pub mod query; mod counters; mod debug; mod graph; mod spans; #[cfg(test)] mod tests; use counters::CoverageCounters; use graph::{BasicCoverageBlock, BasicCoverageBlockData, CoverageGraph}; use spans::{CoverageSpan, CoverageSpans}; use crate::transform::MirPass; use crate::util::pretty; use rustc_data_structures::fingerprint::Fingerprint; use rustc_data_structures::graph::WithNumNodes; use rustc_data_structures::stable_hasher::{HashStable, StableHasher}; use rustc_data_structures::sync::Lrc; use rustc_index::vec::IndexVec; use rustc_middle::hir; use rustc_middle::hir::map::blocks::FnLikeNode; use rustc_middle::ich::StableHashingContext; use rustc_middle::mir::coverage::*; use rustc_middle::mir::{ self, BasicBlock, BasicBlockData, Coverage, SourceInfo, Statement, StatementKind, Terminator, TerminatorKind, }; use rustc_middle::ty::TyCtxt; use rustc_span::def_id::DefId; use rustc_span::{CharPos, Pos, SourceFile, Span, Symbol}; /// A simple error message wrapper for `coverage::Error`s. #[derive(Debug)] struct Error { message: String, } impl Error { pub fn from_string(message: String) -> Result { Err(Self { message }) } } /// Inserts `StatementKind::Coverage` statements that either instrument the binary with injected /// counters, via intrinsic `llvm.instrprof.increment`, and/or inject metadata used during codegen /// to construct the coverage map. pub struct InstrumentCoverage; impl<'tcx> MirPass<'tcx> for InstrumentCoverage { fn run_pass(&self, tcx: TyCtxt<'tcx>, mir_body: &mut mir::Body<'tcx>) { let mir_source = mir_body.source; // If the InstrumentCoverage pass is called on promoted MIRs, skip them. // See: https://github.com/rust-lang/rust/pull/73011#discussion_r438317601 if mir_source.promoted.is_some() { trace!( "InstrumentCoverage skipped for {:?} (already promoted for Miri evaluation)", mir_source.def_id() ); return; } let hir_id = tcx.hir().local_def_id_to_hir_id(mir_source.def_id().expect_local()); let is_fn_like = FnLikeNode::from_node(tcx.hir().get(hir_id)).is_some(); // Only instrument functions, methods, and closures (not constants since they are evaluated // at compile time by Miri). // FIXME(#73156): Handle source code coverage in const eval, but note, if and when const // expressions get coverage spans, we will probably have to "carve out" space for const // expressions from coverage spans in enclosing MIR's, like we do for closures. (That might // be tricky if const expressions have no corresponding statements in the enclosing MIR. // Closures are carved out by their initial `Assign` statement.) if !is_fn_like { trace!("InstrumentCoverage skipped for {:?} (not an FnLikeNode)", mir_source.def_id()); return; } trace!("InstrumentCoverage starting for {:?}", mir_source.def_id()); Instrumentor::new(&self.name(), tcx, mir_body).inject_counters(); trace!("InstrumentCoverage starting for {:?}", mir_source.def_id()); } } struct Instrumentor<'a, 'tcx> { pass_name: &'a str, tcx: TyCtxt<'tcx>, mir_body: &'a mut mir::Body<'tcx>, fn_sig_span: Span, body_span: Span, basic_coverage_blocks: CoverageGraph, coverage_counters: CoverageCounters, } impl<'a, 'tcx> Instrumentor<'a, 'tcx> { fn new(pass_name: &'a str, tcx: TyCtxt<'tcx>, mir_body: &'a mut mir::Body<'tcx>) -> Self { let (some_fn_sig, hir_body) = fn_sig_and_body(tcx, mir_body.source.def_id()); let body_span = hir_body.value.span; let fn_sig_span = match some_fn_sig { Some(fn_sig) => fn_sig.span.with_hi(body_span.lo()), None => body_span.shrink_to_lo(), }; let function_source_hash = hash_mir_source(tcx, hir_body); let basic_coverage_blocks = CoverageGraph::from_mir(mir_body); Self { pass_name, tcx, mir_body, fn_sig_span, body_span, basic_coverage_blocks, coverage_counters: CoverageCounters::new(function_source_hash), } } fn inject_counters(&'a mut self) { let tcx = self.tcx; let source_map = tcx.sess.source_map(); let mir_source = self.mir_body.source; let def_id = mir_source.def_id(); let fn_sig_span = self.fn_sig_span; let body_span = self.body_span; debug!( "instrumenting {:?}, fn sig span: {}, body span: {}", def_id, source_map.span_to_string(fn_sig_span), source_map.span_to_string(body_span) ); let mut graphviz_data = debug::GraphvizData::new(); let mut debug_used_expressions = debug::UsedExpressions::new(); let dump_mir = pretty::dump_enabled(tcx, self.pass_name, def_id); let dump_graphviz = dump_mir && tcx.sess.opts.debugging_opts.dump_mir_graphviz; let dump_spanview = dump_mir && tcx.sess.opts.debugging_opts.dump_mir_spanview.is_some(); if dump_graphviz { graphviz_data.enable(); self.coverage_counters.enable_debug(); } if dump_graphviz || level_enabled!