intrinsic(_) => { match crate::intrinsics::codegen_intrinsic_call( fx, instance, args, ret_place, target, source_info, ) { Ok(()) => return, Err(instance) => Some(instance), } } InstanceKind::DropGlue(_, None) | ty::InstanceKind::AsyncDropGlueCtorShim(_, None) => { // empty drop glue - a nop. let dest = target.expect("Non terminating drop_in_place_real???"); let ret_block = fx.get_block(dest); fx.bcx.ins().jump(ret_block, &[]); return; } _ => Some(instance), } } else { None }; let extra_args = &args[fn_sig.inputs().skip_binder().len()..]; let extra_args = fx.tcx.mk_type_list_from_iter( extra_args.iter().map(|op_arg| fx.monomorphize(op_arg.node.ty(fx.mir, fx.tcx))), ); let fn_abi = if let Some(instance) = instance { FullyMonomorphizedLayoutCx(fx.tcx).fn_abi_of_instance(instance, extra_args) } else { FullyMonomorphizedLayoutCx(fx.tcx).fn_abi_of_fn_ptr(fn_sig, extra_args) }; let is_cold = if fn_sig.abi() == ExternAbi::RustCold { true } else { instance.is_some_and(|inst| { fx.tcx.codegen_fn_attrs(inst.def_id()).flags.contains(CodegenFnAttrFlags::COLD) }) }; if is_cold { fx.bcx.set_cold_block(fx.bcx.current_block().unwrap()); if let Some(destination_block) = target { fx.bcx.set_cold_block(fx.get_block(destination_block)); } } // Unpack arguments tuple for closures let mut args = if fn_sig.abi() == ExternAbi::RustCall { let (self_arg, pack_arg) = match args { [pack_arg] => (None, codegen_call_argument_operand(fx, &pack_arg.node)), [self_arg, pack_arg] => ( Some(codegen_call_argument_operand(fx, &self_arg.node)), codegen_call_argument_operand(fx, &pack_arg.node), ), _ => panic!("rust-call abi requires one or two arguments"), }; let tupled_arguments = match pack_arg.value.layout().ty.kind() { ty::Tuple(ref tupled_arguments) => tupled_arguments, _ => bug!("argument to function with \"rust-call\" ABI is not a tuple"), }; let mut args = Vec::with_capacity(1 + tupled_arguments.len()); args.extend(self_arg); for i in 0..tupled_arguments.len() { args.push(CallArgument { value: pack_arg.value.value_field(fx, FieldIdx::new(i)), is_owned: pack_arg.is_owned, }); } args } else { args.iter().map(|arg| codegen_call_argument_operand(fx, &arg.node)).collect::>() }; // Pass the caller location for `#[track_caller]`. if instance.is_some_and(|inst| inst.def.requires_caller_location(fx.tcx)) { let caller_location = fx.get_caller_location(source_info); args.push(CallArgument { value: caller_location, is_owned: false }); } let args = args; assert_eq!(fn_abi.args.len(), args.len()); #[derive(Copy, Clone)] enum CallTarget { Direct(FuncRef), Indirect(SigRef, Value), } let (func_ref, first_arg_override) = match instance { // Trait object call Some(Instance { def: InstanceKind::Virtual(_, idx), .. }) => { if fx.clif_comments.enabled() { let nop_inst = fx.bcx.ins().nop(); fx.add_comment( nop_inst, with_no_trimmed_paths!(format!( "virtual call; self arg pass mode: {:?}", fn_abi.args[0] )), ); } let (ptr, method) = crate::vtable::get_ptr_and_method_ref(fx, args[0].value, idx); let sig = clif_sig_from_fn_abi(fx.tcx, fx.target_config.default_call_conv, &fn_abi); let sig = fx.bcx.import_signature(sig); (CallTarget::Indirect(sig, method), Some(ptr.get_addr(fx))) } // Normal call Some(instance) => { let func_ref = fx.get_function_ref(instance); (CallTarget::Direct(func_ref), None) } // Indirect call None => { if fx.clif_comments.enabled() { let nop_inst = fx.bcx.ins().nop(); fx.add_comment(nop_inst, "indirect call"); } let func = func.load_scalar(fx); let sig = clif_sig_from_fn_abi(fx.tcx, fx.target_config.default_call_conv, &fn_abi); let sig = fx.bcx.import_signature(sig); (CallTarget::Indirect(sig, func), None) } }; self::returning::codegen_with_call_return_arg(fx, &fn_abi.ret, ret_place, |fx, return_ptr| { let mut call_args = return_ptr .into_iter() .chain(first_arg_override.into_iter()) .chain( args.into_iter() .enumerate() .skip(if first_arg_override.is_some() { 1 } else { 0 }) .flat_map(|(i, arg)| { adjust_arg_for_abi(fx, arg.value, &fn_abi.args[i], arg.is_owned).into_iter() }), ) .collect::>(); // FIXME: Find a cleaner way to support varargs. if fn_abi.c_variadic { adjust_call_for_c_variadic(fx, &fn_abi, source_info, func_ref, &mut call_args); } if fx.clif_comments.enabled() { let nop_inst = fx.bcx.ins().nop(); with_no_trimmed_paths!