//! Machinery for hygienic macros. //! //! Inspired by Matthew Flatt et al., “Macros That Work Together: Compile-Time Bindings, Partial //! Expansion, and Definition Contexts,” *Journal of Functional Programming* 22, no. 2 //! (March 1, 2012): 181–216, . // Hygiene data is stored in a global variable and accessed via TLS, which // means that accesses are somewhat expensive. (`HygieneData::with` // encapsulates a single access.) Therefore, on hot code paths it is worth // ensuring that multiple HygieneData accesses are combined into a single // `HygieneData::with`. // // This explains why `HygieneData`, `SyntaxContext` and `ExpnId` have interfaces // with a certain amount of redundancy in them. For example, // `SyntaxContext::outer_expn_data` combines `SyntaxContext::outer` and // `ExpnId::expn_data` so that two `HygieneData` accesses can be performed within // a single `HygieneData::with` call. // // It also explains why many functions appear in `HygieneData` and again in // `SyntaxContext` or `ExpnId`. For example, `HygieneData::outer` and // `SyntaxContext::outer` do the same thing, but the former is for use within a // `HygieneData::with` call while the latter is for use outside such a call. // When modifying this file it is important to understand this distinction, // because getting it wrong can lead to nested `HygieneData::with` calls that // trigger runtime aborts. (Fortunately these are obvious and easy to fix.) use crate::edition::Edition; use crate::symbol::{kw, sym, Symbol}; use crate::SESSION_GLOBALS; use crate::{Span, DUMMY_SP}; use crate::def_id::{CrateNum, DefId, CRATE_DEF_INDEX, LOCAL_CRATE}; use rustc_data_structures::fx::{FxHashMap, FxHashSet}; use rustc_data_structures::sync::{Lock, Lrc}; use rustc_macros::HashStable_Generic; use rustc_serialize::{Decodable, Decoder, Encodable, Encoder}; use std::fmt; use tracing::*; /// A `SyntaxContext` represents a chain of pairs `(ExpnId, Transparency)` named "marks". #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)] pub struct SyntaxContext(u32); #[derive(Debug, Encodable, Decodable, Clone)] pub struct SyntaxContextData { outer_expn: ExpnId, outer_transparency: Transparency, parent: SyntaxContext, /// This context, but with all transparent and semi-transparent expansions filtered away. opaque: SyntaxContext, /// This context, but with all transparent expansions filtered away. opaque_and_semitransparent: SyntaxContext, /// Name of the crate to which `$crate` with this context would resolve. dollar_crate_name: Symbol, } /// A unique ID associated with a macro invocation and expansion. #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)] pub struct ExpnId(u32); /// A property of a macro expansion that determines how identifiers /// produced by that expansion are resolved. #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Hash, Debug, Encodable, Decodable)] #[derive(HashStable_Generic)] pub enum Transparency { /// Identifier produced by a transparent expansion is always resolved at call-site. /// Call-site spans in procedural macros, hygiene opt-out in `macro` should use this. Transparent, /// Identifier produced by a semi-transparent expansion may be resolved /// either at call-site or at definition-site. /// If it's a local variable, label or `$crate` then it's resolved at def-site. /// Otherwise it's resolved at call-site. /// `macro_rules` macros behave like this, built-in macros currently behave like this too, /// but that's an implementation detail. SemiTransparent, /// Identifier produced by an opaque expansion is always resolved at definition-site. /// Def-site spans in procedural macros, identifiers from `macro` by default use this. Opaque, } impl ExpnId { pub fn fresh(expn_data: Option) -> Self { HygieneData::with(|data| data.fresh_expn(expn_data)) } /// The ID of the theoretical expansion that generates freshly parsed, unexpanded AST. #[inline] pub fn root() -> Self { ExpnId(0) } #[inline] pub fn as_u32(self) -> u32 { self.0 } #[inline] pub fn from_u32(raw: u32) -> ExpnId { ExpnId(raw) } #[inline] pub fn expn_data(self) -> ExpnData { HygieneData::with(|data| data.expn_data(self).clone()) } #[inline] pub fn set_expn_data(self, mut expn_data: ExpnData) { HygieneData::with(|data| { let old_expn_data = &mut data.expn_data[self.0 as usize]; assert!