(tracing::Level::DEBUG) { debug_used_expressions.enable(); } //////////////////////////////////////////////////// // Compute `CoverageSpan`s from the `CoverageGraph`. let coverage_spans = CoverageSpans::generate_coverage_spans( &self.mir_body, fn_sig_span, body_span, &self.basic_coverage_blocks, ); if dump_spanview { debug::dump_coverage_spanview( tcx, self.mir_body, &self.basic_coverage_blocks, self.pass_name, &coverage_spans, ); } //////////////////////////////////////////////////// // Create an optimized mix of `Counter`s and `Expression`s for the `CoverageGraph`. Ensure // every `CoverageSpan` has a `Counter` or `Expression` assigned to its `BasicCoverageBlock` // and all `Expression` dependencies (operands) are also generated, for any other // `BasicCoverageBlock`s not already associated with a `CoverageSpan`. // // Intermediate expressions (used to compute other `Expression` values), which have no // direct associate to any `BasicCoverageBlock`, are returned in the method `Result`. let intermediate_expressions_or_error = self .coverage_counters .make_bcb_counters(&mut self.basic_coverage_blocks, &coverage_spans); let (result, intermediate_expressions) = match intermediate_expressions_or_error { Ok(intermediate_expressions) => { // If debugging, add any intermediate expressions (which are not associated with any // BCB) to the `debug_used_expressions` map. if debug_used_expressions.is_enabled() { for intermediate_expression in &intermediate_expressions { debug_used_expressions.add_expression_operands(intermediate_expression); } } //////////////////////////////////////////////////// // Remove the counter or edge counter from of each `CoverageSpan`s associated // `BasicCoverageBlock`, and inject a `Coverage` statement into the MIR. // // `Coverage` statements injected from `CoverageSpan`s will include the code regions // (source code start and end positions) to be counted by the associated counter. // // These `CoverageSpan`-associated counters are removed from their associated // `BasicCoverageBlock`s so that the only remaining counters in the `CoverageGraph` // are indirect counters (to be injected next, without associated code regions). self.inject_coverage_span_counters( coverage_spans, &mut graphviz_data, &mut debug_used_expressions, ); //////////////////////////////////////////////////// // For any remaining `BasicCoverageBlock` counters (that were not associated with // any `CoverageSpan`), inject `Coverage` statements (_without_ code region `Span`s) // to ensure `BasicCoverageBlock` counters that other `Expression`s may depend on // are in fact counted, even though they don't directly contribute to counting // their own independent code region's coverage. self.inject_indirect_counters(&mut graphviz_data, &mut debug_used_expressions); // Intermediate expressions will be injected as the final step, after generating // debug output, if any. //////////////////////////////////////////////////// (Ok(()), intermediate_expressions) } Err(e) => (Err(e), Vec::new()), }; if graphviz_data.is_enabled() { // Even if there was an error, a partial CoverageGraph can still generate a useful // graphviz output. debug::dump_coverage_graphviz( tcx, self.mir_body, self.pass_name, &self.basic_coverage_blocks, &self.coverage_counters.debug_counters, &graphviz_data, &intermediate_expressions, &debug_used_expressions, ); } if let Err(e) = result { bug!("Error processing: {:?}: {:?}", self.mir_body.source.def_id(), e) }; // Depending on current `debug_options()`, `alert_on_unused_expressions()` could panic, so // this check is performed as late as possible, to allow other debug output (logs and dump // files), which might be helpful in analyzing unused expressions, to still be generated. debug_used_expressions.alert_on_unused_expressions(&self.coverage_counters.debug_counters); //////////////////////////////////////////////////// // Finally, inject the intermediate expressions collected along the way. for intermediate_expression in intermediate_expressions { inject_intermediate_expression(self.mir_body, intermediate_expression); } } /// Inject