//! A module for searching for libraries use std::path::{Path, PathBuf}; use std::{env, fs}; use rustc_fs_util::{fix_windows_verbatim_for_gcc, try_canonicalize}; use rustc_target::spec::Target; use smallvec::{SmallVec, smallvec}; use crate::search_paths::{PathKind, SearchPath}; #[derive(Clone)] pub struct FileSearch { cli_search_paths: Vec, tlib_path: SearchPath, } impl FileSearch { pub fn cli_search_paths<'b>(&'b self, kind: PathKind) -> impl Iterator { self.cli_search_paths.iter().filter(move |sp| sp.kind.matches(kind)) } pub fn search_paths<'b>(&'b self, kind: PathKind) -> impl Iterator { self.cli_search_paths .iter() .filter(move |sp| sp.kind.matches(kind)) .chain(std::iter::once(&self.tlib_path)) } pub fn new(cli_search_paths: &[SearchPath], tlib_path: &SearchPath, target: &Target) -> Self { let this = FileSearch { cli_search_paths: cli_search_paths.to_owned(), tlib_path: tlib_path.clone(), }; this.refine(&["lib", &target.staticlib_prefix, &target.dll_prefix]) } // Produce a new file search from this search that has a smaller set of candidates. fn refine(mut self, allowed_prefixes: &[&str]) -> FileSearch { self.cli_search_paths .iter_mut() .for_each(|search_paths| search_paths.files.retain(allowed_prefixes)); self.tlib_path.files.retain(allowed_prefixes); self } } pub fn make_target_lib_path(sysroot: &Path, target_triple: &str) -> PathBuf { let rustlib_path = rustc_target::relative_target_rustlib_path(sysroot, target_triple); sysroot.join(rustlib_path).join("lib") } /// Returns a path to the target's `bin` folder within its `rustlib` path in the sysroot. This is /// where binaries are usually installed, e.g. the self-contained linkers, lld-wrappers, LLVM tools, /// etc. pub fn make_target_bin_path(sysroot: &Path, target_triple: &str) -> PathBuf { let rustlib_path = rustc_target::relative_target_rustlib_path(sysroot, target_triple); sysroot.join(rustlib_path).join("bin") } #[cfg(unix)] fn current_dll_path() -> Result { use std::sync::OnceLock; // This is somewhat expensive relative to other work when compiling `fn main() {}` as `dladdr` // needs to iterate over the symbol table of librustc_driver.so until it finds a match. // As such cache this to avoid recomputing if we try to get the sysroot in multiple places. static CURRENT_DLL_PATH: OnceLock> = OnceLock::new(); CURRENT_DLL_PATH .get_or_init(|| { use std::ffi::{CStr, OsStr}; use std::os::unix::prelude::*; #[cfg(not(target_os = "aix"))] unsafe { let addr = current_dll_path as usize as *mut _; let mut info = std::mem::zeroed(); if libc::dladdr(addr, &mut info) == 0 { return Err("dladdr failed".into()); } #[cfg(target_os = "cygwin")] let fname_ptr = info.dli_fname.as_ptr(); #[cfg(not(target_os = "cygwin"))] let fname_ptr = { assert!(!info.dli_fname.is_null(), "the docs do not allow dladdr to be null"); info.dli_fname }; let bytes = CStr::from_ptr(fname_ptr).to_bytes(); let os = OsStr::from_bytes(bytes); Ok(PathBuf::from(os)) } #[cfg(target_os = "aix")] unsafe { // On AIX, the symbol `current_dll_path` references a function descriptor. // A function descriptor is consisted of (See https://reviews.llvm.org/D62532) // * The address of the entry point of the function. // * The TOC base address for the function. // * The environment pointer. // The function descriptor is in the data section. let addr = current_dll_path as u64; let mut buffer = vec![std::mem::zeroed::(); 64]; loop { if libc::loadquery( libc::L_GETINFO, buffer.as_mut_ptr() as *mut u8, (size_of::() * buffer.len()) as u32, ) >= 0 { break; } else { if std::io::Error::last_os_error().raw_os_error().unwrap() != libc::ENOMEM { return Err("loadquery failed".into()); } buffer.resize(buffer.len() * 2, std::mem::zeroed::()); } } let mut current = buffer.as_mut_ptr() as *mut libc::ld_info; loop { let data_base = (*current).ldinfo_dataorg as u64; let data_end = data_base + (*current).ldinfo_datasize; if (data_base..data_end).contains(&addr) { let bytes = CStr::from_ptr(&(*current).ldinfo_filename[0]).to_bytes(); let os = OsStr::from_bytes(bytes); return Ok(PathBuf::from(os)); } if (*current).ldinfo_next == 0 { break; } current = (current as *mut i8).offset((*current).ldinfo_next as isize) as *mut libc::ld_info; } return Err(format!("current dll's address {} is not in the load map", addr)); } }) .clone() } #[cfg(windows)] fn current_dll_path() -> Result { use std::ffi::OsString; use std::io; use std::os::windows::prelude::*; use windows::Win32::Foundation::HMODULE; use windows::Win32::System::LibraryLoader::{ GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS, GetModuleFileNameW, GetModuleHandleExW, }; use windows::core::PCWSTR; let mut module = HMODULE::default(); unsafe { GetModuleHandleExW( GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS, PCWSTR(current_dll_path as *mut u16), &mut module, ) } .map_err(|e| e.to_string())?; let mut filename = vec![0; 1024]; let n = unsafe { GetModuleFileNameW(Some(module), &mut filename) } as usize; if n == 0 { return Err(format!