// Copyright 2014-2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use prelude::v1::*; use collections::HashMap; use env; use ffi::{OsString, OsStr, CString}; use fmt; use hash::Hash; use io::{self, Error, ErrorKind}; use libc::{self, pid_t, c_void, c_int, gid_t, uid_t}; use mem; use old_io; use os; use os::unix::OsStrExt; use ptr; use sync::mpsc::{channel, Sender, Receiver}; use sys::pipe2::AnonPipe; use sys::{self, retry, c, wouldblock, set_nonblocking, ms_to_timeval, cvt}; use sys_common::AsInner; //////////////////////////////////////////////////////////////////////////////// // Command //////////////////////////////////////////////////////////////////////////////// #[derive(Clone)] pub struct Command { pub program: CString, pub args: Vec, pub env: Option>, pub cwd: Option, pub uid: Option, pub gid: Option, pub detach: bool, // not currently exposed in std::process } impl Command { pub fn new(program: &OsStr) -> Command { Command { program: program.to_cstring().unwrap(), args: Vec::new(), env: None, cwd: None, uid: None, gid: None, detach: false, } } pub fn arg(&mut self, arg: &OsStr) { self.args.push(arg.to_cstring().unwrap()) } pub fn args<'a, I: Iterator>(&mut self, args: I) { self.args.extend(args.map(|s| OsStrExt::to_cstring(s).unwrap())) } fn init_env_map(&mut self) { if self.env.is_none() { self.env = Some(env::vars_os().collect()); } } pub fn env(&mut self, key: &OsStr, val: &OsStr) { self.init_env_map(); self.env.as_mut().unwrap().insert(key.to_os_string(), val.to_os_string()); } pub fn env_remove(&mut self, key: &OsStr) { self.init_env_map(); self.env.as_mut().unwrap().remove(&key.to_os_string()); } pub fn env_clear(&mut self) { self.env = Some(HashMap::new()) } pub fn cwd(&mut self, dir: &OsStr) { self.cwd = Some(dir.to_cstring().unwrap()) } } //////////////////////////////////////////////////////////////////////////////// // Processes //////////////////////////////////////////////////////////////////////////////// /// Unix exit statuses #[derive(PartialEq, Eq, Clone, Copy, Debug)] pub enum ExitStatus { /// Normal termination with an exit code. Code(i32), /// Termination by signal, with the signal number. /// /// Never generated on Windows. Signal(i32), } impl ExitStatus { pub fn success(&self) -> bool { *self == ExitStatus::Code(0) } pub fn code(&self) -> Option { match *self { ExitStatus::Code(c) => Some(c), _ => None } } } impl fmt::Display for ExitStatus { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match *self { ExitStatus::Code(code) => write!(f, "exit code: {}", code), ExitStatus::Signal(code) => write!(f, "signal: {}", code), } } } /// The unique id of the process (this should never be negative). pub struct Process { pid: pid_t } const CLOEXEC_MSG_FOOTER: &'static [u8] = b"NOEX"; impl Process { pub fn id(&self) -> pid_t { self.pid } pub unsafe fn kill(&self) -> io::Result<()> { try!(cvt(libc::funcs::posix88::signal::kill(self.pid, libc::SIGKILL))); Ok(()) } pub fn spawn(cfg: &Command, in_fd: Option, out_fd: Option, err_fd: Option) -> io::Result { use libc::funcs::posix88::unistd::{fork, dup2, close, chdir, execvp}; mod rustrt { extern { pub fn rust_unset_sigprocmask(); } } unsafe fn set_cloexec(fd: c_int) { let ret = c::ioctl(fd, c::FIOCLEX); assert_eq!(ret, 0); } #[cfg(all(target_os = "android", target_arch = "aarch64"))] unsafe fn getdtablesize() -> c_int { libc::sysconf(libc::consts::os::sysconf::_SC_OPEN_MAX) as c_int } #[cfg(not(all(target_os = "android", target_arch = "aarch64")))] unsafe fn getdtablesize() -> c_int { libc::funcs::bsd44::getdtablesize() } let dirp = cfg.cwd.as_ref().map(|c| c.as_ptr()).unwrap_or(ptr::null()); with_envp(cfg.env.as_ref(), |envp: *const c_void| { with_argv(&cfg.program, &cfg.args, |argv: *const *const libc::c_char| unsafe { let (input, mut output) = try!