a counter for each `CoverageSpan`. There can be multiple `CoverageSpan`s for a given /// BCB, but only one actual counter needs to be incremented per BCB. `bb_counters` maps each /// `bcb` to its `Counter`, when injected. Subsequent `CoverageSpan`s for a BCB that already has /// a `Counter` will inject an `Expression` instead, and compute its value by adding `ZERO` to /// the BCB `Counter` value. /// /// If debugging, add every BCB `Expression` associated with a `CoverageSpan`s to the /// `used_expression_operands` map. fn inject_coverage_span_counters( &mut self, coverage_spans: Vec, graphviz_data: &mut debug::GraphvizData, debug_used_expressions: &mut debug::UsedExpressions, ) { let tcx = self.tcx; let source_map = tcx.sess.source_map(); let body_span = self.body_span; let source_file = source_map.lookup_source_file(body_span.lo()); let file_name = Symbol::intern(&source_file.name.to_string()); let mut bcb_counters = IndexVec::from_elem_n(None, self.basic_coverage_blocks.num_nodes()); for covspan in coverage_spans { let bcb = covspan.bcb; let span = covspan.span; let counter_kind = if let Some(&counter_operand) = bcb_counters[bcb].as_ref() { self.coverage_counters.make_identity_counter(counter_operand) } else if let Some(counter_kind) = self.bcb_data_mut(bcb).take_counter() { bcb_counters[bcb] = Some(counter_kind.as_operand_id()); debug_used_expressions.add_expression_operands(&counter_kind); counter_kind } else { bug!("Every BasicCoverageBlock should have a Counter or Expression"); }; graphviz_data.add_bcb_coverage_span_with_counter(bcb, &covspan, &counter_kind); inject_statement( self.mir_body, counter_kind, self.bcb_last_bb(bcb), Some(make_code_region(file_name, &source_file, span, body_span)), ); } } /// `inject_coverage_span_counters()` looped through the `CoverageSpan`s and injected the /// counter from the `CoverageSpan`s `BasicCoverageBlock`, removing it from the BCB in the /// process (via `take_counter()`). /// /// Any other counter associated with a `BasicCoverageBlock`, or its incoming edge, but not /// associated with a `CoverageSpan`, should only exist if the counter is a `Expression` /// dependency (one of the expression operands). Collect them, and inject the additional /// counters into the MIR, without a reportable coverage span. fn inject_indirect_counters( &mut self, graphviz_data: &mut debug::GraphvizData, debug_used_expressions: &mut debug::UsedExpressions, ) { let mut bcb_counters_without_direct_coverage_spans = Vec::new(); for (target_bcb, target_bcb_data) in self.basic_coverage_blocks.iter_enumerated_mut() { if let Some(counter_kind) = target_bcb_data.take_counter() { bcb_counters_without_direct_coverage_spans.push((None, target_bcb, counter_kind)); } if let Some(edge_counters) = target_bcb_data.take_edge_counters() { for (from_bcb, counter_kind) in edge_counters { bcb_counters_without_direct_coverage_spans.push(( Some(from_bcb), target_bcb, counter_kind, )); } } } // If debug is enabled, validate that every BCB or edge counter not directly associated // with a coverage span is at least indirectly associated (it is a dependency of a BCB // counter that _is_ associated with a coverage span). debug_used_expressions.validate(&bcb_counters_without_direct_coverage_spans); for (edge_from_bcb, target_bcb, counter_kind) in bcb_counters_without_direct_coverage_spans { debug_used_expressions.add_unused_expression_if_not_found( &counter_kind, edge_from_bcb, target_bcb, ); match counter_kind { CoverageKind::Counter { .. } => { let inject_to_bb = if let Some(from_bcb) = edge_from_bcb { // The MIR edge starts `from_bb` (the outgoing / last BasicBlock in // `from_bcb`) and ends at `to_bb` (the incoming / first BasicBlock in the // `target_bcb`; also called the `leader_bb`). let from_bb = self.bcb_last_bb(from_bcb); let to_bb = self.bcb_leader_bb(target_bcb); let new_bb = inject_edge_counter_basic_block(self.mir_body, from_bb, to_bb); graphviz_data.set_edge_counter(from_bcb, new_bb, &counter_kind); debug!( "Edge {:?} (last {:?}) -> {:?} (leader {:?}) requires a new MIR \ BasicBlock {:?}, for unclaimed edge counter {}", edge_from_bcb, from_bb, target_bcb, to_bb, new_bb, self.format_counter(&counter_kind), ); new_bb } else { let target_bb = self.bcb_last_bb(target_bcb); graphviz_data.add_bcb_dependency_counter(target_bcb, &counter_kind); debug!( "{:?