(fx.add_comment(nop_inst, format!("abi: {:?}", fn_abi))); } match func_ref { CallTarget::Direct(func_ref) => fx.bcx.ins().call(func_ref, &call_args), CallTarget::Indirect(sig, func_ptr) => { fx.bcx.ins().call_indirect(sig, func_ptr, &call_args) } } }); if let Some(dest) = target { let ret_block = fx.get_block(dest); fx.bcx.ins().jump(ret_block, &[]); } else { fx.bcx.ins().trap(TrapCode::user(1 /* unreachable */).unwrap()); } fn adjust_call_for_c_variadic<'tcx>( fx: &mut FunctionCx<'_, '_, 'tcx>, fn_abi: &FnAbi<'tcx, Ty<'tcx>>, source_info: mir::SourceInfo, target: CallTarget, call_args: &mut Vec, ) { if fn_abi.conv != Conv::C { fx.tcx.dcx().span_fatal( source_info.span, format!("Variadic call for non-C abi {:?}", fn_abi.conv), ); } let sig_ref = match target { CallTarget::Direct(func_ref) => fx.bcx.func.dfg.ext_funcs[func_ref].signature, CallTarget::Indirect(sig_ref, _) => sig_ref, }; // `mem::take()` the `params` so that `fx.bcx` can be used below. let mut abi_params = mem::take(&mut fx.bcx.func.dfg.signatures[sig_ref].params); // Recalculate the parameters in the signature to ensure the signature contains the variadic arguments. let has_return_arg = matches!(fn_abi.ret.mode, PassMode::Indirect { .. }); // Drop everything except the return argument (if there is one). abi_params.truncate(if has_return_arg { 1 } else { 0 }); // Add the fixed arguments. abi_params.extend( fn_abi.args[..fn_abi.fixed_count as usize] .iter() .flat_map(|arg_abi| arg_abi.get_abi_param(fx.tcx).into_iter()), ); let fixed_arg_count = abi_params.len(); // Add the variadic arguments. abi_params.extend( fn_abi.args[fn_abi.fixed_count as usize..] .iter() .flat_map(|arg_abi| arg_abi.get_abi_param(fx.tcx).into_iter()), ); if fx.tcx.sess.target.is_like_osx && fx.tcx.sess.target.arch == "aarch64" { // Add any padding arguments needed for Apple AArch64. // There's no need to pad the argument list unless variadic arguments are actually being // passed. if abi_params.len() > fixed_arg_count { // 128-bit integers take 2 registers, and everything else takes 1. // FIXME: Add support for non-integer types // This relies on the checks below to ensure all arguments are integer types and // that the ABI is "C". // The return argument isn't counted as it goes in its own dedicated register. let integer_registers_used: usize = abi_params [if has_return_arg { 1 } else { 0 }..fixed_arg_count] .iter() .map(|arg| if arg.value_type.bits() == 128 { 2 } else { 1 }) .sum(); // The ABI uses 8 registers before it starts pushing arguments to the stack. Pad out // the registers if needed to ensure the variadic arguments are passed on the stack. if integer_registers_used < 8 { abi_params.splice( fixed_arg_count..fixed_arg_count, (integer_registers_used..8).map(|_| AbiParam::new(types::I64)), ); call_args.splice( fixed_arg_count..fixed_arg_count, (integer_registers_used..8).map(|_| fx.bcx.ins().iconst(types::I64, 0)), ); } } // `StructArgument` is not currently used by the `aarch64` ABI, and is therefore not // handled when calculating how many padding arguments to use. Assert that this remains // the case. assert!(abi_params.iter().all(|param| matches!( param.purpose, // The only purposes used are `Normal` and `StructReturn`. ArgumentPurpose::Normal | ArgumentPurpose::StructReturn ))); } // Check all parameters are integers. for param in abi_params.iter() { if !param.value_type.is_int() { // FIXME: Set %al to upperbound on float args once floats are supported. fx.tcx.dcx().span_fatal( source_info.span, format!