(sys::pipe2::anon_pipe()); // We may use this in the child, so perform allocations before the // fork let devnull = b"/dev/null\0"; set_cloexec(output.raw()); let pid = fork(); if pid < 0 { return Err(Error::last_os_error()) } else if pid > 0 { #[inline] fn combine(arr: &[u8]) -> i32 { let a = arr[0] as u32; let b = arr[1] as u32; let c = arr[2] as u32; let d = arr[3] as u32; ((a << 24) | (b << 16) | (c << 8) | (d << 0)) as i32 } let p = Process{ pid: pid }; drop(output); let mut bytes = [0; 8]; // loop to handle EINTER loop { match input.read(&mut bytes) { Ok(8) => { assert!(combine(CLOEXEC_MSG_FOOTER) == combine(&bytes[4.. 8]), "Validation on the CLOEXEC pipe failed: {:?}", bytes); let errno = combine(&bytes[0.. 4]); assert!(p.wait().is_ok(), "wait() should either return Ok or panic"); return Err(Error::from_os_error(errno)) } Ok(0) => return Ok(p), Err(ref e) if e.kind() == ErrorKind::Interrupted => {} Err(e) => { assert!(p.wait().is_ok(), "wait() should either return Ok or panic"); panic!("the CLOEXEC pipe failed: {:?}", e) }, Ok(..) => { // pipe I/O up to PIPE_BUF bytes should be atomic assert!(p.wait().is_ok(), "wait() should either return Ok or panic"); panic!("short read on the CLOEXEC pipe") } } } } // And at this point we've reached a special time in the life of the // child. The child must now be considered hamstrung and unable to // do anything other than syscalls really. Consider the following // scenario: // // 1. Thread A of process 1 grabs the malloc() mutex // 2. Thread B of process 1 forks(), creating thread C // 3. Thread C of process 2 then attempts to malloc() // 4. The memory of process 2 is the same as the memory of // process 1, so the mutex is locked. // // This situation looks a lot like deadlock, right? It turns out // that this is what pthread_atfork() takes care of, which is // presumably implemented across platforms. The first thing that // threads to *before* forking is to do things like grab the malloc // mutex, and then after the fork they unlock it. // // Despite this information, libnative's spawn has been witnessed to // deadlock on both OSX and FreeBSD. I'm not entirely sure why, but // all collected backtraces point at malloc/free traffic in the // child spawned process. // // For this reason, the block of code below should contain 0 // invocations of either malloc of free (or their related friends). // // As an example of not having malloc/free traffic, we don't close // this file descriptor by dropping the FileDesc (which contains an // allocation). Instead we just close it manually. This will never // have the drop glue anyway because this code never returns (the // child will either exec() or invoke libc::exit) let _ = libc::close(input.raw()); fn fail(output: &mut AnonPipe) -> ! { let errno = sys::os::errno() as u32; let bytes = [ (errno >> 24) as u8, (errno >> 16) as u8, (errno >> 8) as u8, (errno >> 0) as u8, CLOEXEC_MSG_FOOTER[0], CLOEXEC_MSG_FOOTER[1], CLOEXEC_MSG_FOOTER[2], CLOEXEC_MSG_FOOTER[3] ]; // pipe I/O up to PIPE_BUF bytes should be atomic assert!(output.write(&bytes).is_ok()); unsafe { libc::_exit(1) } } rustrt::rust_unset_sigprocmask(); // If a stdio file descriptor is set to be ignored, we don't // actually close it, but rather open up /dev/null into that // file descriptor. Otherwise, the first file descriptor opened // up in the child would be numbered as one of the stdio file // descriptors, which is likely to wreak havoc. let setup = |&: src: Option, dst: c_int| { let src = match src { None => { let flags = if dst == libc::STDIN_FILENO { libc::O_RDONLY } else { libc::O_RDWR }; libc::open(devnull.as_ptr() as *const _, flags, 0) } Some(obj) => { let fd = obj.raw(); // Leak the memory and the file descriptor. We're in the // child now an all our resources are going to be // cleaned up very soon mem::forget(obj); fd } }; src != -1 && retry(|| dup2(src, dst)) != -1 }; if !setup(in_fd, libc::STDIN_FILENO) { fail(&mut output) } if !setup(out_fd, libc::STDOUT_FILENO) { fail(&mut output) } if !setup(err_fd, libc::STDERR_FILENO) { fail(&mut output) } // close all