(old_expn_data.is_none(), "expansion data is reset for an expansion ID"); expn_data.orig_id.replace(self.as_u32()).expect_none("orig_id should be None"); *old_expn_data = Some(expn_data); }) } pub fn is_descendant_of(self, ancestor: ExpnId) -> bool { HygieneData::with(|data| data.is_descendant_of(self, ancestor)) } /// `expn_id.outer_expn_is_descendant_of(ctxt)` is equivalent to but faster than /// `expn_id.is_descendant_of(ctxt.outer_expn())`. pub fn outer_expn_is_descendant_of(self, ctxt: SyntaxContext) -> bool { HygieneData::with(|data| data.is_descendant_of(self, data.outer_expn(ctxt))) } /// Returns span for the macro which originally caused this expansion to happen. /// /// Stops backtracing at include! boundary. pub fn expansion_cause(mut self) -> Option { let mut last_macro = None; loop { let expn_data = self.expn_data(); // Stop going up the backtrace once include! is encountered if expn_data.is_root() || expn_data.kind == ExpnKind::Macro(MacroKind::Bang, sym::include) { break; } self = expn_data.call_site.ctxt().outer_expn(); last_macro = Some(expn_data.call_site); } last_macro } } #[derive(Debug)] pub struct HygieneData { /// Each expansion should have an associated expansion data, but sometimes there's a delay /// between creation of an expansion ID and obtaining its data (e.g. macros are collected /// first and then resolved later), so we use an `Option` here. expn_data: Vec>, syntax_context_data: Vec, syntax_context_map: FxHashMap<(SyntaxContext, ExpnId, Transparency), SyntaxContext>, } impl HygieneData { crate fn new(edition: Edition) -> Self { let mut root_data = ExpnData::default( ExpnKind::Root, DUMMY_SP, edition, Some(DefId::local(CRATE_DEF_INDEX)), ); root_data.orig_id = Some(0); HygieneData { expn_data: vec![Some(root_data)], syntax_context_data: vec![SyntaxContextData { outer_expn: ExpnId::root(), outer_transparency: Transparency::Opaque, parent: SyntaxContext(0), opaque: SyntaxContext(0), opaque_and_semitransparent: SyntaxContext(0), dollar_crate_name: kw::DollarCrate, }], syntax_context_map: FxHashMap::default(), } } pub fn with T>(f: F) -> T { SESSION_GLOBALS.with(|session_globals| f(&mut *session_globals.hygiene_data.borrow_mut())) } fn fresh_expn(&mut self, mut expn_data: Option) -> ExpnId { let raw_id = self.expn_data.len() as u32; if let Some(data) = expn_data.as_mut() { data.orig_id.replace(raw_id).expect_none("orig_id should be None"); } self.expn_data.push(expn_data); ExpnId(raw_id) } fn expn_data(&self, expn_id: ExpnId) -> &ExpnData { self.expn_data[expn_id.0 as usize].as_ref().expect("no expansion data for an expansion ID") } fn is_descendant_of(&self, mut expn_id: ExpnId, ancestor: ExpnId) -> bool { while expn_id != ancestor { if expn_id == ExpnId::root() { return false; } expn_id = self.expn_data(expn_id).parent; } true } fn normalize_to_macros_2_0(&self, ctxt: SyntaxContext) -> SyntaxContext { self.syntax_context_data[ctxt.0 as usize].opaque } fn normalize_to_macro_rules(&self, ctxt: SyntaxContext) -> SyntaxContext { self.syntax_context_data[ctxt.0 as usize].opaque_and_semitransparent } fn outer_expn(&self, ctxt: SyntaxContext) -> ExpnId { self.syntax_context_data[ctxt.0 as usize].outer_expn } fn outer_mark(&self, ctxt: SyntaxContext) -> (ExpnId, Transparency) { let data = &self.syntax_context_data[ctxt.0 as usize]; (data.outer_expn, data.outer_transparency) } fn parent_ctxt(&self, ctxt: SyntaxContext) -> SyntaxContext { self.syntax_context_data[ctxt.0 as usize].parent } fn remove_mark(&self, ctxt: &mut SyntaxContext) -> (ExpnId, Transparency) { let outer_mark = self.outer_mark(*ctxt); *ctxt = self.parent_ctxt(*ctxt); outer_mark } fn marks(&self, mut ctxt: SyntaxContext) -> Vec<(ExpnId, Transparency)> { let mut marks = Vec::new(); while ctxt != SyntaxContext::root() { debug!("marks: getting parent of {:?}", ctxt); marks.push(self.outer_mark(ctxt)); ctxt = self.parent_ctxt(ctxt); } marks.reverse(); marks } fn walk_chain(&self, mut span: Span, to: SyntaxContext) -> Span { debug!("walk_chain({:?}, {:?})", span, to); debug!("walk_chain: span ctxt = {:?}", span.ctxt()); while span.from_expansion() && span.ctxt() != to { let outer_expn = self.outer_expn(span.ctxt()); debug!("walk_chain({:?}): outer_expn={:?}", span, outer_expn); let expn_data = self.expn_data(outer_expn); debug!("walk_chain({:?}): expn_data={:?}", span, expn_data); span = expn_data.call_site; } span } fn adjust(&self, ctxt: &mut SyntaxContext, expn_id: ExpnId) -> Option { let mut scope = None; while !self.is_descendant_of(expn_id, self.outer_expn(*ctxt)) { scope = Some(self.remove_mark(ctxt).0); } scope } fn apply_mark( &mut self, ctxt: SyntaxContext, expn_id: ExpnId, transparency: Transparency, ) -> SyntaxContext { assert_ne!