("GetModuleFileNameW failed: {}", io::Error::last_os_error())); } if n >= filename.capacity() { return Err(format!("our buffer was too small? {}", io::Error::last_os_error())); } filename.truncate(n); Ok(OsString::from_wide(&filename).into()) } pub fn sysroot_candidates() -> SmallVec<[PathBuf; 2]> { let target = crate::config::host_tuple(); let mut sysroot_candidates: SmallVec<[PathBuf; 2]> = smallvec![get_or_default_sysroot()]; let path = current_dll_path().and_then(|s| try_canonicalize(s).map_err(|e| e.to_string())); if let Ok(dll) = path { // use `parent` twice to chop off the file name and then also the // directory containing the dll which should be either `lib` or `bin`. if let Some(path) = dll.parent().and_then(|p| p.parent()) { // The original `path` pointed at the `rustc_driver` crate's dll. // Now that dll should only be in one of two locations. The first is // in the compiler's libdir, for example `$sysroot/lib/*.dll`. The // other is the target's libdir, for example // `$sysroot/lib/rustlib/$target/lib/*.dll`. // // We don't know which, so let's assume that if our `path` above // ends in `$target` we *could* be in the target libdir, and always // assume that we may be in the main libdir. sysroot_candidates.push(path.to_owned()); if path.ends_with(target) { sysroot_candidates.extend( path.parent() // chop off `$target` .and_then(|p| p.parent()) // chop off `rustlib` .and_then(|p| p.parent()) // chop off `lib` .map(|s| s.to_owned()), ); } } } sysroot_candidates } /// Returns the provided sysroot or calls [`get_or_default_sysroot`] if it's none. /// Panics if [`get_or_default_sysroot`] returns an error. pub fn materialize_sysroot(maybe_sysroot: Option) -> PathBuf { maybe_sysroot.unwrap_or_else(|| get_or_default_sysroot()) } /// This function checks if sysroot is found using env::args().next(), and if it /// is not found, finds sysroot from current rustc_driver dll. pub fn get_or_default_sysroot() -> PathBuf { // Follow symlinks. If the resolved path is relative, make it absolute. fn canonicalize(path: PathBuf) -> PathBuf { let path = try_canonicalize(&path).unwrap_or(path); // See comments on this target function, but the gist is that // gcc chokes on verbatim paths which fs::canonicalize generates // so we try to avoid those kinds of paths. fix_windows_verbatim_for_gcc(&path) } fn default_from_rustc_driver_dll() -> Result { let dll = current_dll_path().map(|s| canonicalize(s))?; // `dll` will be in one of the following two: // - compiler's libdir: $sysroot/lib/*.dll // - target's libdir: $sysroot/lib/rustlib/$target/lib/*.dll // // use `parent` twice to chop off the file name and then also the // directory containing the dll let dir = dll.parent().and_then(|p| p.parent()).ok_or(format!( "Could not move 2 levels upper using `parent()` on {}", dll.display() ))?; // if `dir` points target's dir, move up to the sysroot let mut sysroot_dir = if dir.ends_with(crate::config::host_tuple()) { dir.parent() // chop off `$target` .and_then(|p| p.parent()) // chop off `rustlib` .and_then(|p| p.parent()) // chop off `lib` .map(|s| s.to_owned()) .ok_or_else(|| { format!("Could not move 3 levels upper using `parent()` on {}", dir.display()) })? } else { dir.to_owned() }; // On multiarch linux systems, there will be multiarch directory named // with the architecture(e.g `x86_64-linux-gnu`) under the `lib` directory. // Which cause us to mistakenly end up in the lib directory instead of the sysroot directory. if sysroot_dir.ends_with("lib") { sysroot_dir = sysroot_dir.parent().map(|real_sysroot| real_sysroot.to_owned()).ok_or_else( || format!("Could not move to parent path of {}", sysroot_dir.display()), )? } Ok(sysroot_dir) } // Use env::args().next() to get the path of the executable without // following symlinks/canonicalizing any component. This makes the rustc // binary able to locate Rust libraries in systems using content-addressable // storage (CAS). fn from_env_args_next() -> Option { let mut p = PathBuf::from(env::args_os().next()?); // Check if sysroot is found using env::args().next() only if the rustc in argv[0] // is a symlink (see #79253). We might want to change/remove it to conform with // https://www.gnu.org/prep/standards/standards.html#Finding-Program-Files in the // future. if fs::read_link(&p).is_err() { // Path is not a symbolic link or does not exist. return None; } // Pop off `bin/rustc`, obtaining the suspected sysroot. p.pop(); p.pop(); // Look for the target rustlib directory in the suspected sysroot. let mut rustlib_path = rustc_target::relative_target_rustlib_path(&p, "dummy"); rustlib_path.pop(); // pop off the dummy target. rustlib_path.exists().then_some(p) } from_env_args_next().unwrap_or(default_from_rustc_driver_dll().expect("Failed finding sysroot")) }