other fds for fd in (3..getdtablesize()).rev() { if fd != output.raw() { let _ = close(fd as c_int); } } match cfg.gid { Some(u) => { if libc::setgid(u as libc::gid_t) != 0 { fail(&mut output); } } None => {} } match cfg.uid { Some(u) => { // When dropping privileges from root, the `setgroups` call // will remove any extraneous groups. If we don't call this, // then even though our uid has dropped, we may still have // groups that enable us to do super-user things. This will // fail if we aren't root, so don't bother checking the // return value, this is just done as an optimistic // privilege dropping function. extern { fn setgroups(ngroups: libc::c_int, ptr: *const libc::c_void) -> libc::c_int; } let _ = setgroups(0, ptr::null()); if libc::setuid(u as libc::uid_t) != 0 { fail(&mut output); } } None => {} } if cfg.detach { // Don't check the error of setsid because it fails if we're the // process leader already. We just forked so it shouldn't return // error, but ignore it anyway. let _ = libc::setsid(); } if !dirp.is_null() && chdir(dirp) == -1 { fail(&mut output); } if !envp.is_null() { *sys::os::environ() = envp as *const _; } let _ = execvp(*argv, argv as *mut _); fail(&mut output); }) }) } pub fn wait(&self) -> io::Result { let mut status = 0 as c_int; try!(cvt(retry(|| unsafe { c::waitpid(self.pid, &mut status, 0) }))); Ok(translate_status(status)) } pub fn try_wait(&self) -> Option { let mut status = 0 as c_int; match retry(|| unsafe { c::waitpid(self.pid, &mut status, c::WNOHANG) }) { n if n == self.pid => Some(translate_status(status)), 0 => None, n => panic!("unknown waitpid error `{:?}`: {:?}", n, super::last_error()), } } } fn with_argv(prog: &CString, args: &[CString], cb: F) -> T where F : FnOnce(*const *const libc::c_char) -> T { let mut ptrs: Vec<*const libc::c_char> = Vec::with_capacity(args.len()+1); // Convert the CStrings into an array of pointers. Note: the // lifetime of the various CStrings involved is guaranteed to be // larger than the lifetime of our invocation of cb, but this is // technically unsafe as the callback could leak these pointers // out of our scope. ptrs.push(prog.as_ptr()); ptrs.extend(args.iter().map(|tmp| tmp.as_ptr())); // Add a terminating null pointer (required by libc). ptrs.push(ptr::null()); cb(ptrs.as_ptr()) } fn with_envp(env: Option<&HashMap>, cb: F) -> T where F : FnOnce(*const c_void) -> T { // On posixy systems we can pass a char** for envp, which is a // null-terminated array of "k=v\0" strings. Since we must create // these strings locally, yet expose a raw pointer to them, we // create a temporary vector to own the CStrings that outlives the // call to cb. match env { Some(env) => { let mut tmps = Vec::with_capacity(env.len()); for pair in env { let mut kv = Vec::new(); kv.push_all(pair.0.as_bytes()); kv.push('=' as u8); kv.push_all(pair.1.as_bytes()); kv.push(0); // terminating null tmps.push(kv); } // As with `with_argv`, this is unsafe, since cb could leak the pointers. let mut ptrs: Vec<*const libc::c_char> = tmps.iter() .map(|tmp| tmp.as_ptr() as *const libc::c_char) .collect(); ptrs.push(ptr::null()); cb(ptrs.as_ptr() as *const c_void) } _ => cb(ptr::null()) } } fn translate_status(status: c_int) -> ExitStatus { #![allow(non_snake_case)] #[cfg(any(target_os = "linux", target_os = "android"))] mod imp { pub fn WIFEXITED(status: i32) -> bool { (status & 0xff) == 0 } pub fn WEXITSTATUS(status: i32) -> i32 { (status >> 8) & 0xff } pub fn WTERMSIG(status: i32) -> i32 { status & 0x7f } } #[cfg(any(target_os = "macos", target_os = "ios", target_os = "freebsd", target_os = "dragonfly", target_os = "openbsd"))] mod imp { pub fn WIFEXITED(status: i32) -> bool { (status & 0x7f) == 0 } pub fn WEXITSTATUS(status: i32) -> i32 { status >> 8 } pub fn WTERMSIG(status: i32) -> i32 { status & 0o177 } } if imp::WIFEXITED(status) { ExitStatus::Code(imp::WEXITSTATUS(status)) } else { ExitStatus::Signal(imp::WTERMSIG(status)) } }