(expn_id, ExpnId::root()); if transparency == Transparency::Opaque { return self.apply_mark_internal(ctxt, expn_id, transparency); } let call_site_ctxt = self.expn_data(expn_id).call_site.ctxt(); let mut call_site_ctxt = if transparency == Transparency::SemiTransparent { self.normalize_to_macros_2_0(call_site_ctxt) } else { self.normalize_to_macro_rules(call_site_ctxt) }; if call_site_ctxt == SyntaxContext::root() { return self.apply_mark_internal(ctxt, expn_id, transparency); } // Otherwise, `expn_id` is a macros 1.0 definition and the call site is in a // macros 2.0 expansion, i.e., a macros 1.0 invocation is in a macros 2.0 definition. // // In this case, the tokens from the macros 1.0 definition inherit the hygiene // at their invocation. That is, we pretend that the macros 1.0 definition // was defined at its invocation (i.e., inside the macros 2.0 definition) // so that the macros 2.0 definition remains hygienic. // // See the example at `test/ui/hygiene/legacy_interaction.rs`. for (expn_id, transparency) in self.marks(ctxt) { call_site_ctxt = self.apply_mark_internal(call_site_ctxt, expn_id, transparency); } self.apply_mark_internal(call_site_ctxt, expn_id, transparency) } fn apply_mark_internal( &mut self, ctxt: SyntaxContext, expn_id: ExpnId, transparency: Transparency, ) -> SyntaxContext { let syntax_context_data = &mut self.syntax_context_data; let mut opaque = syntax_context_data[ctxt.0 as usize].opaque; let mut opaque_and_semitransparent = syntax_context_data[ctxt.0 as usize].opaque_and_semitransparent; if transparency >= Transparency::Opaque { let parent = opaque; opaque = *self .syntax_context_map .entry((parent, expn_id, transparency)) .or_insert_with(|| { let new_opaque = SyntaxContext(syntax_context_data.len() as u32); syntax_context_data.push(SyntaxContextData { outer_expn: expn_id, outer_transparency: transparency, parent, opaque: new_opaque, opaque_and_semitransparent: new_opaque, dollar_crate_name: kw::DollarCrate, }); new_opaque }); } if transparency >= Transparency::SemiTransparent { let parent = opaque_and_semitransparent; opaque_and_semitransparent = *self .syntax_context_map .entry((parent, expn_id, transparency)) .or_insert_with(|| { let new_opaque_and_semitransparent = SyntaxContext(syntax_context_data.len() as u32); syntax_context_data.push(SyntaxContextData { outer_expn: expn_id, outer_transparency: transparency, parent, opaque, opaque_and_semitransparent: new_opaque_and_semitransparent, dollar_crate_name: kw::DollarCrate, }); new_opaque_and_semitransparent }); } let parent = ctxt; *self.syntax_context_map.entry((parent, expn_id, transparency)).or_insert_with(|| { let new_opaque_and_semitransparent_and_transparent = SyntaxContext(syntax_context_data.len() as u32); syntax_context_data.push(SyntaxContextData { outer_expn: expn_id, outer_transparency: transparency, parent, opaque, opaque_and_semitransparent, dollar_crate_name: kw::DollarCrate, }); new_opaque_and_semitransparent_and_transparent }) } } pub fn clear_syntax_context_map() { HygieneData::with(|data| data.syntax_context_map = FxHashMap::default()); } pub fn walk_chain(span: Span, to: SyntaxContext) -> Span { HygieneData::with(|data| data.walk_chain(span, to)) } pub fn update_dollar_crate_names(mut get_name: impl FnMut(SyntaxContext) -> Symbol) { // The new contexts that need updating are at the end of the list and have `$crate` as a name. let (len, to_update) = HygieneData::with(|data| { ( data.syntax_context_data.len(), data.syntax_context_data .iter() .rev() .take_while(|scdata| scdata.dollar_crate_name == kw::DollarCrate) .count(), ) }); // The callback must be called from outside of the `HygieneData` lock, // since it will try to acquire it too. let range_to_update = len - to_update..len; let names: Vec<_> = range_to_update.clone().map(|idx| get_name(SyntaxContext::from_u32(idx as u32))).collect(); HygieneData::with(|data| { range_to_update.zip(names.into_iter()).for_each(|(idx, name)| { data.syntax_context_data[idx].dollar_crate_name = name; }) }) } pub fn debug_hygiene_data(verbose: bool) -> String { HygieneData::with(|data| { if verbose { format!("{:#?}", data) } else { let mut s = String::from(""); s.push_str("Expansions:"); data.expn_data.iter().enumerate().for_each(|(id, expn_info)| { let expn_info = expn_info.as_ref().expect("no expansion data for an expansion ID"); s.push_str(&format!( "\n{}: parent: {:?}, call_site_ctxt: {:?}, def_site_ctxt: {:?}, kind: {:?}", id, expn_info.parent, expn_info.call_site.ctxt(), expn_info.def_site.ctxt(), expn_info.kind, )); }); s.push_str("\n\nSyntaxContexts:"); data.syntax_context_data.iter().enumerate().for_each(|(id, ctxt)| { s.push_str(&format!( "\n#{}: parent: {:?}, outer_mark: ({:?}, {:?