} ({:?}) gets a new Coverage statement for unclaimed counter {}", target_bcb, target_bb, self.format_counter(&counter_kind), ); target_bb }; inject_statement(self.mir_body, counter_kind, inject_to_bb, None); } CoverageKind::Expression { .. } => { inject_intermediate_expression(self.mir_body, counter_kind) } _ => bug!("CoverageKind should be a counter"), } } } #[inline] fn bcb_leader_bb(&self, bcb: BasicCoverageBlock) -> BasicBlock { self.bcb_data(bcb).leader_bb() } #[inline] fn bcb_last_bb(&self, bcb: BasicCoverageBlock) -> BasicBlock { self.bcb_data(bcb).last_bb() } #[inline] fn bcb_data(&self, bcb: BasicCoverageBlock) -> &BasicCoverageBlockData { &self.basic_coverage_blocks[bcb] } #[inline] fn bcb_data_mut(&mut self, bcb: BasicCoverageBlock) -> &mut BasicCoverageBlockData { &mut self.basic_coverage_blocks[bcb] } #[inline] fn format_counter(&self, counter_kind: &CoverageKind) -> String { self.coverage_counters.debug_counters.format_counter(counter_kind) } } fn inject_edge_counter_basic_block( mir_body: &mut mir::Body<'tcx>, from_bb: BasicBlock, to_bb: BasicBlock, ) -> BasicBlock { let span = mir_body[from_bb].terminator().source_info.span.shrink_to_hi(); let new_bb = mir_body.basic_blocks_mut().push(BasicBlockData { statements: vec![], // counter will be injected here terminator: Some(Terminator { source_info: SourceInfo::outermost(span), kind: TerminatorKind::Goto { target: to_bb }, }), is_cleanup: false, }); let edge_ref = mir_body[from_bb] .terminator_mut() .successors_mut() .find(|successor| **successor == to_bb) .expect("from_bb should have a successor for to_bb"); *edge_ref = new_bb; new_bb } fn inject_statement( mir_body: &mut mir::Body<'tcx>, counter_kind: CoverageKind, bb: BasicBlock, some_code_region: Option, ) { debug!( " injecting statement {:?} for {:?} at code region: {:?}", counter_kind, bb, some_code_region ); let data = &mut mir_body[bb]; let source_info = data.terminator().source_info; let statement = Statement { source_info, kind: StatementKind::Coverage(box Coverage { kind: counter_kind, code_region: some_code_region, }), }; data.statements.push(statement); } // Non-code expressions are injected into the coverage map, without generating executable code. fn inject_intermediate_expression(mir_body: &mut mir::Body<'tcx>, expression: CoverageKind) { debug_assert!(if let CoverageKind::Expression { .. } = expression { true } else { false }); debug!(" injecting non-code expression {:?}", expression); let inject_in_bb = mir::START_BLOCK; let data = &mut mir_body[inject_in_bb]; let source_info = data.terminator().source_info; let statement = Statement { source_info, kind: StatementKind::Coverage(box Coverage { kind: expression, code_region: None }), }; data.statements.push(statement); } /// Convert the Span into its file name, start line and column, and end line and column fn make_code_region( file_name: Symbol, source_file: &Lrc, span: Span, body_span: Span, ) -> CodeRegion { let (start_line, mut start_col) = source_file.lookup_file_pos(span.lo()); let (end_line, end_col) = if span.hi() == span.lo() { let (end_line, mut end_col) = (start_line, start_col); // Extend an empty span by one character so the region will be counted. let CharPos(char_pos) = start_col; if span.hi() == body_span.hi() { start_col = CharPos(char_pos - 1); } else { end_col = CharPos(char_pos + 1); } (end_line, end_col) } else { source_file.lookup_file_pos(span.hi()) }; CodeRegion { file_name, start_line: start_line as u32, start_col: start_col.to_u32() + 1, end_line: end_line as u32, end_col: end_col.to_u32() + 1, } } fn fn_sig_and_body<'tcx>( tcx: TyCtxt<'tcx>, def_id: DefId, ) -> (Option<&'tcx rustc_hir::FnSig<'tcx>>, &'tcx rustc_hir::Body<'tcx>) { let hir_node = tcx.hir().get_if_local(def_id).expect("expected DefId is local"); let fn_body_id = hir::map::associated_body(hir_node).expect("HIR node is a function with body"); (hir::map::fn_sig(hir_node), tcx.hir().body(fn_body_id)) } fn hash_mir_source<'tcx>(tcx: TyCtxt<'tcx>, hir_body: &'tcx rustc_hir::Body<'tcx>) -> u64 { let mut hcx = tcx.create_no_span_stable_hashing_context(); hash(&mut hcx, &hir_body.value).to_smaller_hash() } fn hash( hcx: &mut StableHashingContext<'tcx>, node: &impl HashStable>, ) -> Fingerprint { let mut stable_hasher = StableHasher::new(); node.hash_stable(hcx, &mut stable_hasher); stable_hasher.finish() }