("Non int ty {:?} for variadic call", param.value_type), ); } } assert_eq!(abi_params.len(), call_args.len()); // Put the `AbiParam`s back in the signature. fx.bcx.func.dfg.signatures[sig_ref].params = abi_params; } } pub(crate) fn codegen_drop<'tcx>( fx: &mut FunctionCx<'_, '_, 'tcx>, source_info: mir::SourceInfo, drop_place: CPlace<'tcx>, target: BasicBlock, ) { let ty = drop_place.layout().ty; let drop_instance = Instance::resolve_drop_in_place(fx.tcx, ty); if let ty::InstanceKind::DropGlue(_, None) | ty::InstanceKind::AsyncDropGlueCtorShim(_, None) = drop_instance.def { // we don't actually need to drop anything } else { match ty.kind() { ty::Dynamic(_, _, ty::Dyn) => { // IN THIS ARM, WE HAVE: // ty = *mut (dyn Trait) // which is: exists ( *mut T, Vtable ) // args[0] args[1] // // args = ( Data, Vtable ) // | // v // /-------\ // | ... | // \-------/ // let (ptr, vtable) = drop_place.to_ptr_unsized(); let ptr = ptr.get_addr(fx); let drop_fn = crate::vtable::drop_fn_of_obj(fx, vtable); let is_null = fx.bcx.ins().icmp_imm(IntCC::Equal, drop_fn, 0); let target_block = fx.get_block(target); let continued = fx.bcx.create_block(); fx.bcx.ins().brif(is_null, target_block, &[], continued, &[]); fx.bcx.switch_to_block(continued); // FIXME(eddyb) perhaps move some of this logic into // `Instance::resolve_drop_in_place`? let virtual_drop = Instance { def: ty::InstanceKind::Virtual(drop_instance.def_id(), 0), args: drop_instance.args, }; let fn_abi = FullyMonomorphizedLayoutCx(fx.tcx) .fn_abi_of_instance(virtual_drop, ty::List::empty()); let sig = clif_sig_from_fn_abi(fx.tcx, fx.target_config.default_call_conv, &fn_abi); let sig = fx.bcx.import_signature(sig); fx.bcx.ins().call_indirect(sig, drop_fn, &[ptr]); } ty::Dynamic(_, _, ty::DynStar) => { // IN THIS ARM, WE HAVE: // ty = *mut (dyn* Trait) // which is: *mut exists (T, Vtable) // // args = [ * ] // | // v // ( Data, Vtable ) // | // v // /-------\ // | ... | // \-------/ // // // WE CAN CONVERT THIS INTO THE ABOVE LOGIC BY DOING // // data = &(*args[0]).0 // gives a pointer to Data above (really the same pointer) // vtable = (*args[0]).1 // loads the vtable out // (data, vtable) // an equivalent Rust `*mut dyn Trait` // // SO THEN WE CAN USE THE ABOVE CODE. let (data, vtable) = drop_place.to_cvalue(fx).dyn_star_force_data_on_stack(fx); let drop_fn = crate::vtable::drop_fn_of_obj(fx, vtable); let is_null = fx.bcx.ins().icmp_imm(IntCC::Equal, drop_fn, 0); let target_block = fx.get_block(target); let continued = fx.bcx.create_block(); fx.bcx.ins().brif(is_null, target_block, &[], continued, &[]); fx.bcx.switch_to_block(continued); let virtual_drop = Instance { def: ty::InstanceKind::Virtual(drop_instance.def_id(), 0), args: drop_instance.args, }; let fn_abi = FullyMonomorphizedLayoutCx(fx.tcx) .fn_abi_of_instance(virtual_drop, ty::List::empty()); let sig = clif_sig_from_fn_abi(fx.tcx, fx.target_config.default_call_conv, &fn_abi); let sig = fx.bcx.import_signature(sig); fx.bcx.ins().call_indirect(sig, drop_fn, &[data]); } _ => { assert!(!matches!(drop_instance.def, InstanceKind::Virtual(_, _))); let fn_abi = FullyMonomorphizedLayoutCx(fx.tcx) .fn_abi_of_instance(drop_instance, ty::List::empty()); let arg_value = drop_place.place_ref( fx, fx.layout_of(Ty::new_mut_ref(fx.tcx, fx.tcx.lifetimes.re_erased, ty)), ); let arg_value = adjust_arg_for_abi(fx, arg_value, &fn_abi.args[0], true); let mut call_args: Vec = arg_value.into_iter().collect::>(); if drop_instance.def.requires_caller_location(fx.tcx) { // Pass the caller location for `#[track_caller]`. let caller_location = fx.get_caller_location(source_info); call_args.extend( adjust_arg_for_abi(fx, caller_location, &fn_abi.args[1], false).into_iter(), ); } let func_ref = fx.get_function_ref(drop_instance); fx.bcx.ins().call(func_ref, &call_args); } } } let target_block = fx.get_block(target); fx.bcx.ins().jump(target_block, &[]); }