})", id, ctxt.parent, ctxt.outer_expn, ctxt.outer_transparency, )); }); s } }) } impl SyntaxContext { #[inline] pub const fn root() -> Self { SyntaxContext(0) } #[inline] crate fn as_u32(self) -> u32 { self.0 } #[inline] crate fn from_u32(raw: u32) -> SyntaxContext { SyntaxContext(raw) } /// Extend a syntax context with a given expansion and transparency. crate fn apply_mark(self, expn_id: ExpnId, transparency: Transparency) -> SyntaxContext { HygieneData::with(|data| data.apply_mark(self, expn_id, transparency)) } /// Pulls a single mark off of the syntax context. This effectively moves the /// context up one macro definition level. That is, if we have a nested macro /// definition as follows: /// /// ```rust /// macro_rules! f { /// macro_rules! g { /// ... /// } /// } /// ``` /// /// and we have a SyntaxContext that is referring to something declared by an invocation /// of g (call it g1), calling remove_mark will result in the SyntaxContext for the /// invocation of f that created g1. /// Returns the mark that was removed. pub fn remove_mark(&mut self) -> ExpnId { HygieneData::with(|data| data.remove_mark(self).0) } pub fn marks(self) -> Vec<(ExpnId, Transparency)> { HygieneData::with(|data| data.marks(self)) } /// Adjust this context for resolution in a scope created by the given expansion. /// For example, consider the following three resolutions of `f`: /// /// ```rust /// mod foo { pub fn f() {} } // `f`'s `SyntaxContext` is empty. /// m!(f); /// macro m($f:ident) { /// mod bar { /// pub fn f() {} // `f`'s `SyntaxContext` has a single `ExpnId` from `m`. /// pub fn $f() {} // `$f`'s `SyntaxContext` is empty. /// } /// foo::f(); // `f`'s `SyntaxContext` has a single `ExpnId` from `m` /// //^ Since `mod foo` is outside this expansion, `adjust` removes the mark from `f`, /// //| and it resolves to `::foo::f`. /// bar::f(); // `f`'s `SyntaxContext` has a single `ExpnId` from `m` /// //^ Since `mod bar` not outside this expansion, `adjust` does not change `f`, /// //| and it resolves to `::bar::f`. /// bar::$f(); // `f`'s `SyntaxContext` is empty. /// //^ Since `mod bar` is not outside this expansion, `adjust` does not change `$f`, /// //| and it resolves to `::bar::$f`. /// } /// ``` /// This returns the expansion whose definition scope we use to privacy check the resolution, /// or `None` if we privacy check as usual (i.e., not w.r.t. a macro definition scope). pub fn adjust(&mut self, expn_id: ExpnId) -> Option { HygieneData::with(|data| data.adjust(self, expn_id)) } /// Like `SyntaxContext::adjust`, but also normalizes `self` to macros 2.0. pub fn normalize_to_macros_2_0_and_adjust(&mut self, expn_id: ExpnId) -> Option { HygieneData::with(|data| { *self = data.normalize_to_macros_2_0(*self); data.adjust(self, expn_id) }) } /// Adjust this context for resolution in a scope created by the given expansion /// via a glob import with the given `SyntaxContext`. /// For example: /// /// ```rust /// m!(f); /// macro m($i:ident) { /// mod foo { /// pub fn f() {} // `f`'s `SyntaxContext` has a single `ExpnId` from `m`. /// pub fn $i() {} // `$i`'s `SyntaxContext` is empty. /// } /// n(f); /// macro n($j:ident) { /// use foo::*; /// f(); // `f`'s `SyntaxContext` has a mark from `m` and a mark from `n` /// //^ `glob_adjust` removes the mark from `n`, so this resolves to `foo::f`. /// $i(); // `$i`'s `SyntaxContext` has a mark from `n` /// //^ `glob_adjust` removes the mark from `n`, so this resolves to `foo::$i`. /// $j(); // `$j`'s `SyntaxContext` has a mark from `m` /// //^ This cannot be glob-adjusted, so this is a resolution error. /// } /// } /// ``` /// This returns `None` if the context cannot be glob-adjusted. /// Otherwise, it returns the scope to use when privacy checking (see `adjust` for details). pub fn glob_adjust(&mut self, expn_id: ExpnId, glob_span: Span) -> Option> { HygieneData::with(|data| { let mut scope = None; let mut glob_ctxt = data.normalize_to_macros_2_0(glob_span.ctxt()); while !data.is_descendant_of(expn_id, data.outer_expn(glob_ctxt)) { scope = Some(data.remove_mark(&mut glob_ctxt).0); if data.remove_mark(self).0 != scope.unwrap() { return None; } } if data.adjust(self, expn_id).is_some() { return None; } Some(scope) }) } /// Undo `glob_adjust` if possible: /// /// ```rust /// if let Some(privacy_checking_scope) = self.reverse_glob_adjust(expansion, glob_ctxt) { /// assert!(self.glob_adjust(expansion, glob_ctxt) == Some(privacy_checking_scope)); /// } /// ``` pub fn reverse_glob_adjust( &mut self, expn_id: ExpnId, glob_span: Span, ) -> Option> { HygieneData::with(|data| { if data.adjust(self, expn_id).is_some() { return None; } let mut glob_ctxt = data.normalize_to_macros_2_0(glob_span.ctxt()); let mut marks = Vec::new(); while !data.is_descendant_of(expn_id, data.outer_expn(glob_ctxt)) { marks.push(data.remove_mark(&mut glob_ctxt)); } let scope = marks.last().map(|mark| mark.0); while let Some((expn_id, transparency)) = marks.pop() { *self = data.apply_mark(*self, expn_id, transparency); } Some(scope) }) } pub fn hygienic_eq(self, other: SyntaxContext, expn_id: ExpnId) -> bool { HygieneData::with(|data| { let mut self_normalized = data.normalize_to_macros_2_0(self); data.adjust(&mut self_normalized, expn_id); self_normalized == data.normalize_to_macros_2_0(other) }) } #[inline] pub fn normalize_to_macros_2_0(self) -> SyntaxContext { HygieneData::with(|data| data.normalize_to_macros_2_0(self)) } #[inline] pub fn normalize_to_macro_rules(self) -> SyntaxContext { HygieneData::with(|data| data.normalize_to_macro_rules(self)) } #[inline] pub fn outer_expn(self) -> ExpnId { HygieneData::with(|data| data.outer_expn(self)) } /// `ctxt.outer_expn_data()` is equivalent to but faster than /// `ctxt.outer_expn().expn_data()`. #[inline] pub fn outer_expn_data(self) -> ExpnData { HygieneData::with(|data| data.expn_data(data.outer_expn(self)).clone()) } #[inline] pub fn outer_mark(self) -> (ExpnId, Transparency) { HygieneData::with(|data| data.outer_mark(self)) } #[inline] pub fn outer_mark_with_data(self) -> (ExpnId, Transparency, ExpnData) { HygieneData::with(|data| { let (expn_id, transparency) = data.outer_mark(self); (expn_id, transparency, data.expn_data(expn_id).clone()) }) } pub fn dollar_crate_name(self) -> Symbol { HygieneData::with(|data| data.syntax_context_data[self.0 as usize].dollar_crate_name) } } impl fmt::Debug for SyntaxContext { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "#{}", self.0) } } impl Span { /// Creates a fresh expansion with given properties. /// Expansions are normally created by macros, but in some cases expansions are created for /// other compiler-generated code to set per-span properties like allowed unstable features. /// The returned span belongs to the created expansion and has the new properties, /// but its location is inherited from the current span. pub fn fresh_expansion(self, expn_data: ExpnData) -> Span { self.fresh_expansion_with_transparency(expn_data, Transparency::Transparent) } pub fn fresh_expansion_with_transparency( self, expn_data: ExpnData, transparency: Transparency, ) -> Span { HygieneData::with(|data| { let expn_id = data.fresh_expn(Some(expn_data)); self.with_ctxt(data.apply_mark(SyntaxContext::root(), expn_id, transparency)) }) } } /// A subset of properties from both macro definition and macro call available through global data. /// Avoid using this if you have access to the original definition or call structures. #[derive(Clone, Debug, Encodable, Decodable, HashStable_Generic)] pub struct ExpnData { // --- The part unique to each expansion. /// The kind of this expansion - macro or compiler desugaring. pub kind: ExpnKind, /// The expansion that produced this expansion. pub parent: ExpnId, /// The location of the actual macro invocation or syntax sugar , e.g. /// `let x = foo!();` or `if let Some(y) = x {}` /// /// This may recursively refer to other macro invocations, e.g., if /// `foo!()` invoked `bar!()` internally, and there was an /// expression inside `bar!`; the call_site of the expression in /// the expansion would point to the `bar!` invocation; that /// call_site span would have its own ExpnData, with the call_site /// pointing to the `foo!` invocation. pub call_site: Span, // --- The part specific to the macro/desugaring definition. // --- It may be reasonable to share this part between expansions with the same definition, // --- but such sharing is known to bring some minor inconveniences without also bringing // --- noticeable perf improvements (PR #62898). /// The span of the macro definition (possibly dummy). /// This span serves only informational purpose and is not used for resolution. pub def_site: Span, /// List of `#[unstable]`/feature-gated features that the macro is allowed to use /// internally without forcing the whole crate to opt-in /// to them. pub allow_internal_unstable: Option>, /// Whether the macro is allowed to use `unsafe` internally /// even if the user crate has `#![forbid(unsafe_code)]`. pub allow_internal_unsafe: bool, /// Enables the macro helper hack (`ident!(...)` -> `$crate::ident!(...)`) /// for a given macro. pub local_inner_macros: bool, /// Edition of the crate in which the macro is defined. pub edition: Edition, /// The `DefId` of the macro being invoked, /// if this `ExpnData` corresponds to a macro invocation pub macro_def_id: Option, /// The crate that originally created this `ExpnData. During /// metadata serialization, we only encode `ExpnData`s that were /// created locally - when our serialized metadata is decoded, /// foreign `ExpnId`s will have their `ExpnData` looked up /// from the crate specified by `Crate pub krate: CrateNum, /// The raw that this `ExpnData` had in its original crate. /// An `ExpnData` can be created before being assigned an `ExpnId`, /// so this might be `None` until `set_expn_data` is called // This is used only for serialization/deserialization purposes: // two `ExpnData`s that differ only in their `orig_id` should // be considered equivalent. #[stable_hasher(ignore)] pub orig_id: Option, } // This would require special handling of `orig_id` and `parent` impl !PartialEq for ExpnData {} impl ExpnData { /// Constructs expansion data with default properties. pub fn default( kind: ExpnKind, call_site: Span, edition: Edition, macro_def_id: Option, ) -> ExpnData { ExpnData { kind, parent: ExpnId::root(), call_site, def_site: DUMMY_SP, allow_internal_unstable: None, allow_internal_unsafe: false, local_inner_macros: false, edition, macro_def_id, krate: LOCAL_CRATE, orig_id: None, } } pub fn allow_unstable( kind: ExpnKind, call_site: Span, edition: Edition, allow_internal_unstable: Lrc<[Symbol]>, macro_def_id: Option, ) -> ExpnData { ExpnData { allow_internal_unstable: Some(allow_internal_unstable), ..ExpnData::default(kind, call_site, edition, macro_def_id) } } #[inline] pub fn is_root(&self) -> bool { if let ExpnKind::Root = self.kind { true } else { false } } } /// Expansion kind. #[derive(Clone, Debug, PartialEq, Encodable, Decodable, HashStable_Generic)] pub enum ExpnKind { /// No expansion, aka root expansion. Only `ExpnId::root()` has this kind. Root, /// Expansion produced by a macro. Macro(MacroKind, Symbol), /// Transform done by the compiler on the AST. AstPass(AstPass), /// Desugaring done by the compiler during HIR lowering. Desugaring(DesugaringKind), } impl ExpnKind { pub fn descr(&self) -> String { match *self { ExpnKind::Root => kw::PathRoot.to_string(), ExpnKind::Macro(macro_kind, name) => match macro_kind { MacroKind::Bang => format!("{}!", name), MacroKind::Attr => format!("#[{}]", name), MacroKind::Derive => format!("#[derive({})]", name), }, ExpnKind::AstPass(kind) => kind.descr().to_string(), ExpnKind::Desugaring(kind) => format!("desugaring of {}", kind.descr()), } } } /// The kind of macro invocation or definition. #[derive(Clone, Copy, PartialEq, Eq, Encodable, Decodable, Hash, Debug)] #[derive(HashStable_Generic)] pub enum MacroKind { /// A bang macro `foo!()`. Bang, /// An attribute macro `#[foo]`. Attr, /// A derive macro `#[derive(Foo)]` Derive, } impl MacroKind { pub fn descr(self) -> &'static str { match self { MacroKind::Bang => "macro", MacroKind::Attr => "attribute macro", MacroKind::Derive => "derive macro", } } pub fn descr_expected(self) -> &'static str { match self { MacroKind::Attr => "attribute", _ => self.descr(), } } pub fn article(self) -> &'static str { match self { MacroKind::Attr => "an", _ => "a", } } } /// The kind of AST transform. #[derive(Clone, Copy, Debug, PartialEq, Encodable, Decodable, HashStable_Generic)] pub enum AstPass { StdImports, TestHarness, ProcMacroHarness, } impl AstPass { fn descr(self) -> &'static str { match self { AstPass::StdImports => "standard library imports", AstPass::TestHarness => "test harness", AstPass::ProcMacroHarness => "proc macro harness", } } } /// The kind of compiler desugaring. #[derive(Clone, Copy, PartialEq, Debug, Encodable, Decodable, HashStable_Generic)] pub enum DesugaringKind { /// We desugar `if c { i } else { e }` to `match $ExprKind::Use(c) { true => i, _ => e }`. /// However, we do not want to blame `c` for unreachability but rather say that `i` /// is unreachable. This desugaring kind allows us to avoid blaming `c`. /// This also applies to `while` loops. CondTemporary, QuestionMark, TryBlock, /// Desugaring of an `impl Trait` in return type position /// to an `type Foo = impl Trait;` and replacing the /// `impl Trait` with `Foo`. OpaqueTy, Async, Await, ForLoop(ForLoopLoc), } /// A location in the desugaring of a `for` loop #[derive(Clone, Copy, PartialEq, Debug, Encodable, Decodable, HashStable_Generic)] pub enum ForLoopLoc { Head, IntoIter, } impl DesugaringKind { /// The description wording should combine well with "desugaring of {}". fn descr(self) -> &'static str { match self { DesugaringKind::CondTemporary => "`if` or `while` condition", DesugaringKind::Async => "`async` block or function", DesugaringKind::Await => "`await` expression", DesugaringKind::QuestionMark => "operator `?`", DesugaringKind::TryBlock => "`try` block", DesugaringKind::OpaqueTy => "`impl Trait`", DesugaringKind::ForLoop(_) => "`for` loop", } } } #[derive(Default)] pub struct HygieneEncodeContext { /// All `SyntaxContexts` for which we have written `SyntaxContextData` into crate metadata. /// This is `None` after we finish encoding `SyntaxContexts`, to ensure /// that we don't accidentally try to encode any more `SyntaxContexts` serialized_ctxts: Lock>, /// The `SyntaxContexts` that we have serialized (e.g. as a result of encoding `Spans`) /// in the most recent 'round' of serializnig. Serializing `SyntaxContextData` /// may cause us to serialize more `SyntaxContext`s, so serialize in a loop /// until we reach a fixed point. latest_ctxts: Lock>, serialized_expns: Lock>, latest_expns: Lock>, } impl HygieneEncodeContext { pub fn encode< T, R, F: FnMut(&mut T, u32, &SyntaxContextData) -> Result<(), R>, G: FnMut(&mut T, u32, &ExpnData) -> Result<(), R>, >( &self, encoder: &mut T, mut encode_ctxt: F, mut encode_expn: G, ) -> Result<(), R> { // When we serialize a `SyntaxContextData`, we may end up serializing // a `SyntaxContext` that we haven't seen before while !self.latest_ctxts.lock().is_empty() || !self.latest_expns.lock().is_empty() { debug!( "encode_hygiene: Serializing a round of {:?} SyntaxContextDatas: {:?}", self.latest_ctxts.lock().len(), self.latest_ctxts ); // Consume the current round of SyntaxContexts. // Drop the lock() temporary early let latest_ctxts = { std::mem::take(&mut *self.latest_ctxts.lock()) }; // It's fine to iterate over a HashMap, because the serialization // of the table that we insert data into doesn't depend on insertion // order for_all_ctxts_in(latest_ctxts.into_iter(), |(index, ctxt, data)| { if self.serialized_ctxts.lock().insert(ctxt) { encode_ctxt(encoder, index, data)?; } Ok(()) })?; let latest_expns = { std::mem::take(&mut *self.latest_expns.lock()) }; for_all_expns_in(latest_expns.into_iter(), |index, expn, data| { if self.serialized_expns.lock().insert(expn) { encode_expn(encoder, index, data)?; } Ok(()) })?; } debug!("encode_hygiene: Done serializing SyntaxContextData"); Ok(()) } } #[derive(Default)] /// Additional information used to assist in decoding hygiene data pub struct HygieneDecodeContext { // Maps serialized `SyntaxContext` ids to a `SyntaxContext` in the current // global `HygieneData`. When we deserialize a `SyntaxContext`, we need to create // a new id in the global `HygieneData`. This map tracks the ID we end up picking, // so that multiple occurrences of the same serialized id are decoded to the same // `SyntaxContext` remapped_ctxts: Lock>>, // The same as `remapepd_ctxts`, but for `ExpnId`s remapped_expns: Lock>>, } pub fn decode_expn_id< 'a, D: Decoder, F: FnOnce(&mut D, u32) -> Result, G: FnOnce(CrateNum) -> &'a HygieneDecodeContext, >( d: &mut D, mode: ExpnDataDecodeMode<'a, G>, decode_data: F, ) -> Result { let index = u32::decode(d)?; let context = match mode { ExpnDataDecodeMode::IncrComp(context) => context, ExpnDataDecodeMode::Metadata(get_context) => { let krate = CrateNum::decode(d)?; get_context(krate) } }; // Do this after decoding, so that we decode a `CrateNum` // if necessary if index == ExpnId::root().as_u32() { debug!("decode_expn_id: deserialized root"); return Ok(ExpnId::root()); } let outer_expns = &context.remapped_expns; // Ensure that the lock() temporary is dropped early { if let Some(expn_id) = outer_expns.lock().get(index as usize).copied().flatten() { return Ok(expn_id); } } // Don't decode the data inside `HygieneData::with`, since we need to recursively decode // other ExpnIds let mut expn_data = decode_data(d, index)?; let expn_id = HygieneData::with(|hygiene_data| { let expn_id = ExpnId(hygiene_data.expn_data.len() as u32); // If we just deserialized an `ExpnData` owned by // the local crate, its `orig_id` will be stale, // so we need to update it to its own value. // This only happens when we deserialize the incremental cache, // since a crate will never decode its own metadata. if expn_data.krate == LOCAL_CRATE { expn_data.orig_id = Some(expn_id.0); } hygiene_data.expn_data.push(Some(expn_data)); let mut expns = outer_expns.lock(); let new_len = index as usize + 1; if expns.len() < new_len { expns.resize(new_len, None); } expns[index as usize] = Some(expn_id); drop(expns); expn_id }); Ok(expn_id) } // Decodes `SyntaxContext`, using the provided `HygieneDecodeContext` // to track which `SyntaxContext`s we have already decoded. // The provided closure will be invoked to deserialize a `SyntaxContextData` // if we haven't already seen the id of the `SyntaxContext` we are deserializing. pub fn decode_syntax_context< D: Decoder, F: FnOnce(&mut D, u32) -> Result, >( d: &mut D, context: &HygieneDecodeContext, decode_data: F, ) -> Result { let raw_id: u32 = Decodable::decode(d)?; if raw_id == 0 { debug!("decode_syntax_context: deserialized root"); // The root is special return Ok(SyntaxContext::root()); } let outer_ctxts = &context.remapped_ctxts; // Ensure that the lock() temporary is dropped early { if let Some(ctxt) = outer_ctxts.lock().get(raw_id as usize).copied().flatten() { return Ok(ctxt); } } // Allocate and store SyntaxContext id *before* calling the decoder function, // as the SyntaxContextData may reference itself. let new_ctxt = HygieneData::with(|hygiene_data| { let new_ctxt = SyntaxContext(hygiene_data.syntax_context_data.len() as u32); // Push a dummy SyntaxContextData to ensure that nobody else can get the // same ID as us. This will be overwritten after call `decode_Data` hygiene_data.syntax_context_data.push(SyntaxContextData { outer_expn: ExpnId::root(), outer_transparency: Transparency::Transparent, parent: SyntaxContext::root(), opaque: SyntaxContext::root(), opaque_and_semitransparent: SyntaxContext::root(), dollar_crate_name: kw::Invalid, }); let mut ctxts = outer_ctxts.lock(); let new_len = raw_id as usize + 1; if ctxts.len() < new_len { ctxts.resize(new_len, None); } ctxts[raw_id as usize] = Some(new_ctxt); drop(ctxts); new_ctxt }); // Don't try to decode data while holding the lock, since we need to // be able to recursively decode a SyntaxContext let mut ctxt_data = decode_data(d, raw_id)?; // Reset `dollar_crate_name` so that it will be updated by `update_dollar_crate_names` // We don't care what the encoding crate set this to - we want to resolve it // from the perspective of the current compilation session ctxt_data.dollar_crate_name = kw::DollarCrate; // Overwrite the dummy data with our decoded SyntaxContextData HygieneData::with(|hygiene_data| { let dummy = std::mem::replace( &mut hygiene_data.syntax_context_data[new_ctxt.as_u32() as usize], ctxt_data, ); // Make sure nothing weird happening while `decode_data` was running assert_eq!(dummy.dollar_crate_name, kw::Invalid); }); Ok(new_ctxt) } pub fn num_syntax_ctxts() -> usize { HygieneData::with(|data| data.syntax_context_data.len()) } pub fn for_all_ctxts_in Result<(), E>>( ctxts: impl Iterator, mut f: F, ) -> Result<(), E> { let all_data: Vec<_> = HygieneData::with(|data| { ctxts.map(|ctxt| (ctxt, data.syntax_context_data[ctxt.0 as usize].clone())).collect() }); for (ctxt, data) in all_data.into_iter() { f((ctxt.0, ctxt, &data))?; } Ok(()) } pub fn for_all_expns_in Result<(), E>>( expns: impl Iterator, mut f: F, ) -> Result<(), E> { let all_data: Vec<_> = HygieneData::with(|data| { expns.map(|expn| (expn, data.expn_data[expn.0 as usize].clone())).collect() }); for (expn, data) in all_data.into_iter() { f(expn.0, expn, &data.unwrap_or_else(|| panic!("Missing data for {:?}", expn)))?; } Ok(()) } pub fn for_all_data Result<(), E>>( mut f: F, ) -> Result<(), E> { let all_data = HygieneData::with(|data| data.syntax_context_data.clone()); for (i, data) in all_data.into_iter().enumerate() { f((i as u32, SyntaxContext(i as u32), &data))?; } Ok(()) } impl Encodable for ExpnId { default fn encode(&self, _: &mut E) -> Result<(), E::Error> { panic!("cannot encode `ExpnId` with `{}`", std::any::type_name::()); } } impl Decodable for ExpnId { default fn decode(_: &mut D) -> Result { panic!("cannot decode `ExpnId` with `{}`", std::any::type_name::()); } } pub fn for_all_expn_data Result<(), E>>(mut f: F) -> Result<(), E> { let all_data = HygieneData::with(|data| data.expn_data.clone()); for (i, data) in all_data.into_iter().enumerate() { f(i as u32, &data.unwrap_or_else(|| panic!("Missing ExpnData!")))?; } Ok(()) } pub fn raw_encode_syntax_context( ctxt: SyntaxContext, context: &HygieneEncodeContext, e: &mut E, ) -> Result<(), E::Error> { if !context.serialized_ctxts.lock().contains(&ctxt) { context.latest_ctxts.lock().insert(ctxt); } ctxt.0.encode(e) } pub fn raw_encode_expn_id( expn: ExpnId, context: &HygieneEncodeContext, mode: ExpnDataEncodeMode, e: &mut E, ) -> Result<(), E::Error> { // Record the fact that we need to serialize the corresponding // `ExpnData` let needs_data = || { if !context.serialized_expns.lock().contains(&expn) { context.latest_expns.lock().insert(expn); } }; match mode { ExpnDataEncodeMode::IncrComp => { // Always serialize the `ExpnData` in incr comp mode needs_data(); expn.0.encode(e) } ExpnDataEncodeMode::Metadata => { let data = expn.expn_data(); // We only need to serialize the ExpnData // if it comes from this crate. // We currently don't serialize any hygiene information data for // proc-macro crates: see the `SpecializedEncoder` impl // for crate metadata. if data.krate == LOCAL_CRATE { needs_data(); } data.orig_id.expect("Missing orig_id").encode(e)?; data.krate.encode(e) } } } pub enum ExpnDataEncodeMode { IncrComp, Metadata, } pub enum ExpnDataDecodeMode<'a, F: FnOnce(CrateNum) -> &'a HygieneDecodeContext> { IncrComp(&'a HygieneDecodeContext), Metadata(F), } impl<'a> ExpnDataDecodeMode<'a, Box &'a HygieneDecodeContext>> { pub fn incr_comp(ctxt: &'a HygieneDecodeContext) -> Self { ExpnDataDecodeMode::IncrComp(ctxt) } } impl Encodable for SyntaxContext { default fn encode(&self, _: &mut E) -> Result<(), E::Error> { panic!("cannot encode `SyntaxContext` with `{}`", std::any::type_name::()); } } impl Decodable for SyntaxContext { default fn decode(_: &mut D) -> Result { panic!("cannot decode `SyntaxContext` with `{}`", std::any::type_name::()); } }